CDE: Run Any Linux Application On-Demand Without Installation

Total Page:16

File Type:pdf, Size:1020Kb

CDE: Run Any Linux Application On-Demand Without Installation CDE: Run Any Linux Application On-Demand Without Installation Philip J. Guo Stanford University [email protected] Abstract with compiling, installing, and configuring software and their myriad of dependencies. For example, the official There is a huge ecosystem of free software for Linux, but Google Chrome help forum for “install/uninstall issues” since each Linux distribution (distro) contains a differ- has over 5800 threads. ent set of pre-installed shared libraries, filesystem layout In addition, a study of US labor statistics predicts that conventions, and other environmental state, it is difficult by 2012, 13 million American workers will do program- to create and distribute software that works without has- ming in their jobs, but amongst those, only 3 million will sle across all distros. Online forums and mailing lists be professional software developers [24]. Thus, there are are filled with discussions of users’ troubles with com- potentially millions of people who still need to get their piling, installing, and configuring Linux software and software to run on other machines but who are unlikely their myriad of dependencies. To address this ubiqui- to invest the effort to create one-click installers or wres- tous problem, we have created an open-source tool called tle with package managers, since their primary job is not CDE that automatically packages up the Code, Data, and to release production-quality software. For example: Environment required to run a set of x86-Linux pro- grams on other x86-Linux machines. Creating a CDE • System administrators often hack together ad- package is as simple as running the target application un- hoc utilities comprised of shell scripts and custom- der CDE’s monitoring, and executing a CDE package re- compiled versions of open-source software, in or- quires no installation, configuration, or root permissions. der to perform system monitoring and maintenance CDE enables Linux users to instantly run any application tasks. Sysadmins want to share their custom-built on-demand without encountering “dependency hell”. tools with colleagues, quickly deploy them to other machines within their organization, and “future- 1 Introduction proof” their scripts so that they can continue func- tioning even as the OS inevitably gets upgraded. The simple-sounding task of taking software that runs on • Research scientists often want to deploy their com- one person’s machine and getting it to run on another putational experiments to a cluster for greater per- machine can be painfully difficult in practice. Since no formance and parallelism, but they might not have two machines are identically configured, it is hard for permission from the sysadmin to install the required developers to predict the exact versions of software and libraries on the cluster machines. They also want to libraries already installed on potential users’ machines allow colleagues to run their research code in order and whether those conflict with the requirements of their to reproduce and extend their experiments. own software. Thus, software companies devote con- • Software prototype designers often want clients to siderable resources to creating and testing one-click in- be able to execute their prototypes without the has- stallers for products like Microsoft Office, Adobe Pho- sle of installing dependencies, in order to receive toshop, and Google Chrome. Similarly, open-source de- continual feedback throughout the design process. velopers must carefully specify the proper dependencies in order to integrate their software into package manage- In this paper, we present an open-source tool called ment systems [4] (e.g., RPM on Linux, MacPorts on Mac CDE [1] that makes it easy for people of all levels of OS X). Despite these efforts, online forums and mail- IT expertise to get their software running on other ma- ing lists are still filled with discussions of users’ troubles chines without the hassle of manually creating a robust Ubuntu "The cloud" Fedora SUSE Fedora Ubuntu Debian Your Linux SUSE CentOS machine CentOS Debian ... Your Linux machine Figure 1: CDE enables users to package up any Linux Figure 2: CDE’s streaming mode enables users to run any application and deploy it to all modern Linux distros. Linux application on-demand by fetching the required files from a farm of pre-installed distros in the cloud. installer or dealing with user complaints about depen- dencies. CDE automatically packages up the Code, Data, of CDE in a short paper [20], this paper presents a more and Environment required to run a set of x86-Linux pro- complete CDE system with three new features: grams on other x86-Linux machines without any instal- • To overcome CDE’s primary limitation of only be- lation (see Figure 1). To use CDE, the user simply: ing able to package dependencies collected on exe- cuted paths, we introduce new tools and heuristics 1. Prepends any set of Linux commands with the cde for making CDE packages complete (Section 3). executable. cde executes the commands and uses ptrace system call interposition to collect all the • To make CDE-packaged programs behave just like code, data files, and environment variables used native applications on the target machine rather than during execution into a self-contained package. executing in an isolated sandbox, we introduce a new seamless execution mode (Section 4). 2. Copies the resulting CDE package to an x86-Linux • Finally, to enable users to run any Linux application machine running any distro from the past ∼5 years. on-demand, we introduce a new application stream- 3. Prepends the original packaged commands with the ing mode (Section 5). Figure 2 shows its high-level cde-exec executable to run them on the target architecture: The system administrator first installs machine. cde-exec uses ptrace to redirect file- multiple versions of many popular Linux distros in related system calls so that executables can load a “distro farm” in the cloud (or an internal com- the required dependencies from within the package. pute cluster). The user connects to that distro farm Execution can range from ∼0% to ∼30% slower. via an ssh-based protocol from any x86-Linux ma- chine. The user can now run any application avail- The main benefits of CDE are that creating a package able within the package managers of any of the dis- is as easy as executing the target program under its super- tros in the farm. CDE’s streaming mode fetches the vision, and that running a program within a package re- required files on-demand, caches them locally on quires no installation, configuration, or root permissions. the user’s machine, and creates a portable distro- The design philosophy underlying CDE is that people independent execution environment. Thus, Linux should be able to package up their Linux software and users can instantly run the hundreds of thousands of deploy it to other Linux machines with as little effort as applications already available in the package man- possible. However, CDE is not meant to replace tradi- agers of all distros without being forced to use one tional installers or package managers; its intended role is specific release of one specific distro1. to serve as a convenient ad-hoc solution for people like sysadmins, research scientists, and prototype makers. This paper continues with descriptions of real-world Since its release in Nov. 2010, CDE has been down- use cases (Section 6), evaluations of portability and per- loaded over 3,000 times [1]. We have exchanged hun- formance (Section 7), comparisons to related work (Sec- dreds of emails with users throughout both academia and tion 8), and concludes with discussions of design philos- industry. In the past year, we have made several signifi- ophy, limitations, and lessons learned (Section 9). cant enhancements to the base CDE system in response to 1The package managers included in different releases of the same user feedback. Although we introduced an early version Linux distro often contain incompatible versions of many applications! Alice's computer program 1. cde <command> open() filesystem kernel open() open file cde-package/ cde-root/ cde /usr/lib/logutils.so usr/ lib/ copy file into package copy logutils.so Figure 4: Timeline of control flow between target pro- gram, kernel, and cde process during an open syscall. Bob's computer 2. 3. cde-exec <command> 2.1 Creating a new CDE package To create a self-contained package with all of the depen- filesystem redirect open() dencies required to run her anomaly detection script on cde-package/ another Linux machine, Alice simply prepends her com- cde-root/ mand with the cde executable: /usr/lib/logutils.so usr/ lib/ cde python detect_anomalies.py net.log logutils.so cde runs her command normally and uses the Linux ptrace system call to monitor all of the files it ac- Figure 3: Example use of CDE: 1.) Alice runs her com- cesses throughout execution. cde creates a new sub- mand with cde to create a package, 2.) Alice sends her directory called cde-package/cde-root/ and copies package to Bob’s computer, 3.) Bob runs command with all of those accessed files into there, mirroring the orig- cde-exec, which redirects file accesses into package. inal directory structure. Figure 4 shows an overview of the control flow between the target program, Linux ker- 2 CDE system overview nel, and cde during a file-related system call. For example, if Alice’s script dynamically We described the details of CDE’s design and implemen- loads an extension module as a shared library tation in a prior paper and its accompanying technical named /usr/lib/logutils.so (i.e., log pars- report [20]. We will now summarize the core features of ing utility code), then cde will copy it to CDE using an example.
Recommended publications
  • Using System Call Interposition to Automatically Create Portable Software Packages
    CDE: Using System Call Interposition to Automatically Create Portable Software Packages Philip J. Guo and Dawson Engler Stanford University April 5, 2011 (This technical report is an extended version of our 2011 USENIX ATC paper) Abstract as dependency hell. Or the user might lack permissions to install software packages in the first place, a common It can be painfully difficult to take software that runs on occurrence on corporate machines and compute clusters one person’s machine and get it to run on another ma- that are administered by IT departments. Finally, the chine. Online forums and mailing lists are filled with user (recalling bitter past experiences) may be reluctant discussions of users’ troubles with compiling, installing, to perturb a working environment by upgrading or down- and configuring software and their myriad of dependen- grading library versions just to try out new software. cies. To eliminate this dependency problem, we created As a testament to the ubiquity of software deployment a system called CDE that uses system call interposition to problems, consider the prevalence of online forums and monitor the execution of x86-Linux programs and pack- mailing list discussions dedicated to troubleshooting in- age up the Code, Data, and Environment required to run stallation and configuration issues. For example, almost them on other x86-Linux machines. The main benefits half of the messages sent to the mailing lists of two ma- of CDE are that creating a package is completely auto- ture research tools, the graph-tool mathematical graph matic, and that running programs within a package re- analysis library [10] and the PADS system for processing quires no installation, configuration, or root permissions.
    [Show full text]
  • Fira Code: Monospaced Font with Programming Ligatures
    Personal Open source Business Explore Pricing Blog Support This repository Sign in Sign up tonsky / FiraCode Watch 282 Star 9,014 Fork 255 Code Issues 74 Pull requests 1 Projects 0 Wiki Pulse Graphs Monospaced font with programming ligatures 145 commits 1 branch 15 releases 32 contributors OFL-1.1 master New pull request Find file Clone or download lf- committed with tonsky Add mintty to the ligatures-unsupported list (#284) Latest commit d7dbc2d 16 days ago distr Version 1.203 (added `__`, closes #120) a month ago showcases Version 1.203 (added `__`, closes #120) a month ago .gitignore - Removed `!!!` `???` `;;;` `&&&` `|||` `=~` (closes #167) `~~~` `%%%` 3 months ago FiraCode.glyphs Version 1.203 (added `__`, closes #120) a month ago LICENSE version 0.6 a year ago README.md Add mintty to the ligatures-unsupported list (#284) 16 days ago gen_calt.clj Removed `/**` `**/` and disabled ligatures for `/*/` `*/*` sequences … 2 months ago release.sh removed Retina weight from webfonts 3 months ago README.md Fira Code: monospaced font with programming ligatures Problem Programmers use a lot of symbols, often encoded with several characters. For the human brain, sequences like -> , <= or := are single logical tokens, even if they take two or three characters on the screen. Your eye spends a non-zero amount of energy to scan, parse and join multiple characters into a single logical one. Ideally, all programming languages should be designed with full-fledged Unicode symbols for operators, but that’s not the case yet. Solution Download v1.203 · How to install · News & updates Fira Code is an extension of the Fira Mono font containing a set of ligatures for common programming multi-character combinations.
    [Show full text]
  • Opensource Software in Mac OS X V. Zhhuta
    Foss Lviv 2013 191 - Linux VM з Wordpress на Azure під’єднано до SQL-бази в приватному центрі обробки даних. Як бачимо, бізнес Microsoft вже дуже сильно зав'язаний на Open Source! Далі в доповіді будуть розглянуті подробиці інтероперабельності платформ з Linux Server, Apache Hadoop, Java, PHP, Node.JS, MongoDb, і наостанок дізнаємося про цікаві Open Source-розробки Microsoft Research. OpenSource Software in Mac OS X V. Zhhuta UK2 LImIted t/a VPS.NET, [email protected] Max OS X stem from Unix: bSD. It contains a lot of things that are common for Unix systems. Kernel, filesystem and base unix utilities as well as it's own package managers. It's not a secret that Mac OS X has a bSD kernel Darwin. The raw Mac OS X won't provide you with all power of Unix but this could be easily fixed: install package manager. There are 3 package manager: MacPorts, Fink and Homebrew. To dive in OpenSource world of mac os x we would try to install lates version of bash, bash-completion and few other utilities. Where we should start? First of all you need to install on you system dev-tools: Xcode – native development tools that contain GCC and libraries. Next step: bring a GIU – X11 into your system. Starting from Mac OS 10.8 X11 is not included in base-installation and it's need to install Xquartz(http://xquartz.macosforge.org). Now it's time to look closely to package managers MacPorts Site: www.macports.org Latest MacPorts release: 2.1.3 Number of ports: 16740 MacPorts born inside Apple in 2002.
    [Show full text]
  • GNU Guix Cookbook Tutorials and Examples for Using the GNU Guix Functional Package Manager
    GNU Guix Cookbook Tutorials and examples for using the GNU Guix Functional Package Manager The GNU Guix Developers Copyright c 2019 Ricardo Wurmus Copyright c 2019 Efraim Flashner Copyright c 2019 Pierre Neidhardt Copyright c 2020 Oleg Pykhalov Copyright c 2020 Matthew Brooks Copyright c 2020 Marcin Karpezo Copyright c 2020 Brice Waegeneire Copyright c 2020 Andr´eBatista Copyright c 2020 Christine Lemmer-Webber Copyright c 2021 Joshua Branson Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled \GNU Free Documentation License". i Table of Contents GNU Guix Cookbook ::::::::::::::::::::::::::::::: 1 1 Scheme tutorials ::::::::::::::::::::::::::::::::: 2 1.1 A Scheme Crash Course :::::::::::::::::::::::::::::::::::::::: 2 2 Packaging :::::::::::::::::::::::::::::::::::::::: 5 2.1 Packaging Tutorial:::::::::::::::::::::::::::::::::::::::::::::: 5 2.1.1 A \Hello World" package :::::::::::::::::::::::::::::::::: 5 2.1.2 Setup:::::::::::::::::::::::::::::::::::::::::::::::::::::: 8 2.1.2.1 Local file ::::::::::::::::::::::::::::::::::::::::::::: 8 2.1.2.2 `GUIX_PACKAGE_PATH' ::::::::::::::::::::::::::::::::: 9 2.1.2.3 Guix channels ::::::::::::::::::::::::::::::::::::::: 10 2.1.2.4 Direct checkout hacking:::::::::::::::::::::::::::::: 10 2.1.3 Extended example ::::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • An User & Developer Perspective on Immutable Oses
    An User & Developer Perspective on Dario Faggioli Virtualization SW. Eng. @ SUSE Immutable OSes [email protected] dariof @DarioFaggioli https://dariofaggioli.wordpress.com/ https://about.me/dario.faggioli About Me What I do ● Virtualization Specialist Sw. Eng. @ SUSE since 2018, working on Xen, KVM, QEMU, mostly about performance related stuff ● Daily activities ⇒ how and what for I use my workstation ○ Read and send emails (Evolution, git-send-email, stg mail, ...) ○ Write, build & test code (Xen, KVM, Libvirt, QEMU) ○ Work with the Open Build Service (OBS) ○ Browse Web ○ Test OSes in VMs ○ Meetings / Video calls / Online conferences ○ Chat, work and personal ○ Some 3D Printing ○ Occasionally play games ○ Occasional video-editing ○ Maybe scan / print some document 2 ● Can all of the above be done with an immutable OS ? Immutable OS: What ? Either: ● An OS that you cannot modify Or, at least: ● An OS that you will have an hard time modifying What do you mean “modify” ? ● E.g., installing packages ● ⇒ An OS on which you cannot install packages ● ⇒ An OS on which you will have an hard time installing packages 3 Immutable OS: What ? Seriously? 4 Immutable OS: Why ? Because it will stay clean and hard to break ● Does this sound familiar? ○ Let’s install foo, and it’s dependency, libfoobar_1 ○ Let’s install bar (depends from libfoobar_1, we have it already) ○ Actually, let’s add an external repo. It has libfoobar_2 that makes foo work better! ○ Oh no... libfoobar_2 would break bar!! ● Yeah. It happens. Even in the best families distros
    [Show full text]
  • Xcode Package from App Store
    KH Computational Physics- 2016 Introduction Setting up your computing environment Installation • MAC or Linux are the preferred operating system in this course on scientific computing. • Windows can be used, but the most important programs must be installed – python : There is a nice package ”Enthought Python Distribution” http://www.enthought.com/products/edudownload.php – C++ and Fortran compiler – BLAS&LAPACK for linear algebra – plotting program such as gnuplot Kristjan Haule, 2016 –1– KH Computational Physics- 2016 Introduction Software for this course: Essentials: • Python, and its packages in particular numpy, scipy, matplotlib • C++ compiler such as gcc • Text editor for coding (for example Emacs, Aquamacs, Enthought’s IDLE) • make to execute makefiles Highly Recommended: • Fortran compiler, such as gfortran or intel fortran • BLAS& LAPACK library for linear algebra (most likely provided by vendor) • open mp enabled fortran and C++ compiler Useful: • gnuplot for fast plotting. • gsl (Gnu scientific library) for implementation of various scientific algorithms. Kristjan Haule, 2016 –2– KH Computational Physics- 2016 Introduction Installation on MAC • Install Xcode package from App Store. • Install ‘‘Command Line Tools’’ from Apple’s software site. For Mavericks and lafter, open Xcode program, and choose from the menu Xcode -> Open Developer Tool -> More Developer Tools... You will be linked to the Apple page that allows you to access downloads for Xcode. You wil have to register as a developer (free). Search for the Xcode Command Line Tools in the search box in the upper left. Download and install the correct version of the Command Line Tools, for example for OS ”El Capitan” and Xcode 7.2, Kristjan Haule, 2016 –3– KH Computational Physics- 2016 Introduction you need Command Line Tools OS X 10.11 for Xcode 7.2 Apple’s Xcode contains many libraries and compilers for Mac systems.
    [Show full text]
  • Fulltext PDF 3,1 MB
    alpaka Parallel Programming – Online Tutorial Lecture 00 – Getting Started with alpaka Lesson 04: Installation www.casus.science Lesson 04: Installation How to download alpaka ● Install git for your operating system: ● Linux: sudo dnf install git (RPM) or sudo apt install git (DEB) ● macOS: Enter git --version in your terminal, you will be asked if you want to install git ● Windows: Download the installer from https://git-scm.com/download/win ● Open the terminal (Linux / macOS) or PowerShell (Windows) ● Navigate to a directory of your choice: cd /path/to/some/directory ● Download alpaka: git clone -b release-0.5.0 https://github.com/alpaka-group/alpaka.git alpaka Parallel Programming – Online Tutorial – Lesson 04: Installation | 2 Lesson 04: Installation Install alpaka’s dependencies ● alpaka only requires Boost and a modern C++ compiler (g++, clang++, Visual C++, …) ● Linux: ● sudo dnf install boost-devel (RPM) ● sudo apt install libboost-all-dev (DEB) ● macOS: ● brew install boost (Using Homebrew, https://brew.sh) ● sudo port install boost (Using MacPorts, https://macports.org) ● Windows: vcpkg install boost (Using vcpkg, https://github.com/microsoft/vcpkg) ● Depending on your target platform you may need additional packages ● NVIDIA GPUs: CUDA Toolkit (https://developer.nvidia.com/cuda-toolkit) ● AMD GPUs: ROCm / HIP (https://rocmdocs.amd.com/en/latest/index.html) alpaka Parallel Programming – Online Tutorial – Lesson 04: Installation | 3 Lesson 04: Installation Preparing alpaka for installation, Part 1 ● CMake is the preferred system
    [Show full text]
  • Introduction to the Nix Package Manager
    Introduction Nix concepts Usage examples Conclusion Introduction to the Nix Package Manager Millian Poquet 2021-05-12 — Datamove (Inria) seminar 1 / 16 Introduction Nix concepts Usage examples Conclusion Why Nix? Control your software environment! Programs/libraries/scripts/configurations + versions Why is it important for us? Use/develop/test/distribute software Manually install many dependencies? No, just type nix-shell Shared env for whole team (tunable) and test machines Bug only on my machine? Means this is hardware or OS related Reproducible research Repeat experiment in exact same environment Introduce or test variation 2 / 16 Introduction Nix concepts Usage examples Conclusion What is Nix? Nix: package manager Download and install packages Shell into well-defined environment (like virtualenv) Transactional (rollback works) Cross-platform: Linux, macOS, Windows (WSL) Nix: programming language Define packages Define environments (set of packages) Functional, DSL NixOS: Linux distribution Declarative system configuration Uses the Nix language Transactional (rollback still works) 3 / 16 Introduction Nix concepts Usage examples Conclusion Nix in numbers Started in 2003 Nix 1: 10k commits, 28k C++ LOC Nixpkgs 2: 285k commits, 55k packages 3 1. https://github.com/NixOS/nix 2. https://github.com/NixOS/nixpkgs 3. https://repology.org/repositories/statistics 4 / 16 Introduction Nix concepts Usage examples Conclusion Presentation summary 2 Nix concepts 3 Usage examples 4 Conclusion 5 / 16 Introduction Nix concepts Usage examples Conclusion Traditional
    [Show full text]
  • Freebsd File Formats Manual Libarchive-Formats (5)
    libarchive-formats (5) FreeBSD File Formats Manual libarchive-formats (5) NAME libarchive-formats —archive formats supported by the libarchive library DESCRIPTION The libarchive(3) library reads and writes a variety of streaming archive formats. Generally speaking, all of these archive formats consist of a series of “entries”. Each entry stores a single file system object, such as a file, directory,orsymbolic link. The following provides a brief description of each format supported by libarchive,with some information about recognized extensions or limitations of the current library support. Note that just because a format is supported by libarchive does not imply that a program that uses libarchive will support that format. Applica- tions that use libarchive specify which formats theywish to support, though manyprograms do use libarchive convenience functions to enable all supported formats. TarFormats The libarchive(3) library can read most tar archives. However, itonly writes POSIX-standard “ustar” and “pax interchange” formats. All tar formats store each entry in one or more 512-byte records. The first record is used for file metadata, including filename, timestamp, and mode information, and the file data is stored in subsequent records. Later variants have extended this by either appropriating undefined areas of the header record, extending the header to multiple records, or by storing special entries that modify the interpretation of subsequent entries. gnutar The libarchive(3) library can read GNU-format tar archives. It currently supports the most popular GNU extensions, including modern long filename and linkname support, as well as atime and ctime data. The libarchive library does not support multi-volume archives, nor the old GNU long filename format.
    [Show full text]
  • Chapter 7 Package Management
    Chapter 7 Package Management CERTIFICATION OBJECTIVES 7.01 The Red Hat Package Manager ✓ Two-Minute Drill 7.02 More RPM Commands Q&A Self Test 7.03 Dependencies and the yum Command 7.04 More Package Management Tools fter installation is complete, systems are secured, filesystems are configured, and other initial setup tasks are completed, you still have work to do. Almost certainly before your system is in the state you desire, you will be required to install or remove packages. To make sure the right updates are installed, you need to know how to get a system working with ARed Hat Subscription Management (RHSM) or the repository associated with a rebuild distribution. To accomplish these tasks, you need to understand how to use the rpm and yum commands in detail. Although these are “just” two commands, they are rich in detail. Entire books have been dedicated to the rpm command, such as the Red Hat RPM Guide by Eric 344 Chapter 7 Package Management Foster-Johnson. For many, that degree of in-depth knowledge of the rpm command is no longer necessary, given the capabilities of the yum command and the additional package management tools provided in RHEL 7. CERTIFICATION OBJECTIVE 7.01 The Red Hat Package Manager One of the major duties of a system administrator is software management. New applications are installed. Services are updated. Kernels are patched. Without the right tools, it can be difficult to figure out what software is on a system, what is the latest update, and what applications depend on other software.
    [Show full text]
  • The TEX Live Guide TEX Live 2012
    The TEX Live Guide TEX Live 2012 Karl Berry, editor http://tug.org/texlive/ June 2012 Contents 1 Introduction 2 1.1 TEX Live and the TEX Collection...............................2 1.2 Operating system support...................................3 1.3 Basic installation of TEX Live.................................3 1.4 Security considerations.....................................3 1.5 Getting help...........................................3 2 Overview of TEX Live4 2.1 The TEX Collection: TEX Live, proTEXt, MacTEX.....................4 2.2 Top level TEX Live directories.................................4 2.3 Overview of the predefined texmf trees............................5 2.4 Extensions to TEX.......................................6 2.5 Other notable programs in TEX Live.............................6 2.6 Fonts in TEX Live.......................................7 3 Installation 7 3.1 Starting the installer......................................7 3.1.1 Unix...........................................7 3.1.2 MacOSX........................................8 3.1.3 Windows........................................8 3.1.4 Cygwin.........................................9 3.1.5 The text installer....................................9 3.1.6 The expert graphical installer.............................9 3.1.7 The simple wizard installer.............................. 10 3.2 Running the installer...................................... 10 3.2.1 Binary systems menu (Unix only).......................... 10 3.2.2 Selecting what is to be installed...........................
    [Show full text]
  • Oracle® Solaris 11.3 Desktop User's Guide
    ® Oracle Solaris 11.3 Desktop User's Guide Part No: E54809 April 2020 Oracle Solaris 11.3 Desktop User's Guide Part No: E54809 Copyright © 2011, 2020, Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
    [Show full text]