G C A T T A C G G C A T genes Article Differential Gene Expression in Response to Salinity and Temperature in a Haloarcula Strain from Great Salt Lake, Utah Swati Almeida-Dalmet 1, Carol D. Litchfield 1, Patrick Gillevet 2 and Bonnie K. Baxter 3,* ID 1 Department of Environmental Science and Policy, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA;
[email protected] 2 Department of Biology, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA;
[email protected] 3 Great Salt Lake Institute, Westminster College, 1840 South 1300 East, Salt Lake City, UT 84105, USA * Correspondence:
[email protected]; Tel.: +1-801-832-2345 Received: 19 December 2017; Accepted: 16 January 2018; Published: 22 January 2018 Abstract: Haloarchaea that inhabit Great Salt Lake (GSL), a thalassohaline terminal lake, must respond to the fluctuating climate conditions of the elevated desert of Utah. We investigated how shifting environmental factors, specifically salinity and temperature, affected gene expression in the GSL haloarchaea, NA6-27, which we isolated from the hypersaline north arm of the lake. Combined data from cultivation, microscopy, lipid analysis, antibiotic sensitivity, and 16S rRNA gene alignment, suggest that NA6-27 is a member of the Haloarcula genus. Our prior study demonstrated that archaea in the Haloarcula genus were stable in the GSL microbial community over seasons and years. In this study, RNA arbitrarily primed PCR (RAP-PCR) was used to determine the transcriptional responses of NA6-27 grown under suboptimal salinity and temperature conditions. We observed alteration of the expression of genes related to general stress responses, such as transcription, translation, replication, signal transduction, and energy metabolism.