P.RNIO RKR:K

LIERARt..„---''

• " R

, - • . R • Q. • • •••• . • . T

;OF , • *#-.Att v.L r•-• . .

SPRING-DEPOSITED IN ELEVEN WESTERN STATES

UNITED STATES. DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY CI 7 n

1 Water-Resources Investigations 79-35 Open-File Report

1! INTRODUCTION

Travertine is defined for this paper as a carbonate-mineral deposit dominated by calcium - ate, formed through the agency of spring water. Thus it includes terms such as tufa, onyx marble, calcareous sinter, and calcareous spring deposits. However, we exclude carbonate deposits in caves, those formed by wave action and other shore processes, and bioherms except as algae may participate in the process of depositing calcium carbonate from spring water.

Extinct travertine terraces occur hundreds of meters above present levels of spring activity ( Darton, 1906; Delo and Neil, 1942; Feth and Hem. 1963, for examples) and have potentials for inter- pretation of ancient hydrologic systems, rates of ddiowncutting, or rates of tectonic uplift that remain virtually unexploited. The abundance and size of extinct travertine deposits suggest that in many places, such as the Pinnacles at the northwest corner of Pyramid Lake, Nevada (Russell, 1885), and the hundreds of pinnacles at the southwest end of the Searles Lake basin, California (Scholl, 1960), spring activity was once more widespread and copious than it is now. At the Pinnacles and Searles Lake, some spring orifices were more than 30 meters above present land surface, implying hydrostatic heads that have long since vanished.

Travertine of Eocene age has been reported by Bradley and Eugster (1969) and Smoot (1976). A scattering of later Tertiary occurrences is known. But where age has been inferred, the inferred ages are predominantly Pleistocene or younger. So travertine seems to be a geologically transient phenomenon, subject either to removal by erosion or to burial and disappearance. As most deposits are of modest size, that is understandable.

Biologic materials enclosed in travertine provide carbon for 140 dating. Ages calculated from the 140 of the carbonate of travertine, however, are suspect unless it can be demonstrated convincingly that none of a given sample represents redeposition of carbonate from older , in which case part or all would be radioactively dead, thereby yielding a meaningless NC age.

Many travertine deposits are known to be on or close to faults. Their occurrence in otherwise structurally featureless alluvial valleys may, therefore, suggest the possibility of a hidden fault. The study of travertine deposits in relation to geologic structure, geomorphology, relative ages of geologic materials and features, and relative to Pleistocene hydrology of many areas seems to us to be a neglected facet of geology and hydrology.

DISTRIBUTION

A few travertine deposits occur in the Appalachians. Thence westward to the Rocky Mountains, they are few and far between. But from the Front Range to the Pacific we have identified more than 300. The accompanying map (fig. 3) shows that the deposits are widely dispersed. However, there are apparent groupings on the Wasatch Fault and associated tectonic areas trending northward in Utah and southern , and also near the great fault zone that marks the eastern boundary of the Sierra Nevada, California. A virtually worldwide association of travertine deposits with tectonically and seismically active belts of supercontinental0 magnitude has been documented (Barnes and others, 1978). Their scarcity north of latitude 45 is noteworthy, yet latitude is not a controlling factor as travertine occurs in British Columbia and in Alaska (Waring, 1965).

We have speculated as to the degree that the distribution shown represents an artifact, marking intensity of observation rather than natural distribution. It is true that Waring (1915) studied the springs of California perhaps more intensively than the springs of any other western state have been assessed. And nearly half the occurrences shown in California are from Waring's report. But surveys of thermal springs or mineral springs or onyx marble have been made statewide in 7 of the 11 states we illustrate, including Oregon and Washington. We conclude that for the most part the distribution is real.

The known and inferred relation between travertine-depositing springs and faults has been men- tioned. Their distribution with respect to rock types, where known, is shown in figure 1. It is clear that the sedimentary-rock environment is predominant, but the abundance found in volcanic or granitic terrain remains noteworthy. The temperature of spring water listed as actively depositing travertine ranges from 5°C to 96°C, but the greatest concentration is in the range from 10aC to 30°C. Attempts to distribute travertine-depositing springs by chemical water types result only in frustration. Scattergrams comparing one variable with another result in shotgun patterns. The range in concentration of dissolved solids or of individual constituents covers orders of magnitude. The scope of the problem is shown in the table below which lists the characteristics representative of 42 travertine- depositing spring waters for which fairly complete, and presumably accurate, analyses are available.

CHEMICAL CHARACTERISTICS OF SELECTED WATERS THAT DEPOSIT TRAVERTINE Percentage, of cations Concentration range (mg/L) or of anions Maximum Minimum Median Mean Maximum Minimum Cations: 1 4 Ca A22494 24 150 179 ZZ 68 2 Mg 355 <1 40 53 1Z33 <1 Na (or Na+k) 3,520 2 14 340 681 94 Y 5

Anions: 1 HCO +C0 8,370 <1 780 1,214 22 89 4 I. 2 3 3 SO 1,730 2 5 400 467 89 1 4 Cl 2,330 113.2 22222. 210 2ztIN 521 2q64 1

1 Both Ca and carbonate species are probably underestimated because of precipitation of CaCO 3 between spring orifice and sampling site or in container between time of sampling and of analysis, or both.

UNCERTAINTIES Of Location The locations of travertine deposits shown on the map and indicated on the master table are the best representations the authors could make in light of several uncertainties. Where section, township, and range locations were given in the key reference, the information was referred to a quadrangle map, thence to the appropriate State base map where the township grid appeared at reduced scale. and thence to the still smaller-scale map of this report. The last transfer was made by reference to lines of latitude and longitude, drainage, relations to county lines, and directions and distances from those cities that are shown. Older publications commonly identified locations as "about three miles north of west from Greenburg" or some similar statement. Although each deposit location is given on the master table at least to township and range, the fact that some locations involve interpretation should be recognized.

Of Activity Uncertainties regarding activity of deposition stem from two sources: 1) failure of the original report to say that deposition was or was not taking place, and 2) the fact that springs change in activity both with respect to discharge and with respect to their ability to form travertine. The result is. in part, that various reports of discharge and temperature of water are cited where the deposit is known to be inactive (spring discharges from beneath the travertine mound, for instance), or where activity of deposition is unknown from the report in the literature. Discharge and temperature date in this report are all "as of" the visit by an investigator—and some of those date back to the late 19th century. Conditions at any of the reported occurrences may be different today compared to when the infon.lation reported here was gathered. With respect to references. we have tried to cite one principal reference—commonly, but not ,nocnno hlt7 nnmnlot. Inoco inn. Thnce dt hAve although those "standard" references are not individually cited unless one was the sole reference found or where half or more of the information came from one of them.

TRAVERTINE FORMATION

Travertine is commonly thought to be or aragonite formed either by agitation of water or evaporation (Gary and others, 1972, p. 752). Documented modes of deposition of travertine in the Western have shown that and the entire solid solution of calcite (from 08003 to CaMg(003 )2) should be added to the minerals forming travertine deposits and that evaporation has little if any bearing on most trayertine deposits. The calcareous materials, calcite, aragonite, and dolomite form travertine deposits from aqueous solutions that became at least slightly supersaturated with respect to the minerals deposited. The supersaturation may occur by loss of carbon dioxide (CO2) from solution to the air, gain of 009 from the air, commingling of two chemically different and incompatible aqueous solutions, or‘by loss of 002 through photosynthesis. In a study of travertine deposition from hot springs, Friedman (1970) showed on the basis of stable isotope evidence that evaporation of water was slight. He showed that the deposition of the travertine was by loss of 002 to the air. Friedman further showed that for kinetic reasons the isotopic 13 fractionation of the carbon 13 ( 0) between aqueous solutiono and the travertine, relative0 to the PDF standard in perm il (0/00), decreased from a difference of 4.8 /oo at 75°C to 0 0/00 at 20 0. Quite different results were found for travertine depositing from a spring on Pescadero Creek. Santa Clara County, California. The spring is in the southwest 1/4 section 23 of township 11 south, range 3 east and issues from Franciscan greywacke of presumed late Mesozoic age along the Sargent fault. The spring-water composition, given in the table below may be interpreted in the light of earlier reported work. The rather high silica and magnesium concentrations are typical of 002-rich metamorphic water (Barnes, 1970; White and others, 1973) reacting with serpentinite (Barnes and others, 1973). Although serpentine is not exposed at the spring, it is present in outcrop a short distance westward along the fault and almost surely occurs below the spring. The 002-rich water commonly issues from creeping segments of active faults (Barnes and others, 1975; Irwin and Barnes, 1975). The spring water has a carbon dioxide partial pressure (P002, in the table above) far above the .03 kPa found in the earth's atmosphere, so 002 is lost from solution. Loss of 002 to air leads to precipitation of magnesian calcite as travertine. Most of the carbon remains as bicarbonate (HC034 ) in 0 the water and is thus a key to the source of the carbon. The value of the 13 in solution, _7290/0o is typical of mantle-derived 002, and is out of isotopic equilibrium with the 002 of the air (-7 °/oo) by about -7.3 0/00. Thus 002 will be lost from solution as 13002 and 12002. The dissolved carbon is also out of isotopic equilibrium with respect to 14002. While 13 002 and 12 002 are lost from solution to the air, 14002 enters the solution to yield spuriously Young ages of both travertine and dissolved carbon (table 2). The enrichment of the travertine in 146 and 130 may be due to the Mg003 content of the magnesian calcites which are enriched in the heavier carbon isotopes (O'Neil and Barnes. 1971) relative to the 08003 end member of the calcite solid solution. The interpretation of the isotogic compositions of may be ambiguous. If only the travertine isotopic composition (- 0.06 too) were known, the obvious interpretation of the carbon source would be a marine carbonate (+4 to -4 /oo, Craig, 1953). Such an interpretation is clearly wrong from the composition known for the dissolved, mantle-derived carbon. The problem is that the isotopic fractionation between dissolved and precipitated carbon may be none (Friedman, 1970) to nearly an equilibrium fractionation as reported here. Low temperature formation of serpentine from olivine and pyroxenes yields waters of pH values up to 12.0 (Barnes and O'Neil, 1969). The solutions, as they emerge, contain no detectable carbonate (CO3-2) and up to 53 mg/L (milligrams per liter) calcium ion (0.9-2 ). The solutions gain CO2 from the overlying air and deposit aragonite, calcite, or both, with a kinetic isotopic fractionation of about 10 o , : 13 /00 in 130, with the travertine depleted in 0 (O'Neill and Barnes, 1971). In a companion study of conglomerates and travertines, it was shown that travertines could also form by dispersion of magnesium- (Mg+2 ) and H003-1-rich solutions into Ca+2 -rich HO03-1-poor solutions (Barnes and O'Neil, 1971). The travertines are unusual because they are composed of calcite ranging in composition from CaCO3 to Ca,5Mg5 CO3 and dolomite ranging in composition from Ca.6 Mg.4 003 to Ca. Mg. 003. Although they showed the solid solutions were due to dispersions of two chemically incompatible waters, they did not provide a chemical explanation of the reaction mechanism to yield the solid solutions. The Mg'- 2-HCO3-1-rich waters contain so much H003-1 that up to 10 percent of the Mg+2 exists in the ion pair (MgH003)--. The ion pair is large and singly charged and has a low charge density relative to Mg+2. The ion pair is thus much less hydrated than Mr 2. It is polar, with the Mg end positive with respect to the HCO3 end and is thus attracted to the negatively charged surface of the crystals of solid carbonates. The addition of the ion pair to the crystal surface polar. with the Mg end positive with respect to tne HCO3 end and is thus attracted to the negatively charged surface of the crystals of solid carbonates. Tne addition of the ion pair to the crystal surface

and loss of the hydrogen ion adds anhydrous layers of MgCO3 to the growing crystal and thus provides an effective mechanism for growing MgCO3-rich solid solutions in low temperature, dilute waters.

Possibly the most common mode of formation of travertine is from leaching of calcium carbonate from rocks by ground water and subsequent deposition of travertine in stream channels. Plants take up CO2 from air and respire CO2 through their roots. As a consequence, the amount of CO2 in soil atmospheres may be appreciably greater than that in the earth's atmosphere. Calcium carbonate dissolved in a CO2-rich water may reprecipitate when CO2 is lost from solution after the ground water enters a stream channel. A detailed study of a travertine-depositing stream in an arid climate (Barnes, 1965) showed the CO2 loss was almost entirely by photosynthesis, and evaporative effects were less than detectable. There is a tendency for travertine to form on obstructions such as leaves, twigs, and stones. As the travertine continues to accumulate, it forms rims to pools on the downstream side. The fundamental cause of the accumulation is a greater time rate of supply of unstable (supersaturated) solution per unit area of substrate where the water velocity is greater. The maximum development in stream channels is a series of pools separated by rims of travertine.

As noted earlier and in the following figure. many kinds of rocks yield travertine. There is a problem in that many granites yield CO2 from mantle sources. Some of the CO2-rich springs in granitic terranes yield travertine and some do not. Apparently CO2 -rich water cannot leach the calcium from the silicates; if they could, travertine deposits would form in all granitic rocks. Where travertine occurs in silicate rock terranes, it may be assumed that C8CO3 also occitrs, either disseminated and hence overlooked, or as a subsurface lenses or masses of marble, limestone or other calcareous materials. Otherwise the calcium may not be supplied to form the travertine.

Travertine deposition does not seem to depend upon the temperature of the springs as shown in the figure below. Because the deposition of travertine is independent of temperature, evaporation of water is not an important cause of deposition. The supersaturation and consequent travertine deposition is due to the chemical reasons given earlier.

CHEMICAL AND ISOTOPIC COMPOSITIONS OF A SPRING ON PIr>CADERO CREEK, CALIFORNIA AND PRECIPITATES FROM THE SPRING WATER

(Concentrations in mg/L; 130 compositions to the PDB standard in permil (°/oo); pressure in kilopascals (= 0.01 bar). SrCO3 is total dissolved CO2 species, chiefly HCO3 - precipitated by addition of an ammoniacal SrC12 solution.)

SiO 108 CO (aq) 530 2 2 Al 0.48 HCO3 2.540 Fe 2.0 CO 1.5 3 Ca 39 SO 2 4 Mg 145 Cl 2,300 Na 2,170 F 0.7 K 60 Br 6.1 NH 8.9 I 5.9 4 88

. 13 pH 6.78 o C travertine (calcite) -0.06

-614 C SrCO CO 35.5 3 922'5 2 kP 0.03 Apparent age; years B. P. , SrCO 20,500450 3 6130 SrCO -7.29 - 6I4C travertine 8395 3 Apparent age; years B. P. travertine 14,670 - -

OCCURRENCE OF TRAVERTINE BY STATES

EXPLANATION

Descriptions of deposits are given, where known, in eight items for each occurrence as follows:

a. Name e. Temperature of associated spring b. County f. Discharge of spring C. Section, Township', Range g. Rock(s) at orifice d. Reported depositional activity h. Comments and reference(s)

ARIZONA

1. 6. Blue Spring Coconino Coconino Not surveyed T. 32 N., R. 7 E. (proj.) Inactive Active 21°C "Large flow" > 2600 L/s Limestone Redwall Limestone Travertine deposits occur along 8 km reach .Q.a uses extensive deposits in channel of Little of river. (M. E. Cooley, 1978, written corn- Colorado River. (Cooley, 1976) mun.) 7. 2. Havasu Spring Coconino Coconino T. 31 N., Rs. 1, 2 E. Tps. 32-33 N., R. 4 W. (proj.) Active Active 21°C 1,900 L/s Redwall Limestone Limestone Travertine is forming in bed of Hermit Creek, Much travertine occurs below spring. Other Grand Canyon National Park. (Metzger, occurrences reported at Mooney and Bridal 1961) Veil Falls (Galbraith, 1941; Metzger, 1961) 8. 3. Elves Chasm Mohave Coconino Secs. 4, 9, T. 30 N., R. 14 W. Not surveyed Inactive Inactive

3.5-14 Lis (various measurements 1923-65) Sedimentary: limestone Limestone Travertine forms cliff extending 245 m above Eight travertine remnants occur; two larger arm of Lake Mead. (M. E. Cooley, 1978, enclose Elves Chasm to heights 20-165 m written commun.) above Colorado River. (M. E. Cooley, 1978, written commun.) 9. Mohave 4. Secs. 2, 3, 4, T. 27 N., R. 11 W. Coconino Inactive Unsurveyed Unknown Li mestone Three travertine deposits range from 60-245 m Limestone above Colorado River; the two larger ones Travertine occurs in at least 7 places in Marble are south of river. (M. E. Cooley, 1978, Canyon along Colorado River (Cooley, 1976) written commun.)

5. 10. Mohave Apache T. 31 N., R. 15 W. Sec. 35, T. 21 N., R. 28 E. Inactive Unknown

Li mestone Tertiary gravel Three erosional remnants of travertine extend Travertine was mapped in several occurrences as much as 120 m above Lake Mead. (M. E. near St. Johns. (Harrell and Eckel, 1939, Cooley, 1978, written commun.) pl. 1) --

Montezuma Is all 17. Fossil Creek Springs Yavapai Gila Sec. 31. T. 15 N., R. 6 E. Sec. 14, T. 12 N., R. 7 E. Act ive Activeo 22 °-28°C 21 C 55-80 L/s 1,180 L/s Sedimentary Limestone Discharge deposits nearly 90 kg of Ca CO3 Many new orifices open as some are sealed per day. (Cole and Bachelder. 1968; T. H. by travertine. Inactive terrace nearoy is Thompson, 1977, oral commun.) roughly 1.5 km long, 150 m wide, and extends several hundred meters up slope of moun- 12. Stinking Spring tain. It is much larger than present depos- Apache its. (Feth and Hem, 1963) Sec. 10, T. 14 N., R. 26 E. Active 1 °C 18. G ila 2.5 L/s Sec. 27. T. 11 N., R. 11 E. (proj.) Sedimentary Inactive Spring issues from travertine cone. (Harrell and Eckel, 1939) Granitic Montoya Spring Travertine deposits cling to canyon wall from Apache 10-30 m above East Verde River on east Sec. 14, T. 14 N., R. 26 E. wall and about from 12-25 m on west wall. Active ( Feth and Hem, 1963)

<0.5 L/s 19. Sandstone Apache Spring has one of smaller travertine deposits Tps. 12-13 N., R. 29 E. in the Hunt-St. John area. (Harrell and Inactive Eckel, 1939) 13. Salado Springs Sedimentary Apache Several square kilometers of travertine cap Sec. 21, T. 12 N., R. 28 E. ridges of rocks of Chinle Formation. (Har- Active rell and Eckel, 1939) 23°C 125-250 L/s 20. Twin Buttes Sedimentary Apache This is one of 9 travertine deposits in Tps. T. 14 N., R. 26 E. 11-12 N., R. 28 E. (Harrell and Eckel, 1939) Unknown

14. Yavapai Sedimentary T. 12 N., R. 1 E. One deposit has natural underground chamber Inactive used by Zuni Indians for ceremonial pur- poses. Four smaller travertine mounds are in same township. (Harrell and Eckel, 1939) Metamorphic Occurrences reported "near Mayer," one on 21. Verde Hot Springs Big Bug Creek, another on Cave Creek. Yavapai (Galbraith. 1941) Sec. 3, T. 11 N., R. 6 E. Inactive 15. 33°-41 °C Yavapai 0.6 Lis Sec. 6, T. 12 N., R. 4 W. Volcanic Inactive Most travertine is above present springs. Deposit 3 m long, 1 m in other dimensions. ( Feth and Hem, 1963) Travertine of commercial grade (dimension 22. Tonto Natural Bridge stone) reported "surrounding Kirkland." Gila (Hansen, 1929) Sec. 5, T. 11 N., R. 9 E. Active 17°C 16. Burmister Mine Yavapai Small Sandstone Sec. 17, T. 11 N., R. 3 E. Inactive Arch of older travertine has modern spring near base. Travertine lines and partly covers open flume leading discharge away. (Feth 1963) Volcanic and Hem, Manganiferous travertine covers several hec- tares within a larger area of travertine and sinter. (Hewett and others, 1963) 23. ■N ailing Cow Ranch 30. Gila Gila Sec. 9, T. 11 N., R. 10 E. Unsurveyed Inactive Active 26°C 140 L/s Limestone Alluvium Several travertine deposits of moderate size Streambed travertine armors about 1 m of occur. (Feth and Hem, 1963) Carrizo Creek above junction with Salt River. (W. B. Garrett, 1978, oral commun.) 24. Wildcat (Arsenic) Spring Gila 31. Salt Banks Sec. 13, T. 11 N., R. 11 E. Gila Inactive Sec. 13, T. 5 N., R. 13 E. Active 21°-26°C Unmeasurable-small Small travertine terrace is near modern spring. Quartzite, diabase (Feth and Hem, 1963) Travertine drapes over cliffs beside Salt River. (Feth and Hem, 1963) 25. Yavapai 32. T. 8 N., R. 5 E. (unsurveyed) Plma Inactive T. 19 S., R. 16 E. (proj.) Inactive Metamorphic: granitic Deposit on Cave Creek about 3 m thick was once quarried. (Merrill, 1895) Travertine occurrence reported. (Galbraith, 1941) 26. Navajo 33. Rail-X Travertines Sec. 34, T. 8 N., R. 20 E. (proj.) Santa Cruz Inactive Sec. 10, T. 21 S., R. 16 E. Inactive

Brown travertine is exposed in roadcut high Sedimentary, volcanic (sec. 10) above Corduroy Creek. It is overlain by Two remnants are 90 and 135 m, respectively, oxidized soil, then by basalt. (Feth and higher than Sonoita Creek. (Feth, 1947) Hem, 1963) 34. Monkey Spring 27. Santa Cruz Yavapai Sec. 9, T. 21 S., R. 16 E. Sec. 1, T. 7 N., R. 4 W. Inactive Inactive Alluvium Travertine was deposited fairly recently by Travertine of commercial grade (dimension water from Monkey Spring; originally several stone) occurs "at Wickenourg." (Hansen, thousand meters long and more than 15 m 1929) thick. Now dissected into four main masses. (Feth, 1947) 28. Alchesey Spring Gila 35. Sec. 4., T. 6 N., R. 23 E. Santa Cruz Active Sec. 33, T. 20 S., R. 16 E. Inactive 480 L/s Limestone Dome of water rises from circular mound Limestone of travertine. (Feth and Hem, 1963) Travertine is about 0.5 km long, half as wide, and extends 30 m upslope from Sonoita 29. White River Terrace Creek. (Feth, 1947) Gila T. 5 S.. R. l:. Inactive

Basalt, limestone Terrace of travertine about half as large as Mammoth (Yellowstone NP) rests on basalt that flowed down canyon. (Feth and Hem, 1963) CALI FORNIA 1. Keller Soda Spring 8. Altoona Spring Siskiyou Trinity Sec. 34, T. 48 N., R. 9 W. Sec. 19, T. 38 N., R. 5 W. Active Activeo ° 12 F 13 C <0.5 L/s <0.5 L/s

Spring rises from travertine deposit 9-10 m Minor travertine deposits are present. in diameter. (Waring, 1915) (E. H. Bailey, 1956, written commun.)

2. 9. Siskiyou Trinity Sec. 19, T. 47 N., R. 5 W. T. 36 N., Rs. 8-9 W. Active Active 22°-24 °C < 0.5 L/s Volcanic Ultra mafic Several springs discharge from travertine Streambed travertine occurs along several pools that overlie larger deposit. Traver- miles of Swift Creek. (Arnold and Ander- tine mound 300 m northeast is 30 m in dia- son, 1908) meter and 3 m high. (Waring, 1915) 10. 3. Martin Soda Spring Trinity Siskiyou T. 35 N., R. 9 W. Sec. 20, T. 45 N., R. 4 W. Active inactive 13 uC < 0.5 L/s Ultramafic gravel Volcanic Streambed travertine lines several miles of About 70 m from spring a cone of travertine bed of Stuart Creek. (Arnold and Ander- rises from a larger tabular mass. Nearby, son, 1908) a cold spring discharges about 170 L/s from beneath a bank of travertine and fragments 11. Drakes Hot Springs of volcanic rock. (Waring, 1915) Plumas Sec. 22, T. 30 N., R. 5 E. 4. Table Rock Spring Unknown Siskiyou 51°-64°C Sec. 20, T. 45 N., R. 4 W. Activeo Volcanic; alluvium 18 C Travertine occurs at several places on bank 0.5 L/s above Hot Springs Creek. (Waring, 1915)

Spring issues from low mound of travertine 12. Shaf ter (Wendel) Hot Springs 90 m in diameter. (Waring, 1915) Lassen Sec. 23, T. 29 N., R. 15 E. 5. Active Modoc 72°-96°C Sec. 1, T. 42 N., R. 16 E. (See remarks) Inactive Lakebeds 66°-96°C Travertine crags 50 ft. high occur. Russell 32 L/s (1885) reported discharge as 2,840 L/s. Alluvium Stearns and others (1937) reported 16 L/s. Travertine aprons are above present springs; in October 1957 one of us (J.H.F.) measured Hg minerals are depositing below. (Raab temperature at 96°C and estimated discharge and Dickson, 1969) to be 2 L/s. Discharge appears to have diminished with time. 6. Shasta Springs Siskiyou 13. Amedee Hot Springs Sec. 7, T. 39 N., R. 3 W. Lassen Unknown Sec. 8, T. 28 N., R. 16 E. Active0 95 C Alluvium 9.5 L/s Deposits of iron-stained travertine are on Lakebeds east and west banks of Sacramento River. Water deposits limited amounts of travertine. ( Waring, 1915) (Russell, 1895)

Castle Crag Spring Shasta Sec. 12, T. 38 N., R. 4 W. Unknown "Cold" <0.5 L/s Some travertine was observed. (D. E. White, 1957, written corn mun.) -

14. High Rock Spring 21. Fouts Springs Lassen Colusa T. 28 N., R. 17 E.(?) Sec. 5, T. 17 N., R. 7 W. Unknown Active o ° 38 C 24 C 33 L/s 0.5 L/s Basalt Serpentine Large travertine crags occur. (Russell, 1885) Below New Life Spring is a terrace of gravel Waring (1915) said travertine covers 0.8-1.0 cemented by travertine. (Waring, 1915) ha and water temperature was 30°C. 22. 15. Arlington Springs Placer Plumas Sec. 28, T. 16 N., R. 13 E. Sec. 25, T. 26 N., R. 9 E. Unknown inactiveo 12 F <0.5 L/s Large deposits of travertine and small seepages Considerable travertine was deposited. It of water occur 3 km west of Summit Soda is iron stained and inconspicuous. (Waring, Springs. (Waring, 1915) 1915) 23. 16. V. and M. Quarry Placer Plumas Sec. 21, T. 16 N., R. 13 E. Sec. 3, T. 25 N., R. 9 E. Inactive Inactive 14 °-20°C < 0.5 L/s Limestone and metavolcanic Travertine deposits occur "north of the rail- TrI.N.-crtine dev- sit 25 m in diamc.tv• road on the wagon road to Truckee. (Waring, 30 m high has been extensively quarried. 1915) (R. H. Mariner, 1977, oral commun.; Waring, 1915) 24. Vichy Springs Mendocino 17. Sec. 15, T. 15 N., R. 12 W. P- lumas Activeo Sec. 15, T. 25N., R. 9 E. 31 C Active 1 L/s 17°-20°C Sedimentary < 0.5 L/s One spring rises in natural grotto of traver- tine. Others are forming streambed traver- Travertine covers slope about 120 m long below tine. (Waring, 1915) springs and forms bluff 100 m long beside Spanish Creek. (Waring, 1915) 25. Saratoga Springs Lake 18. Kinsner Soda Spring Sec. 4, T. 15 N., R. 10 W. Mendocino Active o_ o Sec. 21, T. 19 N., R. 12 W. 9 13 c Active <0.5 L/s o 80 c Sedimentary < 0.5 L/s One spring (of 4 or more) deposits iron-stained Sandstone travertine. (Waring, 1915) Water is forming a streambed travertine. ( Waring, 1915) 26. Hough Springs Lake 19. Baker Mineral Springs Sec. 10, T. 15 N., R. 7 W. Mendocino Inactive Sec. 15, T. 18 N., R. 12 W. 160-19°C Active < 0.5 L/s 10°-13°C Sedimentary <0.5 L/s One spring discharges near base of extensive Sedimentary deposit of travertine. (Waring, 1915) Water from 5 springs deposits "considerable" travertine. (Waring, 1915) Placer Sec. 9, T. 15 N., R. 10 E. 20. Glenn Unknown Sec. 15, T. 18 N., R. 6 W. Active

Travertine was reported at Gold Run without comment. (Merrill, 1895) Spring issues from large deposit of iron-stained travertine. (Berkstresser, 1968) 28. Deadshot Springs 35. Grizzly (Richardson) Springs Colusa Lake Sec. 6, T. 14 N., R. 5 W. Sec. 9, T. 13 N., R. 6 W. Active Active° ° 18°C 20 -21 C < 0.5 L/s < 0.5 L/s Serpentine Sedimentary; serpentine Travertine cements fragments of serpentine Travertine extends downhill from springs to to form terrace 6 m high and 15 m long. creek. Inactive deposits are nearby. (Waring, 1915) (Waring, 1915) 29. 36. Glen Alpine Springs Lake Lake T. 14 N., R. 7 or 8 W. T. 13 N., R. 10 W. Inactive Inactive° 10 C < 0.5 L/s Sedimentary There is a large travertine deposit "on the Two small springs beside Scott Creek deposited mountainside about 4 km northward from hard travertine. (Waring, 1915) Dinsmore's ..." (Waring, 1915) 37. Highland Springs 30. Chalk Mountain Lake Lake Sec. 31, T. 13 N., R. 9 W. Sec. 12, T. 14 N., R. 7 W. Intbctive° Active 15 -28 C 190-21°C < 0.5-0.6 L/s < 0.5 L/s Sedimentary Deposition of travertine is minimal, but nearby Volcanic , . . Trtivctirie .‘! tends 7! alf...11, o: mountain travertine 1-2 m thick occurs over area and 22 m downslope. (Waring, 1915) 50 m. (Waring, 1915) 31. Oil Spring 38. Baker Soda Spring Colusa Lake Sec. 8, T. 14 N., R. 5 W. Sec. 16, T. 12 N., R. 6 W. Activeo Active 24 C <0.5 L/s Sedimentary Spring issues from tall travertine terrace. Travertine extends about 0.4 km along hill- (Berkstresser, 1968) side. Spring water is salty and has petroleum taste. (Waring, 1915) 39. Wentworth Spring Eldorado 32. Sec. 31, T. 13 N., R. 15 E. Colusa Active° Sec. 13, T. 14 N., R. 6 W. 13 C Inactive < 0.5 L/s 60°C Metamorphic and granitic 0.6 L/s Spring is depositing travertine. (R. H. Mariner, Serpentine; sedimentary 1977, oral commun.) Travertine encloses fragments of shale at Elgin Mine; 1 km up canyon is ledge of onyx 40. Grovers Hot Spring marble. (Waring, 1915) Alpine Sec. 24, T. 10 N., R. 19 E. Active 33. "Bear Creek localities" o oc Colusa 53 -S5 Tps. 13-14 N., Rs. 4-5 W. 6.3 L/s Active Granitic Springs discharge across travertine terrace. (Waring, 1915) Marine shale Streambed travertine occurs. (Barnes and 41. "Cazadero A" O'Neil, 1971) Sonoma Sec. 13, T. 9 N., R. 12 W. 34. Sulphur Bank Active Lake Sec. 5, T. 13 N., R. 7 W. Inactive Ultra mafic Streambed travertine occurs. (Barnes and O'Neil, 1971) Lakebeds Travertine cements elastic grains where car- bonated water formerly discharged on the shore of Clear Lake. (White and Rober- son, 1962) - -

42. Phillips Soda Spring Napa 49. -S olano Sec. 26, T. 8 N., R. 4 W. (proj.) Sec. 36, T. 5 N., R. 2 W. (proj.) Inactive Activeo o 20 -24 C 0.6 L/s Serpentine; shale Resinous travertine crops out on hillside near Large deposit of travertine (mostly Mg CO 3 ) occurs 30 m above floor of small valley. Suisun City. (Merrill, 1895) Springs emerge at contact of serpentine over shale. (Waring, 1915) 50. Casa Diablo Hot Pool Mono 43. Sec. 11, T. 3 S., R. 28 E. Solano Unknown ° T. 6 N., Rs. 1-2 W. 83 C Inactive 0 when visited Lakebeds; volcanic Overflow channel and area about 45 m in dia- Sedimentary meter are covered by hard deposits "ap- Patches of travertine less than 15 m thick parently of silica and lime carbonate." lie on slopes of Vaca Mountains. (Weaver, ( Waring, 1915) 1949) 51. 44. Fales Hot Springs Mono Mono Tps. 1-2 N., R. 26 E. Sec. 19, T. 6 N., R. 24 E. Activeo o Inactive 27 -32 C 54 0-610 F 0.6 Lis Marble Volcanic Many towers and mushroom-shaped masses Present springs are about 40 m lower than of travertine are along west and north shores three travertine basins rimmed by deposits of Mono Lake. Sublacustrine masses surround 15-45 m thick; largest is 30 m across. active springs. (Dunn, 1953) (Waring, 1915) 52. Soda Spring 45. Tolenas Springs Tuolumne Solano Sec. 5, T. 1 S., R. 24 E. W. Active Sec. 2, T. 5 N., R. 2 o Unknown 8 c 17°C < 0.5 L/s < 0.5 L/s Granitic Sedimentary Springs emerge from low mound of iron-stained Travertine covers area 92 m in diameter, east travertine. (Waring, 1915) of and 15 m above present spring. (Waring, 1915) 53. Madera 46. Bridgeport Hot Springs Sec. 26, T. 3 S., R. 26 E. (proj.) Mono Unknown ° Sec. 34, T. 5 N., R. 25 E. 12 C Activeo <0.5 L/s 65 C <0.5 L/s Travertine forms a low mound in Agnew Mea- Volcanic dows. (Waring, 1915) Travertine covers several hectares and forms digitate ridges 1-5 m high. Deposit was 54. Hot Creek quarried at times. (Waring, 1915) Mono Sec. 35, T. 3 S., R. 28 E. 47. Buckeye Hot Spring Unknowno Mono 85 C Sec. 4, T. 4 N., R. 24 E. 0 Active Volcanic 60°C Big northwest pool on Hot Creek is in traver- 1.6 L/s tine and sinter. (D. E. White, 1957, written Granitic commun.) Water flows over domelike mass of travertine. (Waring, 1915) 55. Mono 48. Bridgeport Warm Springs Sec. 32, T. 3 S., R. 29 E. Mono Active Sec. 10, T. 4 N., R. 25 E. Activeo o 21 -41 C Tuffaceous sandstone 1.6 L/s Travertine is being deposited at a hot spring. Volcanic (Rinehart and Ross, 1964) Twenty pools are on travertine terrace about 100 m long. Extinct spring mounds are near- by. (Waring, 1915) CALIFORNIA - Continued

56. 63. Birch Creek Madera lnyo Sec. 9, T. 4 S., R. 25 E. (proj.) Secs. 31-32, T. 6 S., R. 35 E. Active Active 10°-30°C 14 L/s Meta volcanic Granitic; carbonate Travertine deposit 10 m long cascades from Streambed travertine forms for about 1.5 spring to edge of N. Fork San Joaquin River. km below headwater springs. (Barnes, 1965) (N. K. Huber and R. J. Janda, 1977, oral cornmun.) 64. Alum Rock Park Springs Santa Clara 57. Reds Meadows Hot Springs Sec. 36, T. 6 S., R. 1 E. Madera Active 11,o-31oc Sec. 10, T. 4 S., R. 26 E. (proj.) Active 0.9 L/s (aggregate) 49°C Sedimentary 0.6 L/s Two of 16 springs deposit travertine. (Waring, Granitic 1915) Springs have formed small deposit of traver- tine. (Waring, 1915) 65. Azule Spring Santa Clara 58. Sec. 3, T. 8 S., R. 2 W. Fresno Inactive T. ; S., 11 27 12°C Inactiveo <0.5 L/s 12 C Serpentine; sedimentary < 0.5 L/s Streambed travertine occurs downstream. Granitic ( Waring, 1915) Travertine mound 10 m in diameter marks site of extinct spring in Fish Valley. 66. Congress Springs ( Waring, 1915) Santa Clara Sec. 11, T. 8 S., R. 2 W. 59. Inactive Madera 16°C Sec. 6, T. 5 S., R. 26 E. (proj.) <0.5 L/s Unknown Diabase; sedimentary 13°C Inactive streambed travertine extends 180 < 0.5 L/S m down Campbell Creek. (Waring, 1915) Granitic Several iron-stained travertine deposits occur 67. New Almaden on north side Middle Fork San Joaquin River. Santa Clara ( Waring, 1915) Sec. 2, T. 9 S., R. 1 E. Active 60. "Blackbird D" "Cold" Santa Clara Sec. 6, T. 6 S., R. 5 E. Active Spring is depositing a thin layer of travertine. 7°C ( White, 1955) <0.5 L/S Graywacke 68. Grapevine Springs Streambed travertine occurs. (Barnes and Inv° O'Neil, 1971) Sees. 2, 3, 10, T. 11 S., R. 42 E. Active 61. "Del Puerto localities" 22°-38°C Stan islaus 28 L/s T. 6 S., Rs. 5-6 E. Carbonate Active Travertine forms topographic bench. (Miller, 1977)

Ultra mat ic 69. Streambed travertine occurs. (Barnes and Santa Cruz O'Neil, 1971) Unsurveyed Unknown 62. King Spring Stan islaus Sec. 14, T. 6 S., R. 5 E. Sedimentary Active Streambed travertine 0.8 km long is in tribu- tary to Hatfield Canyon, 15 km N. 35° W. < 0.5 L/s of 'San Juan Bautista. (Allen, 1946) Peridotite Streambed travertine occurs. (Barnes and O'Neil, 1971) -

70. Warm Spring, Saline Valley 77. Inyo lnvo T. 13 S., R. 38 E. Sec. 2, T. 18 S., R 46 E. (proj.) Unknown Inactive

Alluvium Basalt Extensive blanket of travertine contains Travertine deposit lies at base of hill. (Hunt manganese minerals. (White, 1955) and Mabey, 1966) 71. Lime Canyon Springs 78. Inyo Invo Sec. 31, T. 13 S., R. 34 E. See. 27, T. 26 N., R. 2 E. Active Inactive "Cold" <0.5 L/s Granitic Basalt Travertine apron extends 5 km downcanyon. Hard travertine of Pliocene age overlies (J. G. Moore, 1950, written commun.) basalt. (Hunt and Mabey, 1966) 72. Nevares Springs 79. Natural Bridge Inyo Tulare Sec. 36, T. 28 N., R. 1 E. Sec. 14, T. 18 S., R. 33 E. Active Inactive ° ° 21 -40 C .••••••■ 17 L/s Sedimentary Basalt and granite Spring has largest travertine deposit in Death Springs formed a large deposit of travertine. J ikv. ,'Hunt ■Ind May, 6; Pi:gran? (Waring, 1915; G. A. Witucki, 1977, oral and Kunkel, 1964) cornmun.) 80. White Creek 73. Tulare Fresno Sec. 13, T. 17 S., R. 28 E. T. 19 S., R. 13 E. Unknown Active

-U ltramafic Travertine was reported at Three Rivers, White Creek contains active streambed traver- without comment. (Merrill, 1895) tine in 8 km reach. Older terraces of traver- tine are as much as 12 m higher. (Arnold 74. Texas Spring and Anderson, 1908) Inyo Sec. 23, T. 27 N., R. 1 E. 81. Jordan Hot Springs Active 'Mare Sec. 33, T. 19 S., R. 34 E. (proj.) 14 L/s Active 350-51o c Sedimentary Spring has built travertine mound, much of <0.5-0.6 L/s which is probably of Pleistocene in age. Granitic (Hunt and Mabey, 1966; Pistrang and Kunkel, Prominent deposits of travertine are asso- 1964) ciated with 14 springs. (Waring, 1915) 75. Travertine Springs 82. Wildrose Canyon Inv() Inyo Secs. 23-26, T. 27 N., R. 1 E. T. 19 S., R. 44 E. Activeo Inactive ■•■ 32 C 57 L/s Sedimentary Metamorphic Springs have built travertine mound much Originally extensive deposits of travertine of which is probably Pleistocene in age. have been materially eroded. (White, 1940) (Hunt and Mabey, 1966; Pistrang and Kunkel, 1964) 83. Tulare 76. Sec. 27, T. 20 S., R. 30 E. Invo Inactive Sec. 27(?), T. 27 N., R. 1 E. Inactive Metamorphic Travertine cone 30 m across base and 15 m Gravel and sand high is exposed in roadcut. (J. H. Feth, Extinct travertine in two areas overlies fan 1960, field notes) near mouth of Furnace Creek, Wash. (Hunt and Mabey, 1966) 84. 91. Tulare Inyo Sec. 24, T. 20 S., R. 30 E. (proj.) Sec. 31(?), T. 20 N., R. 8 E. Active Inactive 25°C 1.6 L/s Granitic Sedimentary Spring has deposited iron-stained travertine Large deposit of travertine is near base of that extends to bank of South Fork of Middle Resting Springs Mts., 1.8 km east of crest Fork Thle River. (Waring, 1915) of Mountain Springs Pass. (J. H. Feth, 1956, field obs.) 85. Moorehouse Spring Tulare 92. Sec. 25, T. 20 S., R. 30 E. (proj.) San Bernardino T. S., R. 43 E. Activeo 26 14 C Inactive < 30 L/s Granitic Water deposits travertine at overflow from La kebeds fish hatchery ponds. Long old travertine More than 500 travertine pinnacles were ridge is adjacent to and south of spring. formed beneath water of Searles Lake in (J. H. Feth, 1960, field notes) Pleistocene time. Heights range from 3- 45 m, diameters from 3-150 m. (Scholl, 86. Nelson Soda Springs 1960) Tulare -- Sec. 34, T. 20 S., R. 31 E. 93. Active San Bernardino 21°C T. 26 S., Rs. 41-42 E. 0.5 L/s Inactive

Springs discharge from natural travertine grotto or across travertine terrace. Alluvium (Waring, 1915) In Salt Wells Valley travertine deposits cover hundreds of square meters and are 6 m high, 87. maximum. (Kunkel and Chase, 1969) lnyo Secs. 16, 21, 22, T. 22 S., R. 39 E. 94. Musick (Kessler) Springs Inactive San Luis Obispo Secs. 9, 16, T. 31 S., R. 15 E. Inactive Basalt, Granitic 16°C Four areas of travertine underlie several <0.5 Lis hectares and are as much as 24 m thick. Sandstone (W. R. Moyle, Jr., 1961, written commun.) Travertine occurs at several places. Minor quarrying occurred. (Merrill, 1895; Waring, 88. 1915) Tulare Sec. 1, T. 23 S., R. 32 E. 95. Inactive Kern 20°C Sec. 31, T. 12 N., R. 40 W. <0.5 L/s Unknown Limestone Abundant red-stained travertine is in area. (A. S. VanDenburgh, 1960, oral commun.) Granitic, volcanic Travertine is shown on map. There is no text. 89. (Diblee, 1958) Monterey Sec. 12, T. 24 S., R. 6 E. 96. Active Kern 20°C Sec. 6, T. 10 N., R. 16 W. (proj.) 1 L/s Active Ultra mafic Streambed travertine occurs on Burro Moun- tain. (O'Neill and Barnes, 1971) Limestone Several "low rude terraces" of travertine 90. Banes Soda Spring occur. (Johnson, 1911) Monterey Sec. 25, T. 24 S., R. 5 E. 97. Ribbon Rock Mine Unknown Kern 16°C Sec. 8, T. 9 N., R. 10 E. <0.5 Lis Inactive Limestone Notable travertine deposit occurs; part of it is iron stained. (Waring, 1915) Deposit of banded travertine occurs. (Southern Pacific Co., 1964) 98. Las Cruces Hot Springs 101. 'sham Spring Santa Barbara San Diego Sec. 22, T. 9 N., R. 32 W. (pro).) (Remarks) Inactive Inactive 19°-36°C 3.2 L/s Granitic Ledge of travertine is above springs now flow- Two small travertine deposits are near the ing. (Waring, 1915) spring. Described as near head of small tributary to Sweetwater River, 19 km 99. north of east from San Diego. (Waring, San Bernardino 1915) Presumably destroyed by urbani- Sec. 18, T. 6 N., R. 4 W. zation. Unknown

Travertine was reported at Oro Grande, with- out comment. (Merrill, 1895) 100. Buckman Springs San Diego Sec. 20, T. 16 S., R. 5 E. Active 16°-18°C ( 0.5 L/s Granitic Four springs discharge from low travertine rri:urds. 'Waring, 1915)

COLORADO

1. 5. Idaho Springs Jackson Clear Creek Sec. 10, T. 9 N., R. 81 W. Sec. 36, T. 3 S., R. 73 W. Active Active 14°-43°C 0.6-2.2 L/s Sedimentary Metamorphic Travertine overlies uraniferous peat. (Malan, Many extinct deposits of travertine occur, 1957) fewer are active. (George and others, 1920) 2. Steamboat Springs 6. Austin Springs Routt Delta Sec. 17, T. 6 N., R. 84 W. Sec. 31, T. 14 S., R. 94 W. Unknown Inactive 39°-66°C 125 L/s Sedimentary Travertine is associated with largest group Travertine occurs in 5 areas along a 1 km of hot springs in Colorado. (Stearns and reach of river. (Cadigan and Felmlee, 1975) others, 1937) 7. Doughty Springs 3. Delta Larimer Sec. 11, T. 15 S., R. 93 W. T. 5 N., R. 72 or 73 W. (approx.) Activeo Inactive 15 C 0.9 L/s Siltstone 3 In North Park Formation Travertine volume is about 25,000 m (Cadigan "...white calcerous material (occurs)... and Felmlee, 1975. George and others, (having the) appearance of spring (1920) reported 25 percent of deposit is deposits." (Beekly, 1915) largely BaSO4; 75 percent is CaCO3) 4. Hot Sulphur Spring 8. "West Geyser" Grand Delta Sec. 3, T. 1 N., R. 78 W. Sec. 5, T. 15 S., R. 94 W. Unknown Active 32°-48°C 2.5 L/s Sedimentary Travertine is reported. (Stearns and others, Travertine mound is about 1 m high and 6- 1937) 9 m in diameter. (Cadigan and Felmlee, 1975) COLORADO - Continued 9. Cement Creek Spring 20. Cebolla Hot Springs Gunnison Gunnison Sec. 27, T. 14 S., R. 84 W. Sec. 32, T. 47 N., R. 2 W. Unknown Unknown 28°C 10°-40°C 2.5 L/s <0.5-1.3 L/s Limestone Spring has formed mound of travertine. Travertine mounds surround many of the 20 (Stearns and others, 1937) springs. (George and others, 1920) 10.-11. Guf fey's (Mound) Spring Park 21. Mineral (Chamberlin) Hot Springs Sec. 17, T. 15S., R. 73 W. Saguache Active Sec. 12, T. 45 N., R. 9 E. 20°C Active < 0.5 L/s 33o-57oc Granitic 0.5-3 L/s Travertine mound is 20-30 m wide, 3-5 m Volcanic, sedimentary' high. (George and others, 1920; Stevenson, Thirty springs are associated with large de- 1875) posits of laminated travertine 6-11 m high. (George and others, 1920; Siebenthal, 1910) 12. Manitou Springs El Paso 22.-23. Red Creek (Siloam) Springs Sec. 5, T. 14 S., R. 67 W. Pueblo Active Sec. 14, T. 21 S., R. 68 W. InaOctivE ”C.omparatively 14 -22 C Granitic, sedimentary < 0.5 L/s Travertine mounds are near 3 of 6 springs; Sedimentary largest extends downslope to bank of stream. Travertine channels mark extinct springs; (Stevenson, 1875; Argall, 1949) 25-30 are still issuing small discharges. (George and others, 1920) 13. Soda Spring Fremont 24. Geyser Warm Spring T. 16 S., R. 73 W. San Miguel Inflictive Sec. 34, T. 44 N. R. 11 W. 10 -16°C Inactive Seepage 34°C Granitic <0.5 L/s Travertine mound is 15 m wide, 1 m high. Sedimentary (George and others, 1920) Large deposit is largely travertine but with Na,,SO4 , NaHCO3, KC1 and other salts. 14. Poncha (George and others, 1920) Chaffee Sec. 10, T. 49 N., R. 8 E. 25. Ouray Active Ouray 27°-76°C T. 44- N., R. 92 W. 6.3 L/s 18o_51ocActive Granitic Travertine mounds of considerable size are 0.6-2 L/s at various of the 40 springs. (George and Sedimentary others, 1920) In Ouray and vicinity, various springs have deposited large masses of travertine. 15.-17. - (George and others, 1920) Fremont Sec. 18, T. 49 N., R. 10 E. 26. - Inactive Dolores T. 40 N., R. 11 W. (approx.) Active Sedimentary Three deposits of travertine are associated with synclines in Wellsville area. One is 400 m long and 60 m thick. (Argall, 1949; Spring is depositing travertine. (Bastin, 1923) Reeves, 1961) 27. 18.-19. - Mineral Fremont T. 40-42 N., R. 1 E., 1 W. Secs. 26(?) and 35(?), T. 18 S., R. 71 W. Inactive Inactive Creede Formation Masses of spring-deposited travertine are Quarry in sec. 26(?) is 45 m long with 12 m integral parts of Creede Formation in bodies face; quarry in sec. 35(?) is 60 m long, face as much as 30 m thick and as streambed is 2-6 m high. (Argall, 1949) deposits. (Larsen and Cross, 1956) 28 . Wagon Wheel Gap Springs 30. Trimble Hot Springs Mineral La Plata T. 41 N., R. 1 E. Sec. 15, T. 36 N., R. 9 W. Activeo InatctivE 56 C 30 -50 C 6.3 L/s 3.2-12.6 L/s Volcanic Sedimentary Travertine apron is at one of three springs. Large mound of travertine is near modern (Emmons and Larsen, 1913; Waring, 1965) springs. (George and others, 1920) 29. - 31. Pagosa Springs Dolores Archuleta Sec. 4(?), T. 39 N., R. 11 W. Sec. 31, T. 44 N., R 7 W. Active Active° ° 15 -65 C 44 L/s Alluvium Sandstone, shale Five areas of travertine occur along west Springs issue from large travertine mound, side of Dolores River within 2 km down- inactive at summit; 2 km downstream is stream from Rico. Description implies another deposit 30 m long and2 m high. active deposition. (Cross and Spencer, (George and others, 1920; Stevenson, 1900) 1875)

IDAHO 1. Big Creek Hot Springs 6. Lidy Hot Springs Lemhi Clark Sec. 22, T. 23 N., R. 18 E. Sec. 2, T. 9 N., R. 33 E. 82 j-93°C 50 jC 4.7 L/s 16 L/s Granitic Volcanic Travertine deposits are below 15 spring vents. Travertine is reported. (Young and Mitchell, (Young and Mitchell, 1973) 1973) 2. 7. Guyer Hot Springs Custer Blaine Secs. 26, 27, 34, 35, T. 13 N., R. 19 E. Sec. 15, T. 4 N., R. 17 E. Inactive Unknown 72°C 28 L/s Volcanic Limestone Mass of travertine as much as 30 m thick and Travertine is reported. (Stearns and others, 2.5 km2 in area is integral part of Challis 1937) Volcanics. (Ross, 1937) 8. Heise Hot Springs 3. Jefferson Custer Sec. 25, T. 4 N., R. 40 E. Sec. 25, T. 12 N., R. 18 E. Active° Inactive 50 C 5.7 L/s Alluvium, rhyolite Volcanic Main vent is on mound of travertine; exten- Mass of travertine 150 m long partly conforms sive deposits nearby indicate deposition to present ground surface and probably is started long ago. (Stearns and others, 1938) younger than large mass in T. 13 N., R. 19 E. (Ross, 1937) 9. Green Canyon Hot Springs Madison 4. Sec. 6, T. 5 N., R. 43 E. Custer Activeo Sec. 6, T. 10 N., R. 19 E. 44 C Inactive Volcanic Several springs emerge above travertine Volcanic deposit. (Young and Mitchell, 1973) Travertine floors 185 m of Spar Canyon. In- active deposit is above present springs. 10. (Ross, 1937) Bonneville Sec. 9, T. 1 N., R. 43 E. 5. Warm Springs Unknowno o Clark 23 -25 C Sec. 25, T. 11 N., R. 32 E. Alluvium Inactive° ° 26 -29 C Springs issue from travertine. (Young and 120 L/s Mitchell, 1973) Alluvium Inactive travertine deposit is near the springs. (Young and Mitchell, 1973) 11. Alpine Hot Springs 19. Bonneville Caribou Secs. 18 and 19, T. 2 S., R. 46 E. Sec. 1(?), T. 8 S., R. 42 E. Un8cnor Inactive 49 -66 C 1.6 L/s Limestone Travertine is reported. (Stearns and others, Pleistocene mammoth skeleton was found 1937) in travertine. (Jones and Bowers, 1968)

12. 20. Soda Springs Caribou Caribou Sec. 19, T. 6 S., R. 39 E. to sec. 11, T. 5 S., Sec. 12, T. 9 S., R. 42 E. R. 38 E. Active Unknown 10°-31°C

Basalt Terrace of Formation Spring covers 1.3 km2. Travertine terrace rims northeast shore of Complex of other springs, travertine depo- Portneuf Reservoir. (Mansfield, 1929) sits and travertine terrace are along Bear River. (Peale, 1879). Mansfield. (1933b), 13. said travertine covers about 4 km2. Caribou Secs. 29, 30, 32, T. 5 S., R. 40 E. and secs. 21. Shoofly Creek Spring 10, 16, T. 6 S., R. 39 E. Owyhee Unknown Sec. 14, T. 6 S., R. 3 E. Unknown "Warm" 19 L/s Norewor:: deposits or traverLine occur. La kebecis Travertine for ms a weil-developeo spring Travertine is reported. (Stearns and others, cone in sec. 15, T. 5 S., R. 40 E. (Mans- 1937) field, 1929) 22. Fall Creek Warm Springs 14. Power Caribou Sec. 29, T. 9 S., R. 29 E. T. 6 S., R. 42 E. Unknown Unknown 17°C 28°C 570 L/s "Small" Limestone Limestone Streambed travertine forms "reefs" in stream Travertine is reported. (Stearns and others, channel over which the water tumbles giving 1937) rise to creek's name. (Stearns and others, 1938) 15. Caribou 23. Lava Hot Spring Sec. 19, T. 6 S., R. 41 E. Bannock Unknown Sec. 21, T. 9 S., R. 38 E. 34°-42°C Active 38°-62°C 82 L/s Travertine deposit is related to west-trending Quartzite fault. (Young and Mitchell, 1973) Several springs issue from travertine terrace. (Stearns and others, 1938) 16. Bannock 24. T. 8 S., R. 36 E. Franklin Unknown Sec. 36, T. 12 S., R. 40 E. and sec. 26, T. 13 S., R. 40 E. Inactive

Portneuf River "...tumbles over falls made by travertine deposited from spring waters." Alluvium and limestone (Lee and others, 1916) Several travertine mounds approach propor- tions of Yellowstone's Mammoth Terrace; 17.-18. - are 6-30 m high, and 15-750 m in other di- Caribou mensions. (Bright, 1963) Sec. 12, T. 7 S., R. 39 E. Unknown 25. Oakley Warm Spring Cassia Sec. 27, T. 14 S., R. 22 E. Unknown Travertine terrace 30 m high lies across mouth 46°C of Eighteenmile Creek. A comparable ter- 0.6 L/s race obstructs the mouth of Little Flat Sedimentary Canyon, secs. 9. 10, 15, 16, T. 7 S., R. 40 E. Spring terrace is partly travertine. (Piper, (Mansfield, 1929) 1923) - art■•.. 1: bvertale. tP;;)er, C\lansfielc, 1929) 1923)

26. 28. Wayland Hot Springs Oneida Franklin Sec. 27, T. 14 S., R. 36 E. Sec. 8, T. 15 S., R. 39 E. Active Active ° 25°C 77 C 2.8 L/s 57 L/s Alluvium Alluvium One spring vent is associated with travertine. Travertine is reported. (Young and Mitchell, (Young and Mitchell, 1973) 1973)

27. Battle Creek Hot Spring Franklin Sec. 8(?), T. 15 S., R. 39 E. Activeo 79 C 57 L/s

Spring rises from small travertine mound. ( Milligan and others, 1966)

MONTANA 8. Anaconda HorSprings Phillips Deer Lodge Sec. 18, T. 25 N., R. 24 E. Sec. 6, T. 4 N., R. 10 W. Inactive Inactive "Warm"

Li mestone There is a large outcrop of travertine. (Mans- Once massive travertine terraces have largely field, 1933a) been removed by erosion. Water is depo- siting limonite that replaces travertine 2.-4. The Park and (as of 1904) was used as flux in copper Fergus smelting. (Weed, 1904) T. 17 N., Rs. 17-18 E. Inactive 9. Madison Sec. 32, T. 7 S., R. 1 W. Sedimentary Inactive The Park covers about 15 km 2 . Travertine reaches thickness of about 75 m. Other areas in Tps. 15-16 N., R. 20 E. aggregate Pre-Beltian 2 another 15 km 2 . (Calvert, 1909) Thin sheet of travertine covers about 0.3 km . Another sheet of similar size and a few 5. Alhambra Hot Springs smaller patches are in secs. 4, 5. 9, T. 8 Jefferson S., R. 1 W. (Heinrich and Rabbitt, 1960) Sec. 16, T. 8 N., R. 3 W. Active 10. Bear Creek Springs 56°C Park 0.6 L/s Sec. 19, T. 9 S., R. 9 E. Granitic Active Springs issue from numerous small travertine 32°C mounds. (Mariner and others, 1976) < 0.5 L/s Limestone 6. Warm Springs Springs discharge from south end of 5 km` Deer Lodge travertine terrace of Pleistocene age. Sec. 24, T. 5 N., R. 10 W. (Struhsacker, 1976; Taylor, 1976) Active 7.7 o c La Duke Springs 10 L/s Park Sec. 25, T. 8 S., R. 7 E. Springs issue from large travertine mound. Active (Mariner and others, 1976) 65°C 6 L/s 7. Boulder Hot Springs Quartzite Jefferson Water deposits travertine. Springs are at T. 5 N., R. 4 W. north end of 5 km2 terrace of travertine Active of Pleistocene age. (Struhsacker, 1976; 74°C Taylor, 1976) "Large"

Springs deposit small amounts of travertine. In the past they formed modest terraces of travertine and siliceous sinter. (Weed, 1900) --

MONTANA - Continued 11. Bluewater Springs 12. Carbon Beaverhead Secs. 3, 4, 9, 15, 16, T. 6 S., R. 24 E. T. 13 N., R. 32 E. Unknown Inactive 12°C 695 L/s Sedimentary Limestone Porous travertine underlies floor of Bluewater Cliff of white travertine 30 m high is laterally Creek valley for nearly 3.5 km, about 1.5 extensive. (Alden, 1953) km in a tributary canyon, and an area about 1.5 km long and 0.5 km wide near main spring orifices. (Zimmerman, 1964)

NEVADA

1. 6. Rose Creek Spring Humbolt Humboldt )( 9... Y. 47 N., R. C E. Sec. 28. T. 35 N., IL 36 E. Inactive Inactiveo 21 C < 0.5 L/s -L akebeds Alluvium Travertine and calcite were deposited in late Travertine mound about 175 m by 60 m and stages of thermal activity. (Yates, 1943) 3 m thick has no current deposition. (Feth, field obs., 1960; Hewett and others, 1963) 2. Nile Spring Elko 7. Golconda Hot Springs Sec. 30, T. 47 N., R. 70 E. Humboldt Sec. T. N., R. E. Unknowno 29, 36 40 Active 41 C ° ° 0.5 L/s 49 -66 C Alluvium 16 L/s Travertine underlies 1-2 ha. (Piper, 1923) Alluvium Large apron of travertine contains manganese ore in patches. (Hewett and others, 1963) 3. Elko T. 39 N., R. 60 E. 8. Golconda Mine Unknown Humboldt 43°-50°C Sec. 35, T. 36 N., R. 40 E. 1.9 L/s Inactive Sedimentary Travertine forms a large mound in Hot Creek mining district. (Waring, 1965) Sedimentary Travertine (largely removed) overlies mangani- 4. ferous, tungsten-bearing clay which was Elko mined. (Hewett and others, 1963; Kerr, T. 38 N., R. 62 E. 1940) Unknown _o o -50 C 9. 0.6 L/s Humboldt Sedimentary T. 35 N., R. 40 E. three main springs have formed a large deposit Unknown of travertine 8.8 km north of Wells. (Waring, 1965)

5. Extensive travertine deposit occurs "11 km Washoe south of Golconda." (Kerr, 1940) Tps. 35-37 N., Rs. 18-19 E. Inactive 10. Fly Ranch (Wards) Hot Springs Washoe T. 34 N., R. 23 E. Alluvium Unknown On Duck Flat, travertine growths. saucer to 16°C-boiling washbasin size are abundant; have "stems" below, marking sites of extinct, small Alluvium springs. (Overton, 1947) Many springs and travertine der s are pre- cP-ni ( Ctnornc onri - -

11. Hot Springs Ranch 19. The Needles Humboldt ashoe Sec. 5, T. 33 N., R. 40 E. T. 26 N., R. 21 E. Inactive Active

Lakebeds Deposit of travertine is 90 m in diameter. Modern springs are depositing travertine tubes (Kerr, 1940; Hewett and others, 1963) below lake surface. Earlier springs formed massive towers of travertine that extend 12. Guthrie (Nelson) Springs about 1.5 km into Pyramid Lake. (Russell, Pershing 1885) Sec. 36, T. 32 N., R. 38 E. Unknotn 20. Sou Hot Springs 60°-96C Pershing 16 L/s Sec. 29, T. 26 N., R. 38 E. Alluvium Active Travertine and sinter occur. (Waring, 1965) 72°-86°C 13. Pershing Alluvium, rhyolite Sec. 33, T. 32 N., R. 33 E. Travertine covers 4.8 ha, rising 18 m above Inactive plain. (Hague and Emmons, 1877; Hewett and others, 1963) 21. Collar and Elbow Spring Minds of travertine have openings at top White Pine lined with crystalline gypsum and sulfur. Sec. 27, T. 26 N.. R. 65 E. (Lee and others, 1916) Unknowno 33 C 11. Leach Hot Springs 1.3 L/s Pershing Alluvium Sec. 36, T. 32 N., R. 38 E. Travertine is reported. (Stearns and others, Mostly inactive 1937) 48°C "Small" 22. Cherry Creek Hot Springs Sedimentary White Pine Present rate of travertine formation is low. Sec. 1, T. 23 N., R. 62 E. Activeo o (Kerr, 1940) 52 and 58 C 15. Buffalo Springs Small Washoe Alluvium T. 31 N., R. 20 E. Two small travertine cones occur. (Clark Inactive and Riddell, 1920) "Warm" Lakebeds 23. White Pine Travertine piles rise 10-12 m; were formed T. 19 N., R. 62 E. by subaqueous springs. (Russell, 1885) Inactive 16. Mound Spring Lander Alluvium Sec. 7, T. 28 N., R. 44 E. Alluvium was cemented by travertine in past Uncnown times. (Clark and Riddell, 1920) 25 C 0.5 L/s Volcanic 24. Churchill Spring discharges from travertine cone. (D. T. 22 N., R. 26 E. (?) E. White, 1957, written commun.) Inactive 17. Lander Sec. 26. T. 27 N., R. 43 E. Inactive Travertine fills openings of a line of extinct springs that extend 1.5 km northward from boiling springs. (Russell, 1885) Alluvium Until recently a hot pool occupied crater in 25. Steamboat Springs travertine cone 90 m in diameter. Washoe (Hewett and others, 1963) Secs. 28, 33, T. 18 N., R. 20 E. Unknown 18. Bruffeys Hot Spring Eureka Sec. 14, T. 27 N., R. 52 E. Volcanic Unknown Travertine occurs sparsely and in thin lavers 42°-67°C in predominantly siliceous deposits. (White 3.1 L/s and others, 1964) Lakebeds Spring lies in large area of old travertine. (Hewett and Fleischer, 1960) - -

26. Spencer's Hot Spring 33. Lockes Big Spring Nve Lancer - Sec. 19, T. 17 N., R. 46 E. Sec. 15, T. 8 N., R. 55 E. Unknown Active ° ,,o_ oc 73 C 3 , 38 33 Lis Volcanic Spring issues from travertine terrace. (D. E. Spring issues from top of travertine bluff. White, 1957, written commun.) (Mifflin, 1968) 27. Bartine Hot Springs 34. Chimney Springs Eureka Nve- Sec. 5, T. 19 N., R. 50 E. Sec. 16, T. 7 N., R. 55 E. Active Urtnor ° ° 41 -42 C 55 -72 C 0.6 L/s 6.3 L/s Lakebeds Alluvium Two springs emerge on large travertine mound. These springs issue from large travertine (Stearns and others, 1937) mounds. (Stearns and othens, 1937) 28. Melvin Hot Springs 35. White Pine Mineral Sec. 24, T. 21 N., R. 63 E. Sec. 29, T. 6 N., R. 20 E. Active Inactive ° o 80 C 38 c 38 L/s Alluvium Sedimentary Travertine mound covers 4.8 ha and is 6-12 Manganiferous travertine was deposited by m high. (Clark and Riddell, 1920) former springs near Sociaville. (P.wett and Fleischer, 1960) 2:.s. Storey 36. Alkali Spring Sec. 21, T. 19 N., R. 21 E. Esmeralda Unknown Sec. 26, T. 1 S., R. 41 E. Inactive 60°C Volcanic 3.8 L/s Small terraces and fissure fillings of travertine Rhyolite occur. (Thompson, 1956) Low travertine dome is "probably an abandoned vent of the spring." (Ball, 1907) 30. Storey 37. Sec. 25, T. 18 N., R. 22 E. (approx.) Clark Inactive Sec. 36, T. 19 S., R. 56 E. Inactiveo 11 C < 0.5 L/s Fairly large area of travertine occurs. Limestone (Thompson, 1956) Extensive travertine terrace is downslope from present spring. Travertine contains 31. Immigrant Spring fragments of charcoal perhaps from ancient Nye forest fire. (C. S. Howard and J. H. Feth, Sec. 19, T. 9 N., R. 62 E. 1956, field observ.) Active 38. Clark Alluvium T. 19 S., R. 63 E. Spring is depositing travertine. (Mifflin, 1968) Inactive 32. Hot Creek Spring Nye Limestone T. 7 N., R. 51 E. Travertine mounds as much as 3 m high and Activeo 15 m across were formed at clusters of 88 C spring pots. (J. D. Vine, 1977, written corn- mun.)

Crusts of white travertine surround several pools. (Hewett and others, 1963)

NEW MEXICO --- NEW MEXICO

1. Ojo Caliente 5.-15. - Rio Arriba Valencia Sec. 25, T. 24 N., R. 8 E. Tps. 5-6 N., R. 5 W. Inactive Inactive 32°-50°C Gneiss Chinle Formation Hill is covered by travertine a few feet thick Fifteen areas of travertine as much as 45 m that covers 0.2 ha. (Lindgren, 1910) thick, 8 km long and 2.4 km wide are of late Pliocene and early Pleistocene age. 2. Soda Dam (Wright, 1946; Jicha, 1956) Sandoval Sec. 15, T. 18 N., R. 2 E. 16. Cliffroy Mine Active Grant 24°-41°C Sec. 33, T. 19 S., R. 19 W. 0.6 L/s Inactive Granite; limestone Large travertine deposit partly dams Jemez River. (Stearns and others, 1937) Sedimentary Manganese ore grades to spring-deposited 3. San Ysidro Springs travertine in near-surface veins. (Elston, Sandoval 1963) Sec. 3 and 8, T. 15 N., R. 1 E. Active° 17. Faywood Hot Springs 20 C (sec. 3), 29°C (sec. 8) Grant Sec. 20, T. 20 S., R. 11 W. Sedimentary Active In sec. 3. craters of travertine are 0.3-1 rn 61°C 1-2 ni in diameter. In scc. 8, t.iilside 7.6 L/s is coated by travertine, 2.4 km by 0.8 km Gravel overlying volcanic rocks. in extent. (Renick, 1931) Mound of travertine is 8 .n high. (Elston, 1957; Waring, 1965) 4. Phillips Springs Sandoval Sec. 20, T. 16 N., R. 1 E. Active 21°C 0.5 Lis Sedimentary Swimming Pool Spring is one of a dozen; has built travertine crater 10 m in diameter and 10 m high. Gas bubbles up. Craters of extinct springs extend northward and for 1.5 km westward, gravel is cemented by CaCO3. (Renick, 1931)

OREGON 1. Ritter Hot Spring 3. Grant Grant Sec. 6, T. 8 S., R. 30 E. Sec. 10, T. 14 S., R. 33 E. Activeo Activeo 43 31 C 2.2 L/s 28 L/s Basalt Ultra mar ic Thin film of CaCO3 is associated with zeolites Streambed travertine armors bed of Overholt and calcite. (Hewett and others, 1928) Creek. (1. Barnes, 1978, field observ.; O'Neil and Barnes, 1971) 2. Breitenbush Hot Springs Marion 4. Sec. 20, T. 9 S., R. 7 E. Lake Activeo T. 29 S., R. 18 E. 92 C Active 57 Lis "Small" Forty springs issue on travertine terrace. Basalt (Bowen and Peterson, 1970) Spring seeps from bed of travertine in wall of Juniper Canyon. (Waring, 1908) ---

OREGON - Continued

5. Lake Lake Sec. 2, T. 32 S., R. 16 E. Sec. 34, T. 38 S., R. 24 E. Activeo Activg ° ° 11 C 6 -43 C <0.5 L/s < 0.5-0.6 L/s Lakebeds Lakebeds Considerable travertine is in vicinity. (Trauger, Three springs deposit travertine over lake ter- 1950) races. (Bowen and Peterson, 1970; Trauger,

6. Antelope Hot Spring Lake Sec. 32, T. 35 S., Ft. 26 E. Lake Unknown Sec. 3, T. 39 S., R. 24 E. ° 40 C Activeo 1.9 L/s 92 C Alluvium 1.3 L/s Travertine occurs. (Trauger, 1950; Waring, 1965) Siliceous travertine covers broad areas: many extinct spring orifices are present. (Bowen and Peterson, 1970; Trauger, 1950) 7. Lake Sec. 27, T. 38 S., R. 24 E. 8. Hallinen Spring Ar,tive Lake 29, T. 40 S., Ft. 24 E. <0.5 L/s Active . o Lakebeds; volcanic rocks nearby. 71 c Spring issues from travertine-covered < 0.5 L/s terrace. (Trauger, 1950) Much siliceous travertine is in vicinity. (Bowen and Peterson, 1970)

UTAH 1. 4. Beck's Hot Spring Cache Salt Lake Tps. 13-14 N., R. 1 W. Sec. 14, T. 1 N., Ft. 1 W. Active Inactiveo 54 C

Alluvium Limestone Low travertine cones occur in linear array Extensive travertine deposits mark former along fault zone for more than 2 km. (Wil- orifices. (Milligan and others, 1966) liams, 1962) 5. 2. Utah Hot Springs Salt Lake Weber and Box Elder Sec. 29, T. 1 S., FL 3 E. T. N., Ft. 2 W. Active Sec. 14, 7 o Active 5 c 57o c < 0.5 L/s 57 L/s Sandstone, limestone Quartzite Small deposits of travertine are above and Large travertine apron is highly radioactive. below present orifice and in streambed. Travertine pillars are nearby and about (J. H. Feth, field notes, 1961) 30 m above springs. (Feth, 1955; Feth and others, 1966) 6. Grantsville Warm Springs Tooele 3. El Monte Hot Spring Sec. 36, T. 2 S., R. 6 W. Weber Active Sec. 23, T. 6 N., R. 1 W. 23°-33°C Active 3.2 L/s 58o c Lakebeds Six springs deposit travertine. (Stearns and Metamorphic others, 1937) Travertine forms "a considerable deposit." (Hague and Emmons, 1877; Feth and others, 1966) - anc Linnions, lb: 7; ieln uric others. - 1966)

7 15. Fish Springs Tooele Juab Sec. 11, T. 4 S., R. 7 W. Sec. 2, T. 11 S., R. 14 W. Active Active ° 6°C 40 C Limestone Travertine deposit is on south wall of Willow Active and inactive travertine mounds are Canyon. (Thomas, 1946) present. (Meinzer, 1911) 8. Evans Lime Quarry 16. Abraham Hot Spring Salt Lake Juab Sec. 27, T. 4 S., R. 1 W. Sec. 15, T. 14 S., R. 8 W. Inactive Active 43°-84°C 75 L/s Alluvium Mound of manganiferous travertine at least Dome of manganiferous travertine is 5 m high 10 m thick covers several hundred hectares. and nearly 500 m in diameter. (Callaghan (Hewett and others, 1963) and Thomas, 1939; Crittenden, 1951) 9. "Heber Hot Pots" 17-21. - Wasatch Sanpete Secs. 26, 27, 34, T. 3 S., R. 4 E. Tps. 14-15 S., R. 3 E. Active Active 12°-40°C "Mean annual air temperature" Small; may be larger in subsurface Aggregate 450 L/s Allavurn Ilawertine cover, 12 km', i., locally Ci ,n Between Wales and Fountain Green, 7 springs thick; was formerly quarried. (Baker, 1968) discharge and are depositing an abundance of travertine. (Richardson, 1907) 10. Camp Williams Warm Springs Salt Lake and Utah 22. Gandy Warm Springs Sec. 23, T. 4 S., R. 1 W. Millard Unknowno Sec. 31, T. 15 S., R. 19 W. 22 C Activeo 27 C Salt Lake Formation 600 L/s Travertine in Jordan Narrows is about 6 m Limestone thick and forms uppermost unit of Salt Lake Travertine deposits form at springs and sides Group of Slentz (1955). and bottom of stream channel. (Meinzer, 1911; Milligan and others, 1966) 11. Utah 23. Sec. 17, T. 5 S., R. 2 E. Emery Inactive T. 21 S., R. 12 E. Inactive Sedimentary Hillside rubble is cemented with spring- Limestone deposited travertine. Rock was formerly Travertine terrace 6 m high occurs in area used for building houses. (Hunt and others, of several active springs 8 km above mouth 1953) of canyon of San Rafael River. (Hess, 1913) 24. Hatton Warm Springs 12. U tah Millard Sec. 31, T. 6 S., R. 1 E. Sec. 24, T. 22 S., R. 6 W. Unknown Unknowno 39 C "Copious" Travertine is reported on Pelican Point, with- Springs discharge from travertine basin. out comment. (Merrill, 1895) (Meinzer, 1911). Extensive inactive traver- tine deposits are present. (Milligan and 13-14. - others, 1966) Utah T. 8 S., R. 1 E. 25. Inactive Sevier Tps. 25-26 S., R. 3 W. Active

Large areas underlain by travertine occur on Bird Island, Lincoln Point, and west side of West Mountain. (Milligan and others, Numerous active hot springs with travertine 1966) aprons extend southward from Monroe for about 10 km. Inactive aprons are also pres- ent. Some travertine contains manganese minerals. (Hewett and others, 1963) rat *vei.bJC 0:tiers,

26. Undine Springs 30. Emery San Juan T. 25 S., R. 17 E. Sec. 24, T. 34 S., R. 13 E. Unknown Inactive "Warm" Sedimentary Sedimentary Travertine is reported. (Stearns and others, Travertine is now inundated by Lake Powell. 1937) (M. E. Cooley, 1978, written commun.) 27. Joseph Hot Springs 31. Warm Spring Sevier San Juan Sec. 23, T. 25 S., R. 4 W. Sec. 30, T. 35 S., R. 14 E. Active Inactive 58°-64°C 2 L/s 25 L/s Volcanic Sedimentary Springs issue from travertine mound. (Richard- Travertine is now inundated by Lake Powell. son, 1907) (M. E. Cooley, 1978, written commun.) 28. Live Oak Spring travertine 32. Sevier Kane and San Juan Sec. 8, T. 26 S., R. 3 W. Secs. 9-10, T. 40 S., R. 10 E. Inactive Inactive < 0.5 L/s Sedimentary Three travertine aprons contain manganese Travertine occurred both north and south of fer ore. (lif river; now inundated by Lake Pewell. (M. E. and others, 1963) Cooley, 1978, written commLn.) 29. Beaver T. 30 S., R. 12 W. Unknown 32°-80°C 1.3 L/s Alluvium Ledges of dense travertine are reported. (Stearns and others, 1937)

WASHINGTON

1. Kennedy (White Chuck) Hot Springs Snohomish Sec. 1, T. 30 N., R. 12 E. Active 38°-43°C 2 L/s Gneiss and volcanic Four springs deposit iron-stained travertine. Extensive deposits are up slope. (Stearns and others, 1937)

WYOMING

1-2. Mammoth Hot Springs 3. Terrace Springs Yellowstone National Park Yellowstone National Park Unsurveyed Unsurveyed Active0 Active 75 C (max.) 32-85 L/s Limestone; volcanic Rhyolite Deposits are about 1.5 km long, 90 m wide. Springs deposit both sinter and travertine. at least 60 m thick. (Bargar and Muffler, Older inactive terraces are adjacent. 1975) (Allen, 1932) - a t least oU fn truci. be r g ar aflc.; Muffler, - (hoer inactive terraces are acjacent. 1975) (Allen, 1932)

4. Firehole Lake 10. Yellowstone National Park Fremont Unsurveyed Sec. 3, T. 41 N., R. 107 W. Active Inactiveo 29 C Rhyolite Sedimentary Both sinter and travertine are present. (Allen, Travertine deposits of extinct springs are 1932) in Wind River Canyon. (Stearns and others, 1937) 5. Hillside Springs Yellowstone National Park 11. Unsurveyed Fremont Active Sec. 14, T. 41 N., R. 107 W. Active° 20 C Springs are depositing travertine containing small amounts of Mn oxides. (White, 1955) Several springs deposit travertine in Little Warm Springs Creek Valley. (Stearns and 6. others, 1937) Park Sec. I(?), T. 52 N., R. 102 W. 12. Inactive Hot Springs Sec. 28(?), T. 43 N., R. 95 W. Inactive just ittv. mouth of Shoshcnt Oan■ Dn , a :rave:- tine terrace covers several hectares. Smaller Sedimentary terraces occur at intervals along east side Travertine deposit is 300 m long and 12-20 m of Cedar Mountain (secs. 5, 8, 17(?)). thick. (Majors, 1946) (Fisher, 1906; Thom and others, 1932) 13. Brutch Sulfur Deposits 7. Hot Springs Park Secs. 20, 21, 28, T. 43 N., R. 95 W. Sec. 2(?), T. 52 N., R. 102 W. Inactive Active 37°C

Limestone Sulfur occurs in pockets and lenses in and Quaternary gravel beside river is capped by below travertine near orifices of extinct 6 m of travertine. Travertine occurs at springs. (Osterwald and Osterwald, 1952) other levels in Shoshone Canyon. (Fisher, 1906) 14. Big Horn Hot Springs Hot Springs 8. Hot Springs Sec. 36, T. 43 N., R. 94 W. Yellowstone National Park Activeo T. 49 N., R. 114 W. (projected) ss c Activeo 820 L/s 49 C Chugwater Formation 3.2 L/s Two-hectare active terrace is 12 m above Limestone, rhyolite river; older terraces are 100 and 210 m Travertine mounds and bowls resemble Mam- above. (Darton, 1906; Burk, 1952) moth Hot Springs but are smaller; occur a few kilometers north of south boundary 15. Auburn Springs of Park. (Hague, and others, 1899) Lincoln Sec. 6, T. 32 N., R. 119 W. 9. Active Fremont 16°C Tps. 41-42 N., Rs. 107-108 W. 0.5 L/s Unknown Limestone Springs emerge on deposit of travertine, sulfur, and some gypsum. (D. E. White, 1955, writ- ten corn mun.) Domes, terraces, and natural bridges of traver- time occur along lower 8 km of Warm Springs 16. Creek. One warm spring is mentioned but Lincoln deposition is uncertain. (Delo and Neil, Sec. 23, T. 33 N., R. 119 W. 1942; Reeves and Soper, 1959) Active 60°C 1.3 L/s

Large deposit of travertine is present. Springs rise in pools rimmed with travertine. (E. H. Walker, 1964, written commun.) WYOMING - Continued 17. Jay Em Quarry 19. Goshen County Sweetwater Sec. 25, T. 29 N., R. 63 W. Sec. 19. T. 16 N., R. 106 W. Inactive Inactive

Sedimentary Quarry produced "pleasing mottled brown" Several streambed travertine deposits and travertine. (Osterwald and Osterwald, 1952) low mounds inferred in Wilkins Peak Member of Green River Formation, Some were traced 18. for as much as 8 km. (J. P. Smoot, 1977, Lincoln written commun.; Smoot, 1976) Sec. 5(?), T. 24 N., R. 119 W. Inactive 20. Sweet water Sec. 33, T. 13 N., R. 108 W. Inactive Amber-colored travertine was quarried "near Cokeville." (Osterwald and Osterwald, 1952) Green River Formation Partly exhumed spring-deposited marlstone occurs; largest exposure is 75 x 35 m in plan and 15 m high. (Bradley and Eugster, 1969)

REFERENCES CITED

Alden, W. C., 1953, Physiography and glacial geology of western Montana and adjacent areas: U.S. Geological Survey Professional Paper 231, 200 p. Allen, E. T., 1932, Hot springs of Yellowstone Park, in Field, R. M., Yellowstone-Beartooth-Big Horn region, Guidebook 24, 16th Int•rnational Geol. Congress, p. 13-23. 1934, The agency of algae in the deposition of travertine and silica from thermal waters: American Journal of Science, 5th ses., v. 28, no. 167, p. 373-389 - Nov. 1934. Allen. E. T., and Day, A. U.. 1935, Hot springs of the Yellowstone National Park: Carnegie Institution of Washington Publication 466, 525 p. Allen, J. E.. 1946, Geology of the San Juan Bautista Quadrangle, California: California Div. Mines and Geology Bulletin 133, 112 p. Argall. G. 0., Jr., 1949. Industrial minerals of Colorado: Quarterly of the Colorado School of Mines, v. 45, no. 2, 477 p. Arnold. Ralph. and Anderson, Robert, 1908, Conglomerate formed by a mineral-laden stream in California: Geological Society of America Bulletin, v. 19, p. 147-154. Baker, C. H., Jr., 1968, Thermal springs near Midway, Utah, in Geological Survey Research 1968, Chap. D: U.S. Geological Survey Professional Paper 600-0, p. 063-070. Ball. S. H., 1907. Geologic reconnaissance in southwestern Nevada and eastern California: U.S. Geological Survey Bulletin 308. 218 p. Barger, K. E.. and Muffler. L. J. P., 1975, Geologic map of the travertine deposits, Mammoth Hot Springs, Yellowstone National Park, Wyoming: U.S. Geological Survey Miscellaneous Field Studies Map M F-659, 2 sheets. Barnes, Ivan, 1965, Geochemistry of Birch Creek, lnvo County, California—e travertine depositing creek in an arid climate: Geochimica et Cosmochimica Ada., V. 29, p. 85-112. 1970. Metamorphic waters from the Pacific tectonic belt of the west coast of the United States: Science, v. 168, p. 973-975. Barnes. Ivan. Irwin, W. P., and Gibson, H. A., 1975, Geologic map showing springs rich in carbon dioxide or chloride in California: U.S. Geological Survey Open-File Map. Barnes, Ivan. Irwin, W. P., and White, D. E., 1978. Global distribution of carbon dioxide discharges, and major zones of seismicity: U.S. Geological Survey Water-Resources Investigations 78-39 Open-File Report. Barnes, Ivan, and O'Neil, J. R., 1969. The relationship between fluids in some fresh alpine-type ultramafics and possible modern seroentinization, Western United States: Geological Society of America Bulletin, v. 80, p. 1947-1960. 1971. Calcium-magnesium carbonate solid solutions from Holocene conglomerate cements and travertines in the Coast Range of California: Geochimica et Cosmochimica Acts., v. 35. p. 699-718. Barnes, Ivan, O'Neil. J. R., Rapp, .1. B., and White. D. E., 1973, Silica-carbonate alteration of serpentine: Wall rock alteration in mercury deposits of the California Coast Ranges: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 68. p. 388-390. Bastin, E. S., 1923, Silver enrichment in the San Juan Mountains, Colo.: U.S. Geological Survey Bulletin 735-D. p. 65-129. Beekly, A. L., 1915. Geology and coal resources of North Park, Colo.: U.S. Geological Survey Bulletin 596, 121 p. Berkstresser. C. F., Jr., 1968, Data for springs in the northern Coast Ranges and Klamath Mountains of the California: U.S. Geological Survey Open- File Report, 19 p.

Bowen, R. G., wig Peterson, N. 1., 1970, Thermal springs ano wells (Oregon): Oregon Department of Geology and Mineral Industries Miscellaneous Ptiper 14 (1 sheet). Bradley. W. 11., and Eugster, H. P.. 1969. Geochemistry and paleolimnology of the trona deposits and associated authigenic minerals of the Green River Formation of Wyoming: U.S. Geological Survey Professional Paper 496-B. 71 p. Bright, R. C., 1963, Pleistocene Lakes Thatcher and Bonneville. southeastern Idaho: PhD. thesis, Department of Geology, University of Minnesota. burk, C. A., 1952, The Big Horn Hot Springs at Thermopolis, Wyoming, in Wyoming Geological Association, 7th Annual Field Conference Guidebook, p. 93-94. Cadigan, R. A., and Felmlee, J. K., 1975, Radioactive mineral springs in Delta County, Colorado: Geological Society of America Abstracts with Programs, v. 7, no. 7, p. 1016-1017 (and Felmlee, oral communication, August 30, 1977). Callaghan, E., and Thomas, H. E., 1939, Manganese in a thermal-spring deposit in west-central Utah: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 34. no. 8, p. 905-920. Calvert, W. R., 1909, Geology of the Lewistown coal field, Montana: U.S. Geological Survey Bulletin 390, 83 p. Clark, W. 0.. and Riddell, C. W.. 1920, Exploratory drilling for water and use of ground water for irrigation in Steptoe Valley, Nevada: U.S. Geological Survey Water-Supply Paper 467, 70 p. Cole, G. A., and Bachelder, G. L., 1968, Dynamics of an Arizona travertine-forming stream: Journal of Arizona Academy df Science, v. 5, no. 4, p. 271-283. Cooley, Si. E., 1976, Spring flow from pre-Pennsylvanian rocks in the southwestern part of the Navajo Indian Reservation, Arizona: U.S. Geological Survey Professional Paper 521-F, 15 p. Craig, Harmon, 1953, The geochemistry of the stable carbon isotopes: Geochimica et Cosmochimica Ada., v. 3, p. 53-92. Crittenden, NI. D., 1951. Manganese deposits of western Utah: U.S. Geological Survey Bulletin 979-A, 62 p. Cross, Whitman, and Spencer, A. C., 1900, Geology of the Rico Mountains. Colorado: U.S. Geological Survey, 21st Annual Report, pt. 2, p. 7-166. Dartan. N. H., 1906, The hot springs of Thermopolis, Wyoming: Journal of Geology, v. 14. no. 3, p. 194-200. Delo, D. M., and Neil, A. M., 1942, Warm Springs Natural Bridges, Wind River Mountains, Wyoming: Journal of Geomorphology, v. 5. no. 2, p. 162-166. Dibblee, T. W., Jr., 1958, Geologic map of the Boron quadrangle, Kern and San Bernardino Counties, California: U.S. Geological Survey Mineral Investigations Field Studies Map MF 204.

Dunn, .J. R., 1953, The origin of the deposits of tufa in Mono Lake: Journal of Sedimentary Petrology, v. 23, no. 1, p. 18-23. Elston, W. E., 1957, Geology and mineral resources of Dwyer quadrangle, Grant, Luna, and Sierra Counties, New Mexico: New Mexico Bureau of Mines and Mineral Resources Bulletin 38, 86 p. 1963, Geology and mineral resources of Hidalgo County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Open-File Report, 781 p. Emmons, W. H., and Larsen, E. S., 1913, The hot springs and mineral deposits of Wagon Wheel Gap, Colorado: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 8, p. 235-246. Feth, J. H., 1947, The geology of northern Carmelo Hills, Santa Cruz County, Arizona: University of Arizona, PhD. thesis, 128 p. 1955, Sedimentary features in the Lake Bonneville Group in the East Shore Area near Ogden, Utah: Utah Geological Society Guidebook no. 10, p. 45-69. Feth, J. H., Barker, D. A.. Moore, L. G., Brown, R. J., and Veirs, C. E.. 1966. Lake Bonneville: Geology and hydrology of the Weber Delta district, including Ogden, Utah: U.S. Geological Survey Professional Paper 516, 76 p. Feth, J. H., and Hem. .1. D., 1963, Reconnaissance of the headwater springs in the Gila River , Arizona: U.S. Geological Survey Water- Supply Paper 1619-H, 54 p. Fisher, C. A., 1906, Geology and water resources of the Bighorn Basin, Wyoming: U.S. Geological Survey Professional Paper 53, 72 p. , Friedman, Irving, 1 970, Some investigations of the deposition of travertine from hot springs- I. The isotopic chemistry of a travertine-depositing spring: Geochimica et Cosmocnimica Acta., v. 34, p. 1303-1316. Galbraith, F. K., 1941, Minerals of Arizona: Bureau of Mines Bulletin 149, 82 p. Gary, Margaret, McAfee, Robert, Jr., and Wolf, C. L., 1972. Glossary of Geology: American Geological Institute. Washington. D.C., 805 p. plus 52 pages of appendix. George, R. D., Curtis, H. A., Lester, 0. C., Crook, J. K., and Yeo, B., 1920, Mineral waters of Colorado: Colorado Geological Survey Bulletin 11, 474 P. Hague, A., and Emmons, S. F., 1877, U.S. Geological Explor. 40th Parallel, v. 2, Descriptive Geology, 890 p. (p. 673-712). Hague, A., Iddings, J. P., Weed, W. H., and others, 1899, Geology of the Yellowstone National Park: U.S. Geological Survey Monograph 32, pt. 2, 893 p. Hansen, NI. G., 1929, Nonmetallics in Yavapai County, Arizona: (Phoenix, Arizona) Mining Journal, v. 13, no. 14, p. 5-6. Harrell, M. A., and Eckel, E. B., 1939, Ground-water resources of the Holbrook region, Arizona: U.S. Geological Survey Water-Supply Paper 8368, p. 19-105. Heinrich, E. W., and Babbitt. J. C., 1960, Pre-Beltian geology of the Cherry Creek and Ruby Mountains area. southwestern Montana: Montana Bureau of Mines and Geology Memoir 3E, 40 p. Hess, F. L., 1913, A sulphur deposit in the San Rafael Canyon, Utah: U.S. Geological Survey Bulletin 530, pt. I, p. 347-349. Hewett, D. F., and Fleischer, Michael, 1960, Deposits of the manganese oxides: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 55, no. 1, p. 2-55. Hewett, D. F., Fleischer, Michael, and Conklin, Nancy, 1963. Deposits of the manganese oxides: supplement: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 58, no. I, p. 1-51. Hewett, D. F.. Shannon. E. V., and Gouyer, F. A., 1928, Zeolites from Ritter Hot Springs, Grant County, Oregon: U.S. National Museum Proceedings, v. 73(16), p. 18. Hunt, C. B., Varnes. H. D., and Thomas, H. E., 1953, Lake Bonneville: Geology of northern Utah Valley, Utah: U.S. Geological Survey Professional Paper 257-A, p. 1-99. Hunt, C. B., and Mabey, D. R., 1966, Stratigraphy and structure, Death Valley, California: U.S. Geological Survey Professional Paper 494-A, 162 p. Irwin, W. P. and Barnes, Ivan, 1975, Effect of geologic structure and metamorphic fluids on seismic behavior of the San Anareas Fault system in central and northern California: Geology, v. 3, p. 713-716. Jicha, H. L., Jr., 1956, A deposit of high-calcium lime rock in Valencia County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Circular 36, 5 p. Johnson, Harry R., 1911, Water resources of Antelope Valley, California: U.S. Geological Survey Water-Supply Paper 278, 92 p.. Jones, R.W., and Bowers, A. W., 1968, Mammoth from Pleistocene spring deposits, Soda Springs, Idaho (abs.): Northwest Science, v. 42, no. 1, p. 35. Kerr, P. F., 1940, Tungsten-bearing manganese deposit at Golconda, Nevada: Geological Society of America Bulletin, v. 51, no. 9, p. 1359-1390. Kunkel, Fred, and Chase, G. H., 1969, Geology and ground water in Indian Wells Valley, California: U.S. Geological Survey Open-File Report, 84 p. Larsen, E. S., Jr., and Cross, C. W., 1956, Geology and petrology of the San Juan region, southwestern Colorado: U.S. Geological Survey Professional Paper 258, 303 p. Lee, W.T., Stone, R. W.. Gale, H. S., and others, 1916, Guidebook of the Western United States, Pt. B., The Overland route with a side trip to Yellowstone Park: U.S. Geological Survey Bulletin 612, 251 p. Lindgren, W., 1910, The hot springs of Ojo Caliente (New Mexico) and their mineral deposits: EConomic Geology and the Bulletin of the Society of Economic Geologists, v. 5, 22 p. Majors, F. H., 1946, Exploration of the Brutch sulfur deposits, Hot Springs County, Wyoming: U.S. Bureau of Mines Report of Investigations 3964, 18 p. MaIan, R. C., 1957, Geology of uranium occurrences in North and Middle Parks, Colorado, in Rocky Mountain Assoc. Geologists, Guidebook 1957, p.

Mansfield, G. R., 1929, Geography, geology and mineral resources of the Portneuf quadrangle, Idaho: U.S. Geological Survey Bulletin 803, 107 p. Mansfield, G. R., 1933a, Some deposits of ornamental stone in Montana: U.S. Geological Survey Circular 4, 22 p. 1933b, Excursion 8-Salt Lake City to Montpelier, Idaho, in Bontwell, J. M., The Salt Lake region, guidebook 17, 16th International Geol. Congress, p. 125-146. Mariner, R. H., Presser, T. S., and Evans, W. C., 1976, Chemical characteristics of the major thermal springs of Montana: U.S. Geological Survey Open-File Report 76-480, 31 p. Meinzer, 0. E., 1911, Ground water in Juab, Millard and Iron Counties, Utah: U.S. Geological Survey Water-Supply Paper 277, 162 p. Merrill, G. P., 1895, The onyx marbles; their origin, composition and uses, both ancient and modern: Smithsonian Institution Annual Report, 1893, p. 539-585. Metzger, D. G., 1961. Geology in relation to availability of water along the south rim, Grand Canyon National Park, Arizona: U.S. Geological Survey Water-Supply Paper 1475-C, p. 105-138. Mifflin. M. D., 1968, Delineation of ground-water flow systems in Nevada: Nevada Univ. Center for Water Resources Research Technical Report Series H-W Publ. 4, 111 p. Miller, G. A., 1977, Appraisal of the water resources of Death Valley, California-Nevada: U.S. Geological Survey Open-File Report 77-728, 133 p. Milligan, J. H., MarseII. R. E., and Bagley, J. M., 1966. Mineralized springs in Utah and their effect on manageable water supplies: Utah State University Report WG23-6, 50 p. 13 18 O'Neill, J. R.. and Barnes, Ivan, 1971, C and 0 compositions in some fresh-water carbonates associated with ultramafic rocks and serpentinites: western United States: Geochimica et Cosmochimica Acta., v. 35, p. 687-697. Osterwald. F. W., and Osterwald, D. B., 1952, Wyoming mineral resources: Wyoming Geological Survey Bulletin 45, 215 p. Overton, T. D.. 1947, Mineral resources of Douglas, Ormsby and Washoe Counties (Nev.): Nevada University Bulletin, v. 41, no. 9, Geology and Min. ser. 46, 91 p. Peale, A. C., 1879, Report on the geology of the Green River district, in Hayden, F. V., U.S. Geological and Geographic Survey Terr. 11th Annual Report, 1877, p. 511-646. Piper, A. M., 1923, Geology and water resources of the Goose Creek basin, Cassia County, Idaho: Idaho Bureau of Mines and Geology Bulletin 6, 78 p. Pistrang, M. A., and Kunkel, Fred, 1964, A brief geologic and hydrologic reconnaissance of the Furnace Creek Wash area, Death Valley National Monument, California: U.S. Geological Survey Water-Supply Paper 1779-Y, 35 p. Raab, W. J., and Dickson. F. W., 1969, Deposition of cinnabar and metacinnabar at Cedarville Hot Springs, California (abs.): Geological Society of America Special Paper 121, p. 548. Reeves, C. C.. Jr., 1961, Post-Sangamonian(?) calcareous spring deposits, Wellsville area, Colorado: Journal of Sedimentary Petrology, v. 31, no. 4 (Dec. 19611. Reeves, C. C.. and Soper, Harland, 1959, Calcareous spring deposits, Dubois area, Wyoming: Journal of Sedimentary Petrology, v. 29, no. 3, p. 436-446. Renick, B. C.. 1931. Geology and ground-water resources of western Sandoval County, New Mexico: U.S. Geological Survey Water-Supply Paper 620, 117 p. Richardson, G. B., 1907, Underground water in Senpete and central Sevier Valleys, Utah: U.S. Geological Survey Water-Supply Paper 199. 63 p. Rinehart, C. D., and Ross. D. C.. 1964, Geology and mineral deposits of the Mount Morrison Quadrangle, Sierra Nevada. California, with a section on A gravity study of Long Valley, by L. C. Pakiser: U.S. Geological Survey Professional Paper 385, 106 p. Ross, C. P., 1937, Geology and ore deposits of the Bayhorse region, Custer County, Idaho: U.S. Geological Survey Bulletin 877, 161 p. Russell. I. C., 1885, Geological history of Lake Lahontan. a Quaternary lake of northwestern Nevada: U.S. Geoloeieal Survey Monorranh 11. 286 n. Russell. I. C.. 1885, Geological history of Lace Lanontan. a Quaternary Illwe of northwestern nevaoa: U.S. Geological Survey Monograph 11, 288 p.

Scholl, D. W., 1960, Pleistocene algal pinnacles at Searles Lake, California: Journal of Sedimentary Petrology, v. 30, no. 3, p. 414-431. Schwarze, U. M., 1960, Geology of the Lava Hot Springs area, Idaho: Idaho State College Museum Occasional Paper No. 4, 51 p. Siebenthal, C. E., 1910, Geology and water resources of the San Luis Valley, Colorado: U.S. Geological Survey Water-Supply Paper 240, 128 p. Slentz. L. W., 1955, Salt Lake group in lower Jordan Valley, Utah: in Utah Geological Society (Salt Lake City) Guidebook to the Geology of Utah, no. 10, p. 23-36. Smoot, J. P., 1976, Origin of the carbonate sediments in the Wilkins Peak Member, Green River Formation (Eocene), Wyoming: Geological Society of America Abstracts with Programs, 1976, p. 1113. Southern Pacific Co., 1964, Minerals for industry, summary of geological survey of 1955-61 - v. 3, Southern California: San Francisco, Southern Pacific Co., 242 p. Stearns, H. T., Crandall, Lynn, and Steward, W. G., 1938, Geology and ground-water resources of the Snake River Plain in southeastern Idaho: U.S. Geological Survey Water-Supply Paper 774, 268 p. Stearns, N. D., Stearns, H. T., and Waring, G. A., 1937, Thermal springs in the United States: U.S. Geological Survey Water-Supply Paper 679-8, p. 59- 206. Stevensen, J. J., 1875, Report on the geology of a portion of Co'area() examined in 1873, in Wheeler, G. M., U.S. Geographical and Geological Surveys W. 100th Meridian, v. 3, Geology, p. 307-506. Struhsacker, E. M., 1976, Proposed geothermal circulation pattern, Corwin Springs-Gardiner area, Montana (abs.): Bulletin of the American Association of Petroleum Geologists, v. 60, no. 8, p. 1411. Taylor, H. C. J., 1976, Corwin Springs Known Geothermal Resources Area, Park County, Montana (abs.): American Association of Petroleum Geologists Bulletin, v. 60. no. 8, p. 1412. Thom, W. T., Jr., and others, 1932, East entrance of Yellowstone Park to Cody, in Field, R. M., Yellowstone-beartooth-Big Horn region, Guidebook 24, 16th International Geol. Congress, p. 31. Tho•ttes. IL E., 15. 46, Ground water in Tooele Valley, Tooele County, Utah: Utah Stute Engineer Technical Publication 4, p. 91-238. Thompson, U. A., 1956, Geology of the Virginia City quadrangle, Nevada: U.S. Geological Survey Bulletin 1042-C, p. 45-77. Thompson, G. A., and White, D. E., 1964, Regional geology of the Steamboat Springs area, Washoe County, Nevada: U.S. Geological Survey Professional Paper 458-A, 52 p. Ti-auger, F. D., 1950, Factual ground-water data in Lake County, Oregon: U.S. Geological Survey Open-File Report, 287 p. Waring, G. A., 1908, Geology and water resources of a portion of south-central Oregon: U.S. Geological Survey Water-Supply Paper 220, 86 p. 1915, Springs of•California: U.S. Geological Survey Water-Supply Paper 338, 410 p. 1965, Thermal springs of the United States and other countries of the world-a summary (revised by R. R. Blankenship and Ray Bentall): U.S. Geological Survey Professional Paper 492, 383 p. Weaver, C. E., 1949, Geology of the Coast Ranges immediately north of the San Francisco Bay region, California: Geological Society of America Memoir 35, 242 p. Weed, W. H., 1900, Mineral vein formation at Boulder hot springs, Montana: U.S. Geological Survey Twenty-first Annual Report, pt. 2, p. 233-255.

1904, Economic value of hot springs and hot-spring deposits: U.S. Geological Survey Bulletin 260, P. 598-604.

White, D. E., 1940, Antimony deposits of the Wildrose Canyon area. Inyo County, California: U.S. Geological Survey Bulletin 922-K, P. 307-325. 1955, Thermal springs and epithermal ore deposits: Economic Geology and the Bulletin of the Society of Economic Geologists, 50th Annual vol., p. 99-154. White, D. E., and Roberson, C. E.. 1961, Sulphur Bank, California, a major hot-spring quicksilver deposit, in Petrologic studies-A volume in honor of A. F. Buddington: New York, Geological Society of America, p. 397-428. White, D. E., Thompson, G. A., and Sandberg, C. H., 1964, Rocks, structure, and geologic history of the Steamboat Springs thermal area, Washoe County, Nevada: U.S. Geological Survey Professional Paper 456-B, 63 p. Williams, 3.5., 1962, Lake Bonneville: geology of southern Cache Valley, Utah: U.S. Geological Survey Professional Paper 257-C, p. 131-152. Wright, H. E., Jr., 1946, Tertiary and Quaternary geology of the lower Rio Puerco area, New Mexico: Geological Society of America Bulletin, v. 57, no. 5. 383-456. Yates. R. G.. 1943, Quicksilver deposits of the Opalite District, Malheur County, Oregon, and Humboldt County, Nevada: U.S. Geological Survey Bulletin 931-N, p. 319-348, Strategic Mineral Investigations, 1941. Young, H. W., and Mitchell, J. C., 1973, Geothermal investigations in Idaho-Part 1, Geochemistry and geologic setting of selected geothermal waters: Idaho Dept. Water Admin., Water Information Bulletin 30, 43 p. Zimmerman. E. A., 1964. Geology and water resources of the Bluewater Springs area, Carbon County, Montana: U.S. Geological Survey Water-Supply Paper 1779-3, 24 p. ,er

se*/ 0 J (

Li _ - • _4' L. - r'41 ) z'o •;00 I■1 " j I c , C. 1 p 1 r/- 1.frt-,„ r , $ • ' - :••.: I

' —

- I-- (; I I- 1

II

3ONVERSION TABLE

to inch-pound units are shown to four significant figures.

By To obtain inch-pound unit

3.281 foot (ft)

.6214 mile (mi)

.035 cubic foot per second (ft 3/s)

2 .145 pound force per inch2 (lbf/in )

AP SHOWING OCCURRENCES OF SP IN THE CONTERMINOUS WE By J. H. Feth and Iv. 1979

,.. ,,, , :A-24 _- - 1` - I i

-..... 4,2E., 1

---- :": r-- Z - 1 ./.. .: 7 - - 28 - —.. ■ ..%' ' ^ .. . . - 294 : .. \ "41-7=-4 .-11'' 3T .30_ _ t. _ 'I -- I ---- ,...... - .- 1 - •:.7 - N- -. Ziv" '—'..,,,,V, • I - >'- I I — -- G I , t ....- _ ...{...- r 1 .- A IF:11:: --r----- C '', "------.' ■ \ , i ------— - 1 - 1. ,, -F? I v :1 — ...1—.- 4 0' I • 1 I °coop? ,...-0-•:-....I 1 • ,- t I L., I 7.::—:—__J !I If-' , I 4.1 I •■ j , ' l...,..--..7....1 '■ ....e.T ),:n rAA'L(, 1 I --- i -J 1f _ i- -,1 . ....______L. ■ r._ r-1,,-6 , 11-. ! . en,.: - i 2 : \ \ / i - i - N -- 1 , ,t. /.....- * 1 --7:----- . ".'"---''"As. '-'••/.. 1 )- / --... ! ' i : 1 ------' L , Chtion 1„, - ___ 1 -7-1- \ _ I I I I I '-.. i E --..- I -.... A N 1 C•, ; i I i I ) 1 I

Ourt,,o, D 0 A

- N A (J R- I — ■-•I -7 I ID A

— s AIN 7 , , _ i '34 +4,4f 332 , _ I: 08,,,,„ I 1 _LII

S OF SPRING-DEPOSITED TRAVERT DUS WESTERN UNITED STATES By TH and Ivan Barnes 1979 •

T 0 R A p.4 E

:

A i 0 I i _ ------R rr 0 --;_-,--_., . , - I I

7 s: - SEVELT 1 L I N 0 L N L-_

-• C „4.1 A _

r • " - r' 1 I- _ __ I I .. , • • _ , 4 i t .., 0 T i E R 0 i I. ' ' '-- , I ' 1 I L E A ; 1 .1. _ .,. i 1 - --- 7 --r E D ,-,

0•, i ,. ::,..1:' i , ti , -.r ' •• 1

1 1 i I , 1 _ _ --

100 90 — Sonny: associarod with inactive drowns — or or:Ovary unknown DC

70

60

50 • ()

30

20

10

1/ 10 II Springs actirrly °vomiting trovvrrine ,100

u 90

SO 70

so .0 30 -

20 ^

10 -

Cr- 5 30 35 •0 45 50 55 60 65 75 10C LaiTEMPERATURE. Liu IN DEGREES CELSIUS to

F IGU RE - 1 einpentsues of rem; 1.'21t1 asusciaird with inventor. In &Trees crisis's 1 wherr taw I,I irropriatures is found al one. local),■ . both top and bottom V211SCS 21C plotted). 32°

Factors for converting metric u

EXPLANATION Multiply metric unit

4 Active meter (m)

I fleiL:liVe 01 Lill Knt:: 1 kilometer (km) liter per second (L/s) kilopascal (kPa) SCALE 1:2 500 000 50 0 50 100 150 MILES 50 0 100 150 KILOMETRES

Base made from USGS 2,500,000 western half of the conterminous United States. Compiled by the Menlo Park Base Map Section.

• .-- •• t-• . _ , • ....,,,\ U N —) _ T #.4 • , •,, ,.,.2 • ••.• - ...... _,, -•••••• • • , ., .-"--7 .7-.7"••••••...... • . '1 • • # - I A —77 h ------• - ---,_ - • /.* ---- 1 j - -*-1- C . A • R .1 -:...1 l ': I , 20 , . I I 11 .,-:-''' f Tr A, . - 77 9 / '1% T - - c c•„„ a ... ° i N e 1 _ . j ;Ex;::' Ii :.2 7 2 ' L 1 ------■ I f t.-„, . L L . , \ -.:.... .)..., -- i '.--\....,, . NrPETE 1 , --... ___ VLI..H. 3 i 1 t , e44,,,,, i ..4, A-.... A .-.0-' 4 ,t ‘ r ,, . r.,toe \ sr ,,, ,..,, ...., ,, . , , . -, D•le ? I a. 04, , I ••• A v' ) • 14,,,,• _ / I ,r- 1 !471.14,1,1 - • r1 e I 2! ./ • •.„ A 3 II • • et• 1 „ , : ti .... v 'I 1 ' , — % ,C;.°70 jcolf I, . " - -, c-c -"*,,,• • , ; • *: • E R — ''-:t:-t. - ' '... '' 73. -A %-„„ 5 / \ ' - ' . 1g- 1 ' - • . - "; • • II 1 -- • N1 - — , r -. . t. 1 --Y. v>-- i , M E --, 8 4 A ', - --,...... / , t.,, -1, • - . f, t • ..i.. 1.,..I --... - Int _. - - e - - '4Z. _.../ ! - .4-'-'-'1.-- \ .------...r. t 1 . I .._ , ,. --I.- • v ' ' \ ' /2 i ,-;/ — 1-ca 264 ,f) ...... - `. R i.- . ,,--s.e„,, ) • t. . -...._..--...... „.. — - A 29"---° 7. t _ _ - 1/4. ---‘ • • 1 , -:-..", ...- .0. 7. • V -...... , ,, t '--- . ? _es_ ,7;,)-- 40.,, - ' i 1 4 I ..- .....)-___ 24 . Not, /,,, , - " P, , t , , ty)22'.1.:,._.N--er.-•, ; z i ------,-, - . 1 7-----;:...4'•ia.. ;...'''''. ---1.!._:.:. - -- I ' ■E i • .--7..tt• -----:--- 1.• • "' ...... ,' .... t r " ----b— --— i Y I i e , L •• ...... I ri •-• , r." - ! . - I r%1 0 IN- . "Ett.tart • 1-1,1 , _N _._ T ...,..., . , — '.--- S E -1- • 1 - - 'LI: - -- - — - — . r ,.r4-., . \A ...ow.... - ...... , , .A _ ,../...... _ - 1 . %,' 4 i - ---- : - - I ' s ------"'A N f .. •■... . • .. ---z,..... m i G ' ' I '7 ' - 41r-tt ',H., 4.1 E_ t , A • A 3 7 ! : ...... - ,. e 24 110. ) ..? , S ...... , -- ... A ! N I ---"%••••‘`, •- .i • • - ---_....- /7 rt i - "--- -- . - ..... t•■ , &,• j U A ,-,,,,- . -t ; riz.., . i 0 _ ...- ...,., ""°,----, ; t QO L E) r , -L.0 feet. Fr •-• ) """ -a -. .i 'Pr Stirei ;,....., ■ i - —___ _ , , I ,.. 26 J., (. - E •— - -.:- ---- ! r.." AN JUAN, a ra2 • _ I „., • — ' %-+ N T E Z '' -c-- • I c/o, . • , co, le; I • !, X i _ ••‘.u T Ai I I f • S ) I 1,n/77' " ■•••• 1.1 i

t • S ry / . I i • -; U N . ; 0 . • 0 N / I

r 17-

- r- 'N r L-, E •:• , , , ':•.... i. , t. - , -`-' *41-7.4 rrie ... I cr ' 1 I - ,0 - V ------,- ! 4 .55C1 -- -- t • ------, ---,L___4 1 , A p - A .. I „ _ CT, _ • i7'•_ , I . I I - — A 741 t V - A 75 • , 1-- A 76 .72 - I --z•!-- 274 3 - 11 _ 20 - ' 22 23 ; ' r , _ . _ 24 • o ' • - I . , • .I

s 7,1 L D c- • •z• 4"t•• • _ 2. ..••••••••FO,••••& — - • gr• • 1 ,,•P I ILL J \ • • • I ',FLIT.. A 3 • ••••• • • ` • J • . - r7••••! M .14 1 4 . •. - I IA 01R Q 1 -- I A Nt 1 A..0t, .. i* I I GRAN-D • •••1•.... ' BOVLVER j I 1 I i .- - ('‘ I ,. "--C - 1 ”f•-• ....1%■•• 2,4 .g. I Y U MA 1 •—• • . .,...;.- ,,'FT b,,, t, . .1 [WASHINGTON II - ,_,.. .-0". •CI ' 1 i ••' s. , • •.GILPIN r:—. I •••, 74 Kt.' A' 0 A .- M S el•!1.1• ••• • •■ - i I % .... Cr.' • .1, C I tri0.12t1••ft • •••••• ■ I 1 I • lirtr.•••• ...... 1-.. ..-.1. I c ...... ■...... - ■ ..- - — - — - —1 I YE .1 De N‘'EP ..•• ; jiall .... 111 ... 6,...... I A Ti , 1 , ..\ • • — APAHOE ', E l' 1 , /..i,L.';.!:. 4...... 5 i o .... CL II i.ro j -- , ______I___- S SUMMIT • • — -1 -! . r• ,, J • A :-... -• • • •a gq- - ,,, •...(ror . ) 1 -- 4t • 11 I coot!' ,, - •1 ' , I I C.CL: I OL 1- n'ilor - / IF. ID•se • :E.K 4:;---:!''Y . 1 ELBERT I- PITK1N 1 / DOAJGLAS ' CARSON .1' ' s •id.''''.f I • ' ••• .../ ‘" i 'su 1 - LA KE ( -• P A R K i ;,,.. IV; lf • .) .. , L__,:_ ...:,..__, _ 1. '' . -r _ ..,.., • ... ._ 1 1 '"'.' --,..;•‘.. .., rrELto_4_1! I - , i ----% .. _ .'' - i.s4_4„,„ , , ,, - nc. .M.. ■Ae•• P------r , :_,.,..,„,...... 2, , - _. 1 , ,•9 - r - r_, .1 2.. SI• J 1 LINCOLN i , c 'H .E y E . . , . - 4 CHAFFEE ') 1° --4 1 0 1, .... N• .r.i E I ' . ,tP .4.4111•te• z, - 71 E L, P A S • I - : . t t I \ -17-4 - ... . \ 0i- 7 ---` - — 1 ' •• ' GuniNiisoN \ N I ...... •••-•-••■■ I I • , 'WINN .s.,... .!•■•••.;:X.2, , rpEmoN7 1 18 .1 Eict.: •. - -••••••■•':-.7' ------15 ,t------:13 .- - ...."' s..—.' 1 i k o W A . .., .. I 1,41:, '' /."' A- I • i . .41...... :. i CP02A'LE Y , ''' ..j. • 7. .t..; ■1 1 1 „II ' r...... ii „xi:7,177_ ____7 .■. •■••• ....■. A.. .,..■... 1. - ,t . .■•■•■ • ■ . •■■ A 20 \ ------— - -r - .s•,;-- Z.!:' . . .A._.j 42 ' I ..4. , ' 74- • e 1 • PIZ.3.'E e 1. ..o *. - •• • , • • L :--.7-- --. :7- ...• ' CC'S-1ER - II■ • ; SAGUAC. H.E \ 1. A s1,4 • . II. , • IR...... ---% - , -, \.. / - .' !-- .... _ 1 , .._ La .T,smr, 1 BENT. i PROCNERS i .. rrr..., .... „, ...• -: • -, ,„ .--- . - . ."---- I OTERO ) .. . ;127 f --I \--- ' -.... 1 1 ------. , • 7 i ...... ' 6.28 . _ __ 2v ...... , I ' .-; -4 ,O,I,14., TEE/. =4... 7.-..._ -• __ _ _ _I . •• .HILI ii.2 " , i _ - _ T • - ' •-- 4.11311.LI It I . -....-.,.u.,./ajz 7..... - . r -- 0 ' , - , I . - • (' . H U E R•F i.5_,..1-4- 7 1 ' \-• •• 1 MINERAL ... .. II. — - --I--. --...... ,*; •-• s E■rt I.,.. It. • j. •' ,..--• • -.-.. - .-.-...... - - .....L.-- 7 I RIO OFIANDE- • i ...s.....,:q.,p....• ;,• / I ;:. • PI-AtANIC, A1 ,

-' I • . .,... / , _....-1 - i ..,,,...;,-...... /' 1. • --.) - .3*.‘' S . ..R 2 ' .••• I ...... L. ... • ...• • S • A .N.;zs' I i A S I .:- • " B A. C . A - lv FR.. :i•-..-. ---A.. i I ' (,.. _, cos r R. L A 03t . • ....• S's. ..; . ... T A ) CONE.JOSC • - I _...-_, • _ I •••\ ..,..-...--,-,• - i • 1 • '...... --,_ • — -- - i _ I s I. I ..__. - - I .) - . - not..,•• I ( i ...- :. - : L:. 7,-,,...., . -.-44... rII, 11. ■ i i I 1 ir.:;,.... 4 : . ._...• dI , ...... , I . I , TAOS) -C CI , t I - u.77F:`,A :-X A R R . J LSO N . I 0 N I B A , ) : . . - . -.7--. , I ..-• _er.,...... : ..... I ...... , I c. .••••• ...":14,It•• , I •

• -

) M 0 r • R A 7.. , TrrN • \';'•

- -7 • i C-N L--- — r — ------%. - -:!.* - - • -P • 7 H A'RcO I N G • - • •••••;7=----'------t - -- --\•.,,, _,.., 0 Cie 2 . A L .:( i . .. '• - - Ç • W SANTA I FE ...... , \ 1 I I ...,s ‘. C AS • - 3 i F , -:. . , :-. 4 I -....f . s..F ;- \ ..'''' ' 1 • 1I SANTA FE I .. 7:...t ;:r '. ..: .' I - S A N MIG U • I 1. •• • 1 4 1 I ) J --- I .• iI • . , _ n :...... r.... .,1 , • .. r I RNALILLO L...... Q U A %,

L...... -11 .0 ...... , .. .. I I ....-. ;) .. :e I;Oio

GUADALUPE l ' i • I i 0 R N C E • :#. .3...... \,..

c \ _c - 1 1 ,,,..-;:tr --- ;, ▪. "L. ... , 7,1---- /...s 54 ...,....--i• `...•- ''-' ------/„ . _ „ f .,- 1....,,,. .--.....44... /Nsi - 1 ‘) ,,,,Q, s4N R . • 6:,,. .r., ..• -L.' .,,..----.-%‘'",„...._ c ,...... z.L ,.... P** •''—...'%----\ \\ *, A -4- 7 S...,. h, ., .:—CC.N .-TA 7 -- ./.,c,:I A p c 1 - ...... -- , . 44"4 COffz"'"---)1...:f ''• • _c_: : w. -- . :-...... SC O - f - 1 K Cy, :11-_--; •144446 •• :,,..,:if,.1 0 6::-- • ,,..,•,. \ - ... .. •V. -.7,.\ :,....‘-jsi...6-.1-1 ,.. .-.1. -- ...... V ; ,‘ C7N51-j(64 , '...: A.../.,.„; ‘. .--. :J. .,... ,...M...__ \ :---`.7.1. 4 • -,‘; j___/ -C- \ ‘).., 2:— et' — \- ' .. ! ""• ------4 —1 1V / L -' - ' .-- ..---E ''' 4 ..-- 4. : \ - sc,...--:ill- :"--...... ,.. 14...... \ 3, - ...1.-■ ,, s „..■••• .'. /. k , --,-, . ' , . .„7,2..... Itsi - - o ' I. / 7,...-- .4--,,...... k ., ..,..-' - 3 7 ., • '-‘•;-;.1.. -oz- u_s_tt. _ ,.., -t...r l_ 1' - s:--... __,f . -7.... -...-'■ . .7 p ' ql. 60; :..: '4. s' :Y:\ t., .. g..i:. 0)■ Ait4.46,8..I '-' /fal :,...... / .', Just )

/ \ - - . \ 4 , . /.::... v ...... -- .../ ! c ' 0 1 ' ' ' . -- .. ' ( 1‘ \ 4 0 • 4 / ------, , 1 36 • ^ , ; --. • 1, \ • o 1 • I ▪ ) •••• ...... I a , ...... , W Z -j cc' r - ...... • I 80 \ •'-•?

'Na ' ' • 4 .':;789 ; 7:

1 „ c Ni •.1. a , .. ' 's, ... i .; ,...... - .. ---- - ._...... `• I --- -...- '7— ------

350 •

SAi •-• 6 LUIs 13, sp San L, • ' 0 T.4•:.` •

i - - 7 -"'"•-• . . - ,.....% : ..-... ■ A ..- .1...... c::...... J ` D.7 - • N.- R • I-A .. L ,.....,. 44.4. • 1 / ,,..4 S. . -----, J -...... \. , , oi; 498 , \ J I A s 'RV...II° _ , 4 R A - 34° ::"oncenhon • ^1--- ' - _. ■ ------: ''''''-o• *9 / - , I ./, - - 7 ; - ---I -SIPS i - p La / ,, I ‘._----..... -- '' Z C .------;-- • R A V'1 • i C. / Se R . ALgue/ • I , A;•,-' ','. 1 / /3/ana _„1---■.--- I - / .t. st•nTU,2 I ' ' /I ' ------■- .4— •••• - t;• . •i ania - \ 1.- 0 s ., Rosa -1---___z „..,..,_ „ , - i ---- - . 1 ,---...„ „ ---..n•.- t.. ,,., , si a --, N G T• / 3,„,,,, ----,._ no '... - -- v I I • - .-T .. •..... • i E S i • __ - •------• •„,, „. i ,

/ r-. 4 / / `'.-• i / I 3 3o i , .(7...... ,..\2,..._.- _ Sa.a n. Sarb POI t a'a 51 il N I c i. • .' 'Sani, > z An i !..../ N G...#2., SAN . IN'a01 SAN ! eS " ta CA ISIandr‘ • I ialtr) r s-...:!. 1 / s,...... /Sia n a ), ) 7..• . ..rer I , ...... _. SR...., \ ...i ... 27 1.

32°

• 28 - _ I . A III 22 -

E P - - •,.\\, 1 i \ \ .•,_ , I Al 4 ,..\ 1 35 L • ..." s \ , i ; .."'. ‘,. ,, ''' • R • ,, .., \ . • 32 1 . . i. • 33 ; I ' ' \ i ,, -_._ r , 1■14 ,4 1 • 34 ;: "7- I /... 44,1 A ..,„ ' % I ; , „. • ' .... . I 7,---..___„..2...... I • ,, ,-, ■•• :s..,(15T00•0„: ..,,,..7.,,,,00•• , -..______, I *•=••, 0.. I .. ' -- ' I — 1 :' t ..7"..."."...... V...... i N -- i . - --- 1 0 - , ___Y . -;:, • 4 E , - -- - J L- 6 z 1 ,- si... \ / -r . -ApE if •:,- . I E A . .., -7-- V 1, .: ' 4+, E 0424,, : ■ : .; ------— - --- J /0 - - / ; _ I ,) :,,, i ---7---..... i \ , , --..... _ .... • -- I .., ,.. I \ , 7 - -- 1 63 ‘ ‘ , , ; P 29 I ' 'OC her, . _ _.... ' 'I -...... I ..... •.. ..I. --- . --- - -._ _. • 1 ' / L I ',,' 7 \ .- / / I . s 4,1 1. I N , „,.' • 0.'"' i i I 7i./.... , , , i c ...Z.` i FR i 1 . 1 ' 0 L-1 N I IN \ I , , i 1 , i ------, I t .:. r i • " - - Bet ‘ \ J I , . , i 1 ! 1 •,., .. G [ ; „.___ --, /: . __ 1 ....-‘„ _ _,- - 1 -- - ..._ -. . . , :•.-• .. f vv . r --..-:. i .. 1 .a•si-f , ., 1 i N . G r 0 ; .-/- \ , 1 i .s? .,-. : \ I c:,,,,. 1: ' 1' I • • ..; __•., :-.• 0 --.=. , \ i ----.. 2 It 72 ‘ -- ---' 4 E . -- - ...... _ 224 L',..._ 25 \ „V 44.76 \ . / i -7.7 • I —... . , I I ,r; ...t-,.. / L' -. \ 1 / 43 I '-' Iv // ■ i I C / .-• , ."). I ! ■•;"' ._. ...k f , , A ,, 0 i ' it r ;... ' i 1.4 ez--A ,- i- . , • , . I? K , ••••,- / . . -1 - 1 ....,.., i 41,41121.44.i •! • - , ----- ..l..i . .... 7— -...... _ _,•r - ,....,... 5 ...i. 4..J 0 . - — -. --..-. c ..-7- N '...- r-- i 0 2 /0 M _,...._...0 A3-, ) '', ------... V -4.- E e • 7L.,- .e - \- / ) • _ i / 0 \ f 0 - i i I \11I , "Af.; J ',1• \, i 1-- - /I , \ S A iN , . ; , ‘ e _ : i E R i 99 N „ 01 R 1 D -• J -....______N Y 0 1- 1 ---- 2 I __ -- 1.:•••••A I ' • N . I i ii . ) ..*--- -- • - i i . '' ll •,, .... 1 I r I ii.4 t,.1 , 1 ..: L • ; A ,. ' i A '... -- V , t r i 4/..i.\'/: • 4 A',/,' — •._.___._.___ \1',r...„..„...., Ais , , ,., ..r--• : , - ...... _ --,-----,...,- E - 9' — ._ i R i. • S --:-/- • - - • •_ _ ; 27 • - ▪ • -- _ , .c- - • . ___ ,_ , -r ....., . ; , . ..-, . .,, - • -: 1) . ',"4., / - , ark,,,-4 .. ,.t j --\_. v,,„, 41.,. ; • 4 I " 4. •1/4 ., - I' ^i. .t. 1 .1' P p K ' • .....2 ...i. _,.. 1, iI -"- . \ - , AFT FTFTwft - J _ Saa .17 a A 9 - " •71 • ""••■■ • 0.A R r ••• N , . • ,. • j7;' • , 71 1 1 La .4. • • - 0 - r, ... th/.1,3e - .0 • .1 e 2 dft 4. • . _ I I L.ð •.4 3 ; , • ? . . I --7 ) C ; I - u 4 • N VE1 - I a T r- 11 . A • PVA Tie" R .5 1 , t- •-•.. c L A FRE r.;S: , 4... ;1 C.03. bi,SL MONT !I: 77 6 - I E f 7 - • 6 r - • 2.1 .- - I • • LI: :-• 8._ / • n-el • • .5s, / • r -r • 1 • • --- 7 E , - • ADIS° Ni TET ON — i-- -1-- k ,EL, .. • ...7 7 A, P C"g s rj ..1 _ -- I , 1 ------g e ...... -1 • •__ I ,,,..z_.: i ...:L. T 0 N I 4, 9 „it - . 1 • I. , . •\ - ._...... ,k-■ 7 -...... 7 S P e 0 Kin)A, .- . ---10 IL L E - 1 /.., ,.(...,./..• N - F 0 LŸTJ r -...›7 7 • -L.. . ., A ICI.....-... I -. - — , , , •- I L _ li ...- . 0 ''''''•.(l! 1 l 1, ,_.. , -- ... -•,...4-.- ...-• - ...._ .. / • 7 --' , - , t po mt r - 4 1 / ,. •--4...; 72 j I

7 ,..---.,- , ------.% / :' "-i - " P 0 w „ ) 0 k 14.--/ `s C e 0 u ..-., -—--- .- ...... e.,•7,., ,_.! .;• • ..' •••:. , `,„;.•.. -1-1-- , - -a ' \''': - , 22 It . .---4:----- _:_:___ C LS / 1 , , e - ,..I .77, .-L 0.'...... 7, 14,. —75 - nrca• •,--- - , - k R 0 ipi . 3 ,-.• . _ 26''.ne: ; 16 L'I s 1'; Emo rs, , ... : i. - 8 I- E T 1. E ' ' . - --,..... 1 C ; ■ r- - J ',-, c';- .. ) --n c., . . S s , I - 4 A / -- : • 25 1 I 1 I . L I D A "\-- L., _.,• 24 sEAR - - — . , i 24. 7 ------; - _ 1 .26 1.' 2 FpL - r , 1 ' 6- L_ _ ...... ! . 2 'NI I 1 — *.i;it.1,10rs... t - -.7______.-•„. I. N C 0 s: ---.-.-----.. :.:.••:.'.; L. I i N —__, • '1 . s______L ; ■•••1 A 7 s 0 —.... AAC c r • C E . l, R t - Z:-....- .- " .. ._ -OR a',.., , I -- ,-.."1... „, .,,, - F •; nc 1 0 ph ! , ! ' . \- ;.., O.,f '' -- ... , I: ...... , . • 7- ...- '''• s \' . — ci \ - . H .. 7-- '1! '.. ' '.-- - ': I c . - •• S . :------' „JR i c . T ------...._ ...- • •• •• .- 1 \ .. 'i. .' : , • r.-1, - - 1.1 1 . '1 e I, ,.._._.:_As.,.,.,-,)_;•-- -1 ,.. ‘,- - ..•;:•77,....V ‘...,..,;.- c. ii,..- s, '1- 4 __..- ...... ___z__,.... L,:'_+v , Eib2E3' ' - -1,• , • ia... ! U 1 N .• ,, ., - r W. - E /..tilt,t...... s1 ,z ),. Cdoe7.37....•.---",::, ) ‘.1, ).:, ._,.. I •Vreen R. . ;..4,7,...; 4 :1E . -4 1. I .. : I„. t ...„,...... „...... _...... ,:::.E.aust : A. - . :.....4. I I I i •-•-•--4___^ , e^-,,, \ --, i"^Zo 7:2, - i,.:t.2. -': .. -- ...... ,...i., 1. - , - •- 5F-7 4. 79 -Q _-..) . , • - , i i i „.... • .... , i „A - ,...,...ThOZ____ iv i• or .. 1 1 .... ic:I._,.:: 0 ci.\:•,..•■ k 1 : \•P'''?...' ' th t •:-... . _• , , 7 -1_,j i 1 . 1 • • I .1 s.',.. .N. . , _ -1... ■ , -• • s ! !. . -...... ____L______:.6.2(L.-. ...• e ..\,. 44-, }-,/ r - I I - ., 6 ' - I ---.* ---SAI- ), 1:-.c-AP'.:hz-,--..; :.- ..?" ... ',.- .7 . .-: ilan'kb' c"...... -' ..i-• • • - .------A? , SAL:7- L' AJ ) -- 'C I 770.,„,_ _ • .._ , i .. P .E I• TY I , _ 0 'el / . --.----v-'-... ---- ' . _ _1..... „..`',....„.' a j / 1"` " ' " - -r; L - 1 . -/ ..s. "f7-..'..„*- .-----" -.."-'61---1- 5, .... ,..1_,.....\:/..;.tia n:_ 7 . ,...... ,/^ - -- ji, 1....1 __ J I - '. r • ...." • ,.. . .1 - I 1 c 4... .,... • . • I '' . - i • ri ,.._ u 7-.A.61 '7 , -,_. _ ' ..*-.: -- ' - • t - • - - \ 'NA, ,!,_::W A s A ..: ----L-7.: *%;:- ) 1,-3241, , 1-1 , "_. —. -,-.../ _ 71. l - LAKE k. i. SI .... / ; i r‘l 0 .P c... L.- *- -, 11- . - ..5 ' 0•- --.• ' I C) .; A r :..2`.2 c!.7. , , P c. ti E „ r . ;I '.= ,1 --..,-' •-,--- A --"'-1-1 • ' . 7.• ..- ' ._.- ....-- alICP.,,,4, __ I/ ; I L. . - i 1"_ - - . t U 1 - A H - _ • ' I v , • .0"" pro: • - - • t••• - R - 77: '1 h R

160

• •••• •■•..4 •••• •••

- H = CA ft E R

/ • 1 I POWDER R1V:ER ; - ,,, r ' - •. r! n'el.i" s 1 -s 1 -

..- . . , .. L .- — _ _ .1, 1 .r, - 1 ,,11.11.00 , WI. •.7..s- ,i o.'1 ■ I ' . r I.•I. .li . I I. • '

S H E R I D AN . _ P 0 0 K 1 -0. 14 r.4 _ _ C ; - 0,EirsIn 44,4-1" - CAMPBELL : I I . ) .:"... •1."1.1... • a ..0 I .1 OHN 5 0 N - i . ■■• S ti A X I E

W E STC N

I _G N. 1 0BR AR- A N A 'T R ON A I CONVERSE

- - - - — - — 1 • r ••• * 4.17 I — GOSHEN 71.-4 PLATTE I • 1 .,. O. 7.'• - 7,- • - .1 ..... - - • I • I 1 •

- 4.: • - C A R B O N a :•■ — — •••• . I , • R AM • • • - 1 i .. I I • I t . CHEYENNE.. I _ ..._. . . . I _ ...... •■■••■1 . . - -- 1 .1 _ 1 1 I s'. I ,5,t; , ...,0;: ...,G,. A. . N. ., .eli.::S HE.Z.::::11K. s 11 . "".•'"'. . 1 1 s . • ..1 •• r ; a j • • • .. . - -- —: 't I '.■••• • %v. ' - 1 1 I .. ‘1. LA RIM ER ."..."1 J ROUTT JACKSON \ ' E L 1) .. ., •s. i N/ • : .S'ii niI•c7.,.. A 2 ..._ ' 7' .. : .: -, F. :. • , 1 1 1 ,..1;r: .. , :1'.• ... • — .) : - ,-- •• --..... r . A• 3 I ; e .• !:, Erv.. . i ..., . - - , .s...,' r. ,.. J.:-...... 1...„. ts - - • ••-• s - - r ,17)::”7-; • - 1 r - ...ILI, IO• .. -1 ... i

- w_o "itts

0 3E

6E

' o

'04 ,

„ 1 7

7 Of: ez: • • .,C) ; • •••• -

C ...... - - 4; —.------__ •- R ' ) ----__1 ‘ -, •7 A ■- s -'... . _7„ .4 D -1 s ,::-i-.,...... ni T A ' E .. -... R ' , ...i. : i/ i '. : •I - i . .1. E _ - ...... _ ...... , ; i V -A- , / - ,-/ , k. ; . .- ..,,.... ' .. - . ,... 4.• / • ..1.... d''' ,.. • .../ ' - .....„- . / ,,,,,s,..,■' : ' --r” ,,.... , , .. - , ••_.... ‘ V'f-,-/-•-•../• ; . . - , ...„„ - --.... \ ' ---i -- - -:-.' - ----. . • • - i''' . '-••••,... -7 '.."../.• .... ' .7... • i N / ' •• -_L----••••, ,,. 1.4, y e ' 'l ...f4. , 3 A — .. FRI 1 - '' _ -___i . . S -r 1,... c (7--::71777-I 1' „...... - , 1:: 'SR e 1 ..,, • '- ... •\ . '(' 'Ica": — Ii/ , , v o t, , , ,--"- • ::/ -IL::: —; - --- - . , -4-E--: A R - 1 '...... c.... . / , R jeo■st \' r;r":" ) _ „. 1:•-\ AI A - R' • ' L D , 1 ; • C 7 He UP -.•._ 7- / • .\\ 1.74. , - I•1,14 S • 7 ....._-, c, M61, 1 C L \ 1 S L o • A / „. - E

•,.,,,..... ,..,,,,,,T; 777-•

- - L 1 1 ; IV 7; , . R - -41 • • • , • C

D - ERo ME r- -

-- z- 1! rwir\0- . -:-• FALLS 1 I 1 •":( ' 1 4 I: S I S 1 : ‘. 4 25 -... I 0

_ io - A: 3 • / 9 ••■•A, W • 4.1 • 7 3 4 72 L. : 1 474 H p1

- I . - : • A 7 6 •••••.,„• - A 7 • 20 /

.7 • ( 4 L. As !S- 0 u : • - _ • ' L.

II

) , AI e ‘F 26

••• ••■„, 27 H

- ' EI. . , 28 \ --• 116e r 115° ti 112e OM 111* ..•■•• • MID •■••• • ,: . • - I I ARy.. i • i • L E I • .? L• A -C . • LIN 2 c,, LIBERTri 1 • ••, c.,,,• a.m. 1. "" ' . • - . ; ,-.5nriD 1 • c`‘e• •\• e. )...e. .: ... .1.- z--r: • . .7 -s•- o, ' -1 -sL L L A 0 7 - - .• . -I 1,1,1 H e • ...... , .....• ...... _...... 1 .' r'''t r \i-.,..:. ‹....:-...... -••••• ,...... '"11. ..1•-;':: ... . „."2-. 1...., ...... =:1:... ' "' • 41 V...... :. r■ , .-".U.• , , • ... . -1 P : 0 .0 ""•"E-:• R • A 1.... -7 j 4-1 1 i • 7 t - . : --Li- • , . 1 7 ,.. . "...... , %,...., ,, . . c:::, ...... ■...... , ..."...ts . I F . _ • - _ . - r s'. - ' ' 771-7:--; . --.--41-: ..f_k_ _ •' ._—, .\',• T, --,----7 , -- 1 . , - - - - . ---7.---:-. /, . _ :: _7 ------*- - .‘ ) I 7 ' ' 1 ', , . , -..:- -=z -=-m --1 c H 0 LI • 7 E :4- . a- . - . • • T _...... E::-- --T ..0"'*" 1■1 .-/-• I..' j .•-•'.,!-: t. ../ i ' . t ) \ ' ,. - . , 1 - -4.- 4 . 1 . --.Cnetra...4:_:.,c-,..kto'- I , s ..k N ID' ." t "- f ,.:•I Sr:I: i • X. R S ' ", - 7 ?," d- ..--r i E I.: ' • i- . _-..1 _ _ , - \ • 1 I -- ' .... Fuisv., . • " 1,-- _, - ___ — , , . : -:-....2.--- .• j AKI ' •••••Pc:-r-,1•0•••• coils `..„....„,„••••••••\,.A . ...:,...... 47.„...... 7. j ...... :. ....;c1"2„..• , Ni - • '1,.,...... /;.-..",-,... • .,.. G ,. : 4 .....-- -....-,. •••••,4 ■ r...... I „...... :...T . --,:-.:- .,...... ,_ z C . ), 2' . , 1 v- _ , . \ - • . ,,_,... , J --k. ,.....,■1 • r 71-" —= --/ : -•• ‘r--- "••••••. ---,- . i • •••••• . E • -- --- .-• -4' ,. C`A'S"CA DE - •-_-_-.. ••••;.- R C .. .,. 1 ,. , . • L V./i( W. * ..- -!•• ,r.--. t r7s's .. . r I --. I * k• 1r 1 .• - .. • - 1 I t"L,‘ ' . .b■F•wpix,e, ''"••• si:, .....„.. - 2 , . _ 4 ‘\ - .:. : ' I .A. 9 -- -:-. -- \ , • ." -- 1 . . M . - . - ; •-•-•-• t __I : •----*--.-_ I S S 0 ' • I - ° . ,-••••■■ 4 _,..-„i...t.....__ _ .....1.11. _ sjA i I 0 ,• -... i. r L, 1, J 1-1DITH BASH.%) s.•,'• 41. —...1 --<----- •'• C , • , . ,.; .: "------'' . { -• 0 , _ • ..... / ...__ 1 .. s, ,I, .4.,....I.L...,...... _ ....---_• - .,_,,,,, ..*:` 1 -4.. /,'• 1-o• 1 ; T 1 7R -ii. ,, . -,4„...... • N - . -1 --2-• -.. _ . _„. '•• _ _ \.-:; - !. ■, -- ‘ 1-1 4. j ,. 1 A 0 w...4 1. E R , - : .- (s- ., --- 1 1 ( ),., 1 - ( -----. ‘ ..- --- • — _ _. _ _ .--, - -_,-;--. . k ...... - T. , ---., •__ I) < 1., 1 a: 7., , .--...■ .. ELENA MH E'AG HER ' -...- k•:` -. . -- 3. — - r_‘.•...... • . c - I, w.,,,,...!::. L7 D •-• - • V,0,■it Svtph,,, i c.T.L GRANITE - 41■2 5 1 .'''. ' Sslosts Z.' \ t_. ,;::er• 1 - -3, : i .---=•• . - -- • -..`,.. : R OA PWAT E R ' ....:,.. _ ., . 1 ._ i ,.., „,„,,,„„„ • _ . ts 00,,,,.4_ • , -• _F- r _ _ ...... _,_ ..;. ZI.,...:1,t I 5 .. ---- - — - — - 7._ _ , ....1 ::: i I i 7 . . I N• ' __. _ 1,2111_7- 1 . ...I ) . _. ,..:, t n■CC,:13.17...... , -.., I -.._....."4 c_.;,.....,...._..,; ...... ) __...... z_1\,\ ..1:1F_E. ..R...S....7.7.. . . J - r - — -- -- 1 / ... I i1 f: c - '---- " ) . ,-#' i3..r j E_ .At, I \- ,— ., I 1 - --- l c 1 .1 - 'il . pi, % I i' • ,.,••• • G • _ i SIL)IR Bow) Z • ,c .. • ...... ),...... - --.,' ' \ ...., , ••• _ . 1 . -,' " ----,. , t • I - H 0' ... . : '0" , --• sc--"\* - .-1. . s , ,.•-•,,,,." • •-. , k.. ,.. c , , , I, C - •.,. , -- „ • I . • -,_ ,4:.;" r. cz • ? • r S PARK \ . I-:." 1 ''s I -- f --)- ir\ • -.....,--,,:- , I - , r-I ADiso'-n) . s .,,, ...• ' • _...... --- l

SaIrao- vs•ATER-RESOURCES INVESTIGATIONS 79-35 OPEN-FILE REPORT

ALLUVIUM

SEDIMENTARY ISPIALE, SANDSTONE I

LIMESTONE OR MARBLE

BASALT

OTHER VOLCANIC

GRANITIC

METAMORPHIC

SERPENTINE OR ULTHAMAPHIC

ID 7(1 30 40 50 60 70 80 F RE OUENCY 0 9 ° nr.t.lia I RocL types associated WWI 107 ' __ 1 06' . _ EM....M...... • 105' d;,.... I ,. .,.., 17 '. . ". • . . :::5'; L . . I... l' Si-C•Dert I., DA NI E. .- S ...... c. --s L._ T--- C....- \''' A 1 r ---. . _ L r- Y

P H - 1-- 7 I L L -;• - L. ----•-... .4.. I I PS - I . -. •-•.;•;-; . I R -- -- i - 7-''cir'...... i OOSEvg . .L T " •• I r I - . •'.' -- C ''' ..e....:.• I ' ' t• tI 1 .'• "Pr 71...r.A. :-,71;:--7;".•.- , - ...... 1. .- - ..--...... • 4.,:!•173(.:-<" > "T'-- —... I . . 1 r. 1. 1 C s.., .--....-:„ i---'-, -•'■-,-..' • . ---4J 7 /717L A — ' "" ' ' ' \ 7` 1 .ID --...... - ..,-;.' .2.:.- I — t r . - ft..... Al C - I •-k.' .. CONE ■ ,2 ,, I t: . 7 C i 7 ..., '''' L I

I - • ______—

,

"; 0 • • N-% - -`f - I FALL . Ctjs 7 N

▪ •

1° 12 2°0 1 1 E 16° 1 9° 1 1 B 1 17 0 1 . . , al ...... m...... m ...■.m.„ r ...? ' , • . - • • . r.l. t:. . ■ ' --",'" 2 C 0 NI • r ' • i .••••• i ■ ' - ' 1. N „..."- .',--, I . . .". V, • ••:.•.• 5• i--z) ----, • - ..! 1\ v . •• .1,L ." ..ft. lI. E: 1. id" ' :,- 1 i,. a, 05. ;, N(. , :Dr ..A , 7. Y i I I.., ..,,.... , •• ...•.. - • , ix ■ • I '44- u.a.•;.•: -.. ) '- . • 6- :, . • .0 I -')., OK 1. . , --- A NDG'A N 1 ;( I; \-4- T . ,..--' . , LIN . COL . N G'-4 T -, si FERRy',' ,- / ' .Y. I 2 ...... -' c•,....,.L. I r t 2 g;,2, 0..•" '1 STEVENS' '- - . • . - e !'' u) • Bo1v iN .1R...,...... 1/44 v... .1-...,7: ',.-..• _ ....._, , ...t. I 1 '. C. I ------. "\ . , , . ' - \' ' I ,. r .c • Sirippoml 07.7 ,. - - ' .: :\ . 1, - ) '. I i ';'..... e 1 • . , I .. ,„.. ,Nve;...... c0 , . : - . 1 -", ..r. 0 M I H - . : . ,.... . \ "...-...? .....7....f ....."*".... C ,- r ! ---- ,...I. - ,.. . .1 L.,..."Jr ... ,..., ctia. ,... • .....: .i N...si. "I:Yap. r ,1 , .; • - l : 1 *—. • e 6 - - I i C -,.-, . ..ns ; .., .. • I ... 1 1 E L A N,....;, a - I.., ___i ...._ . ,S.L. I ' , .-. ,-...... , •••-• 1 1 • • ...1 . - ,?, ' ' DOUGLA , .., -.. .. ‘ -. $ .• •, -• r...... • .... , A..,1. S A, N D E R Davt:,„„,,,, : I . cf.P0 u 6 AsSent I . .. _ ._ , 5 - 4- .H.••;,• ...c...... : t . KO.ZZENAI • !! • - I- I ! --I. 6,P 0 s MCA N E ' ' ' ''''''' , 1 .. .-; - \ • , :1 ; ' . : I. '. G e•' • - i 1 r / • , ; % ...... ot....y..:•.,...... k 0"...... s.''..N .. - - . _.... -...... , "''"••:- : --■ 0 • -.Y.''' nI.,i. N --...., L. :N . --_ --- Is.::- .‘,.-. •■••.• • . 's... .. C...... ,-:...... ,_:.,i,r." .. ..I...1 s.7.1.0. S.HONE ..\\._ ..... ) ,I. I". II • I ' "' -- -- 1.. , . . ).. . •••••••,flat: . I ..- 1. • -.. • • . ,...4 -. .,.---..-•,-- • ... '' I _ ___ -. (.1 _ _..... _ ...... f,.,.. _....- . _ _,..-... , • •• , • • :-. BENEYYAH i - • ,,,,; ,-. , ..I TTITAS I • *-... • I'. . 1•771:..,!atr• . F -N ' '' 1 ._- .f...!:..' ' _ GRANT .., v 1 . '-\ _ — _ __., t< rs"--- __,...... 2.1:::.w.....t.4 _4 . T .. 4,01 . k, _N _ -.—.-.- --- .—.-- - ..----- ''''''.. .1 , A 0 A I • - • , .....L. ,..---J • F------— . .1 ..- - 7. -7-.. - — - — -'-- (.. -<-: ...:.- -...,:• - . -c. '. • --, -1'.... ' . ,_ _L.... - I .'1...... ••• • ....,:, ...... I ------!::0". : '). s L LATAH .. I .._...,,...\ ...i.. • ■.. • •• • •...... - . . '. . . , . . -- ' mosco.• -- ., i A: 7-_ E..... R if. CL E A 'R _vv...... I ....,, , .. . I •a T ■-••-' - 1 FRANKLIN' •--' (---"\---'\% I , _- ...- „..••••- .. r- - ...-,z..„.-„.. "4.,,...,,,,...•. i \ — 6 . /'-'..--;•--, ,.' GARFIELD ,- .. , - .[,___' elj:_ri2. 4::..,_4,....,,,,,,,::"" ..." ' 1 .,,-- ....■ K I M: a ,- f , -_-_-1,---F.,,,..,-,...„,% ],., 10- A I ...... ' , \---- -:1 , / . j C...91....UpMc::: 7 .....-r ,„„....t.. ..\NEZ PEcR_CLA...... ivv j sx._1_.:,>:::,...... j t . f:' 1" 1 ...... - --,.-; ,• .• P., , ! , - . • Nyrt. , -. • --, \--,...,--/;" WA L LA1. t,e- _I:4- -"' P P•srs •• - .o.s0T IN : i 1 •.• 1 - — ., f'-`---1 , 1 1 '2.01.._ — - ....-...... ■ 8 E N T 0 N K. ,...; I - t I ' . ...-■ \.-_-_„_.. :•'. .. '''' ...... ".., .-..1 ,-- A •": . i I- I s..... ,., . I • P, vet -4 , ,.. I ...._ --;,I---._-...:---.. :....._..—...... ,...... --.....:-.....1—...L.ZZ'' : C K I T AT-.1 rgry Olt° „„:" . • _ . ....t._ _ ...... , ..y, - : 0,240.0,24 . . F:....i:\....- f..■•■•■•• •- 1 _ ...... i 7\ ...... • ,....■■•••• •'• I .7.. ' -. . 0 ' -7141:::,.. D A i , _ ...;,,....:,, -.-- - •...., I,f I . ...I U r. A - T i :..--;—‘' ... a L L A I •■.' WALL 0 WA ) ...... • i ;.•! 1 Z i ...I - 1 . 1 •., i M 0 R R 0 W , r-. I 12" , I tl ,„,e,,,-..,; • / LEI 0 L ....i , , I r' — , ...i 1 I L; r La.. vnc. ..r , cc.n..,,.., .___. -I 1 -1 IJ NION .. ) ' .") • • ••• ••■• • •••• ••• ' 7 - - - r-i I • a ,/ — .4 N I. . 1 • __.__. _ _ ?.. ■ •

. , ■ . ' I....I : . I . 1 , 1 D A‘1•1 - j'c it 1 A S i / ... .,---. - _ /4._ - • • , ...,. 1 r . • " ) X c f:e.e C ; WHEELER r ,'" - ' i • I • i B A K E R --. G R A N T - -\

• - t•• C :1,

DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY

/ ---- 123°

c'eA /

e Pierr e , r rhd4

47 °

"I r -

46 ° i t „

------•...... CP,,.„,,.,.'. z-.... .2:-—...... ::,, .. , .... .- --- , c.tht.f ,_t• , _ s ,,•,., _. . C,0 •ED L Co co,•

.."

°

43 °