Opening a New Window Onto the Universe with Icecube
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Synergy of Astroparticle Physics and Colliders
Snowmass2021 - Letter of Interest Synergy of astro-particle physics and collider physics Thematic Areas: (check all that apply /) (CF1) Dark Matter: Particle Like (CF2) Dark Matter: Wavelike (CF3) Dark Matter: Cosmic Probes (CF4) Dark Energy and Cosmic Acceleration: The Modern Universe (CF5) Dark Energy and Cosmic Acceleration: Cosmic Dawn and Before (CF6) Dark Energy and Cosmic Acceleration: Complementarity of Probes and New Facilities (CF7) Cosmic Probes of Fundamental Physics (Other) EF06, EF07, NF05, NF06,AF4 Contact Information: Luis A. Anchordoqui (City University of New York) [[email protected]] Authors: Rana Adhikari, Markus Ahlers, Michael Albrow, Roberto Aloisio, Luis A. Anchordoqui, Ignatios Anto- niadis, Vernon Barger, Jose Bellido Caceres, David Berge, Douglas R. Bergman, Mario E. Bertaina, Lorenzo Bonechi, Mauricio Bustamante, Karen S. Caballero-Mora, Antonella Castellina, Lorenzo Cazon, Ruben Conceic¸ao,˜ Giovanni Consolati, Olivier Deligny, Hans P. Dembinski, James B. Dent, Peter B. Denton, Car- ola Dobrigkeit, Caterina Doglioni, Ralph Engel, David d’Enterria, Ke Fang, Glennys R. Farrar, Jonathan L. Feng, Thomas K. Gaisser, Carlos Garc´ıa Canal, Claire Guepin, Francis Halzen, Tao Han, Andreas Haungs, Dan Hooper, Felix Kling, John Krizmanic, Greg Landsberg, Jean-Philippe Lansberg, John G. Learned, Paolo Lipari, Danny Marfatia, Jim Matthews, Thomas McCauley, Hiroaki Menjo, John W. Mitchell, Marco Stein Muzio, Jane M. Nachtman, Angela V. Olinto, Yasar Onel, Sandip Pakvasa, Sergio Palomares-Ruiz, Dan Parson, Thomas C. Paul, Tanguy Pierog, Mario Pimenta, Mary Hall Reno, Markus Roth, Grigory Rubtsov, Takashi Sako, Fred Sarazin, Bangalore Sathyaprakash, Sergio J. Sciutto, Dennis Soldin, Jorge F. Soriano, Todor Stanev, Xerxes Tata, Serap Tilav, Kirsten Tollefson, Diego F. -
3.5 Neutrinos Mx
news feature On the trail of the neutrino Huge arrays of detectors now have these ghostly particles CHAMBERS NEUTRINO OBSERVATORY/R. SUDBURY in their sights — but will what they see lead physicists to rethink the standard model? Dan Falk investigates. n the subatomic zoo, few particles are as elusive as the neutrino. The Universe is Iawash with them, but they slide through most forms of matter with ease. Billions have passed through your body since you started reading this article. By one estimate, the average neutrino could travel for 1,000 light-years through solid matter before being stopped. This reluctance to interact with matter makes neutrinos difficult to detect. But, almost half a century after they were first spotted, neutrinos have become the focus of intense study. Exciting results from existing detectors, together with plans for new detec- tor projects, promise to make this a busy decade for neutrino hunters. The Sudbury Neutrino Observatory (SNO) in Ontario is poised to illuminate the physics of neutrinos produced by the Sun, and a new detector in Antarctica is making Full house: the detector at Sudbury Neutrino Observatory can detect all three flavours of neutrino. progress towards studying neutrinos from deep space — a first step towards building a particles. The last of the three flavours to be neutrons or electrons it governs. Physicists larger astrophysical neutrino observatory. detected was the tau neutrino, finally snared maximize their chances of observing these Other detectors in North America, Europe last year in an experiment at the Tevatron rare interactions by monitoring huge num- and Japan are catching neutrinos produced accelerator in Fermilab, near Chicago1. -
Rachen, Jörg P. Cosmic Ray Bound for Models of Extragalactic Neutr
PUBLISHED VERSION Mannheim, Karl; Protheroe, Raymond John; Rachen, Jörg P. Cosmic ray bound for models of extragalactic neutrino production Physical Review D, 2000; 63(2):023003 © 2000 American Physical Society http://link.aps.org/doi/10.1103/PhysRevD.63.023003 PERMISSIONS PERMISSIONS http://publish.aps.org/authors/transfer-of-copyright-agreement http://link.aps.org/doi/10.1103/PhysRevD.62.093023http://publish.aps.org/authors/transfer-of-copyright-agreement “The author(s), and in the case of a Work Made For Hire, as defined in the U.S. Copyright“The author(s), Act, 17 and U.S.C. in the case of a Work Made For Hire, as defined in the U.S. Copyright Act, 17 U.S.C. §101, the employer named [below], shall have the following rights (the “Author Rights”): §101, the employer named [below], shall have the following rights (the “Author Rights”): [...] [...] 3. The right to use all or part of the Article, including the APS-prepared version without revision3. The right or modification, to use all or parton the of author(s)’the Article, web including home thepage APS or -employer’sprepared version website without and to makerevision copies or modification, of all or part on of the the author(s)’ Article, including web home the pageAPS- orprepared employer’s version website without and to revisionmake copies or modification, of all or part for of the the author(s)’ Article, including and/or thethe employer’s APS-prepared use versionfor educational without or researchrevision or purposes.” modification, for the author(s)’ and/or the employer’s use for educational or research purposes.” rd 3 April 2013 http://hdl.handle.net/2440/12754 PHYSICAL REVIEW D, VOLUME 63, 023003 Cosmic ray bound for models of extragalactic neutrino production Karl Mannheim* Universita¨ts-Sternwarte, Geismarlandstr. -
Cosmogenic Photon and Neutrino Fluxes in the Auger
Prepared for submission to JCAP Cosmogenic photon and neutrino fluxes in the Auger era Rafael Alves Batistaa Rogerio M. de Almeidab Bruno Lagoc Kumiko Koterad;e aUniversidade de São Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Rua do Matão, 1226, 05508-090, São Paulo-SP, Brazil bUniversidade Federal Fluminense, EEIMVR; Volta Redonda-RJ, Brazil cCentro Federal de Educação Tecnológica Celso Suckow da Fonseca – Campus Nova Friburgo (CEFET/RJ – Campus Nova Friburgo), Nova Friburgo-RJ, Brazil dSorbonne Universités, UPMC Univ. Paris 6 et CNRS; UMR 7095, Institut d’Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France eLaboratoire AIM-Paris-Saclay, CEA/DSM/IRFU, CNRS, Université Paris Diderot; F-91191 Gif-sur-Yvette, France E-mail: [email protected] Abstract. The interaction of ultra-high-energy cosmic rays (UHECRs) with pervasive pho- ton fields generates associated cosmogenic fluxes of neutrinos and photons due to photo- hadronic and photonuclear processes taking place in the intergalactic medium. We perform a fit of the UHECR spectrum and composition measured by the Pierre Auger Observatory for four source emissivity scenarios: power-law redshift dependence with one free parameter, active galactic nuclei, gamma-ray bursts, and star formation history. We show that negative source emissivity evolution is favoured if we treat the source evolution as a free parameter. In all cases, the best fit is obtained for relatively hard spectral indices and low maximal rigidities, for compositions at injection dominated by intermediate nuclei (nitrogen and silicon groups). In light of these results, we calculate the associated fluxes of neutrinos and photons. Finally, we discuss the prospects for the future generation of high-energy neutrino and gamma-ray arXiv:1806.10879v3 [astro-ph.HE] 3 Jan 2019 observatories to constrain the sources of UHECRs. -
Chapter 1 High-Energy Astrophysical Neutrinos
July 9, 2018 21:42 ws-rv9x6 Book Title trisep_halzen_061918 page 1 Chapter 1 High-Energy Astrophysical Neutrinos Francis Halzen Wisconsin IceCube Particle Physics Center UW{Madison, Madison, WI USA [email protected] Chargeless, weakly-interacting neutrinos are ideal astronomical messen- gers because they travel through space without scattering, absorption, or deflection. They provide the only unobstructed view of cosmic accelera- tors. But this weak interaction also makes them notoriously difficult to detect, leading to neutrino observatories requiring large-scale detectors. The IceCube experiment discovered PeV-energy neutrinos originating beyond the Sun, with energies bracketed by those of TeV-energy gamma rays and EeV-energy extragalactic cosmic rays. In this chapter, we dis- cuss the IceCube neutrino telescope, the status of the observation of cosmic neutrinos, and what neutrinos can tell us about the nonthermal Universe. Besides the search for the sources of Galactic and extragalactic cosmic rays, the scientific missions of IceCube and similar instruments under construction in the Mediterranean Sea and Lake Baikal include the observation of Galactic supernova explosions, the search for dark matter, and the study of neutrinos themselves. 1 July 9, 2018 21:42 ws-rv9x6 Book Title trisep_halzen_061918 page 2 2 Francis Halzen Contents 1. Neutrino Astronomy: a Brief History . .3 2. IceCube . .5 2.1. Detecting Very High-Energy Neutrinos . .5 2.2. Detector Performance . 12 2.3. Atmospheric Neutrinos . 14 3. Rationale for the Construction of Kilometer-Scale Neutrino Detectors . 15 3.1. Cosmic-Ray Accelerators . 16 3.2. Neutrinos and Gamma Rays Associated with Cosmic Rays . 20 4. Neutrinos Associated with Cosmic Ray Accelerators . -
Neutrino Observatory Management & Operations Plan
IceCube Neutrino Observatory Management & Operations Plan Neutrino Observatory Management & Operations Plan December 2019 Revision 4.0 December 2019 1 IceCube Neutrino Observatory Management & Operations Plan IceCube MANAGEMENT & OPERATIONS PLAN SUBMITTED BY: Francis Halzen Kael Hanson IceCube Principal Investigator Co-PI and IceCube Director of Operations University of Wisconsin–Madison University of Wisconsin–Madison Albrecht Karle Co-PI and Associate Director for Science and Instrumentation University of Wisconsin–Madison James Madsen Associate Director for Education and Outreach University of Wisconsin–River Falls Catherine Vakhnina Resource Coordinator Paolo Desiati Coordination Committee Chair John Kelley Detector Operations Manager Benedikt Riedel Computing and Data Management Services Manager Juan Carlos Diaz-Velez Data Processing and Simulation Services Manager Alex Olivas Software Coordinator Summer Blot, Keiichi Mase Calibration Coordinator December 2019 2 IceCube Neutrino Observatory Management & Operations Plan Revision History Date Section Revision Action Revised Revised 1.0 06/9/2016 First version 2.0 05/31/2017 Updated for M&O PY2 3.0 12/12/2018 Updated for M&O PY3 4.0 03/20/2020 Updated PY4 plan w new Org Chart December 2019 1 IceCube Neutrino Observatory Management & Operations Plan Table of Contents List of Acronyms and Terms ........................................................................................................................ 5 1 Preface ................................................................................................................................................. -
Astronomy and Astrophysics with Neutrinos
IceCube: An Instrument for Neutrino Astronomy Francis Halzen1 and Spencer R. Klein2, 3 1Department of Physics, University of Wisconsin, 1150 University Avenue, Madison WI 53706 2Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 3Department of Physics, University of California, Berkeley, CA, 94720 Abstract Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. A total of 5,160 optical sensors are embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system, including a phototube, digitization electronics, control and trigger systems and LEDs for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of Galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams. The outline of this review is as follows: • Neutrino Astronomy and Kilometer-Scale Detectors • High-Energy Neutrino Telescopes: Methodologies of Neutrino Detection • IceCube Hardware • High-Energy Neutrino Telescopes: Beyond Astronomy • Future Projects I. Introduction The Technology Soon after the 1956 observation of the neutrino1, the idea emerged that it represented the ideal astronomical messenger. -
Ultra-High-Energy Cosmic Rays
Ultra-High-Energy Cosmic Rays Luis A. Anchordoqui Department of Physics & Astronomy, Lehman College, City University of New York, NY 10468, USA Department of Physics, Graduate Center, City University of New York, NY 10016, USA Department of Astrophysics, American Museum of Natural History, NY 10024, USA Abstract In this report we review the important progress made in recent years towards understanding the experimen- tal data on ultra-high-energy (E & 109 GeV) cosmic rays. We begin with a general survey of the available data, including a description of the energy spectrum, the nuclear composition, and the distribution of arrival directions. At this point we also give a synopsis of experimental techniques. After that, we introduce the fundamentals of cosmic ray acceleration and energy loss during propagation, with a view of discussing the conjectured nearby sources. Next, we survey the state of the art regarding the high- and ultra-high-energy cosmic neutrinos which may be produced in association with the observed cosmic rays. These neutrinos could constitute key messengers identifying currently unknown cosmic accelerators, possibly in the distant universe, because their propagation is not influenced by background photon or magnetic fields. Subse- quently, we summarize the phenomenology of cosmic ray air showers. We describe the hadronic interaction models used to extrapolate results from collider data to ultra-high energies and the main electromagnetic processes that govern the longitudinal shower evolution. Armed with these two principal shower ingredients and motivation from the underlying physics, we describe the different methods proposed to distinguish the primary particle species. In the end, we explore how ultra-high-energy cosmic rays can be used as probes of beyond standard model physics models. -
Exploring the High-Energy Cosmic Ray Spectrum with a Toy Model Of
Exploring the High-Energy Cosmic Ray Spectrum with a Toy Model of Cosmic Ray Diffusion Roger Clay & Roland M. Crocker School of Chemistry and Physics University of Adelaide 5005, Australia roger.clay,[email protected] Abstract We introduce a static toy model of the cosmic ray (CR) universe in which cos- mic ray propagation is taken to be diffusive and cosmic ray sources are distributed −3 −3 randomly with a density the same as that of local L∗ galaxies, 5 × 10 Mpc . These sources “fire” at random times through the history of the universe but with a set expectation time for the period between bursts. Our toy model model captures much of the essential CR physics despite its simplicity and, moreover, broadly re- produces CR phenomenology for reasonable parameter values and without extreme fine-tuning. Using this model we investigate – and find tenable – the idea that the Milky Way may itself be a typical high-energy cosmic ray source. We also consider the possible phenomenological implications of the magnetic CR horizon for the over- all cosmic ray spectrum observed at Earth. Finally, we show that anisotropy studies should most profitably focus on cosmic rays detected at energies above the so-called GZK cut-off, ∼ 6 × 1019 eV. Key words: arXiv:0710.4990v1 [astro-ph] 26 Oct 2007 PACS: 1 Introduction In the following study, we invoke a toy model of cosmic ray diffusion, in a static universe, from a random ensemble of extragalactic sources distributed throughout a cube with 2400 Mpc sides and the Earth at the center. -
Cosmic Rays from the Knee to the Highest Energies ∗
Cosmic Rays from the Knee to the Highest Energies ∗ Johannes Bl¨umer1, Ralph Engel1, and J¨orgR. H¨orandel2 1Karlsruhe Institute of Technology (KIT),y Institut f¨urKernphysik, P.O. Box 3640, 76021 Karlsruhe, Germany 2Radboud University Nijmegen, Department of Astrophysics, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands April 4, 2009 Abstract This review summarizes recent developments in the understanding of high-energy cosmic rays. It focuses on galactic and presumably extragalactic particles in the energy range from the knee (1015 eV) up to the highest energies observed (> 1020 eV). Emphasis is put on observational results, their interpretation, and the global picture of cosmic rays that has emerged during the last decade. Contents 1 Introduction 1 2 Detection Techniques 8 3 Energy Spectra 21 4 Composition 28 5 Anisotropy 38 6 Astrophysical Interpretation 42 arXiv:0904.0725v1 [astro-ph.HE] 4 Apr 2009 7 Importance of Modeling Hadronic Interactions 51 8 Conclusions and Outlook 52 1 Introduction Cosmic rays are ionized atomic nuclei reaching the Earth from outside the Solar System. Al- though already discovered in 1912, their sources and propagation mechanisms are still subject of intense research. During the last decade significant progress has been made and a consistent ∗Invited review, submitted to Progress in Particle and Nuclear Physics. yKIT is the cooperation of University Karlsruhe and Forschungszentrum Karlsruhe 1 picture of cosmic-ray observations begins to evolve. This review describes recent progress in the exploration of the sources and propagation of high-energy cosmic rays, focusing on observational results and the emerging global picture. Many reviews of cosmic-ray theory and observations are available in the literature. -
A Phenomenological Approach to the Study of the Cosmic Ray Galactic-Extragalactic Transition
A phenomenological approach to the study of the cosmic ray Galactic-extragalactic transition C. De Donato November 21, 2008 Ai miei genitori “... fatti non foste a viver come bruti, ma per seguir virtute e canoscenza” Dante Alighieri Divina Commedia Inferno XXVI vv 118-120 Acknowledgments I would like to thank my tutor Dr. Battistoni and all the people of the Univer- sit`adegli Studi di Milano which, despite not taking part in the Auger project, demonstrated a lot of interest in my studies with stimulating discussions. I am grateful to the Pierre Auger Collaboration; I have benefited from the inter- action with several colleagues and from a very stimulating professional environ- ment. Special thanks are reserved to Prof. Gianni Navarra for his availability and the time he dedicated to my thesis work. I would like to thank also the Instituto de Ciencias Nucleares (UNAM), for its hospitality during my extended stays, and all the ICN group with whom I have spent a very productive and pleasant period of my PhD studies. A special mention is reserved to Dr. Gustavo Medina Tanco who guided and supported me along my PhD studies not only as a co-tutor but also as a friend. The knowledge and the passion he transmits in his work is a rare and spe- cial gift and I feel honored by the trust he put in my capabilities and work. The challenges he presented me every day made my work very stimulating and productive (and my night rests very short!), feeding my enthusiasm in my re- searches. Finally, but not less important, I want to thank all my family and friends, who always believed in me. -
Curriculum Vitae
CURRICULUM VITAE Francis Halzen Personal Information Citizenship: United States Office addresses: Department of Physics 5293 Chamberlin Hall, 1150 University Avenue, Madison, WI 53706 Wisconsin IceCube Particle Astrophysics Center 222 West Washington Avenue, Suite 500, Madison, WI 53703 Home address: 1845 Summit Avenue, Madison, WI 53726 Education 1972 Agrégé de l’Enseignement Supérieur, University of Louvain, Belgium 1969 Ph.D., University of Louvain, Belgium 1966 Master's degree, University of Louvain, Belgium University of Wisconsin–Madison Positions 2001–present Principal Investigator and co-Spokesperson for the IceCube project 2013–2014 Acting Director of the Wisconsin IceCube Particle Astrophysics Center 1991 Hilldale Professor 1987 Gregory Breit Distinguished Professor 1984–present Director of the Institute for Elementary Particle Physics Research 1977 Romnes Faculty Fellow 1977 Professor 1974 Associate Professor 1972 Assistant Professor 1971 Research Associate Education, Experience, and Awards Experience 1996 Science Associate at CERN, Geneva, Switzerland 1987 NSF – Japan U.S. exchange, Univ. Tokyo, Japan 1985 Scientific Associate at CERN, Geneva, Switzerland 1983 Fellow of the Japan Society for the Promotion of Science, U of Tokyo 1982 Visiting Professor at the University of Durham, UK 1982 Nordita Professor at the University of Helsinki 1977–1983 Lector at the University of Louvain, Belgium 1980 Visiting Professor at the University of Hawaii-Honolulu 1977 Consultant at the Rutherford High Energy Laboratory, Oxford, UK 1977 Visiting