Eusociality Waggle Dance

Total Page:16

File Type:pdf, Size:1020Kb

Eusociality Waggle Dance View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Magazine R861 Primer essentially a new kind of nest, and the oldest ones foraging organism built up of organisms of outside the nest. Just as cells are the old kind. more fixed in function, so are they Consider the famous honeybee more fixed in space. Social insects, Eusociality waggle dance. This dance, in contrast, are not physically performed by returning foragers, connected, and their colonies give David C. Queller1 and Joan E. tells other workers the direction us examples of organismal entities Strassmann and distance of rich food sources. that are dispersed in space. A final The colony benefits by exploiting important difference is the lack of Most biologists devote their the hard-won knowledge of those centralized control in social insect research careers to working out the foragers that find food bonanzas. colonies. Despite the controlling intricacies of how their favorite The dance is celebrated as a rare image conveyed by use of the term organism functions, how it example of symbolic “queen”, there is nothing like a processes energy, transmits communication between individual colonial brain. No individual information from one place to organisms, but it can also be perceives the state of the entire another, regulates metabolites, viewed as a part of a signaling colony and sends out instructions. gets rid of waste, builds itself, cascade of the larger Instead, actions are usually self defends itself and reproduces superorganism that regulates work organized by simple rules. Different itself. If one wants to step back according to the supply and individuals each have small pieces and consider what it means to be demand. If the supply of food is of information, which are an organism, it is obviously great, there will be more waggle integrated by the colony as a necessary to broaden one’s scope dancers stimulating more foraging whole. A returning forager doesn’t and to consider the full range of to harvest it. But that is not the know how many foragers and organisms. But an even broader only adjustment necessary. processors are at work. Instead, strategy is to consider entities that Foragers, with their knowledge of she just experiences an indirect have organismal properties but are valuable food sources, do not effect of those numbers — the time outside the realm of standard waste time processing the food, required to offload her nectar or organisms. Man-made artifacts but hand it off to another set of pollen — and acts accordingly. have long been mined for fruitful bees inside the hive. If a forager Despite these differences, the analogies about particular has trouble finding a processor key defining similarity remains; organisms and functions. bee, she begins a different dance, colonies are like organisms, but Computer viruses and artificial life the tremble dance, which both unlike anything in the non- programs also capture some activates bees to become biological world, with respect to important similarities. But perhaps processors and inhibits waggle their degree of integration and the best we can do in this area is to dancing. The result is a negative cooperation for the good of the study eusocial colonies. feedback system that allocates whole. The key question then is an Eusociality is a term coined to workers to foraging and processing evolutionary one. How did this cover ants, bees, wasps, and tasks according to need (Figure 1). organismal degree of cooperation termites that have three Additional links in the system evolve, given that the Darwinian properties: overlap of include the needs of the brood and norm is closer to a struggle of all generations, cooperative rearing the degree to which storage against all? This is a question that of young and non-reproducing capacity is filled. Such regulatory doesn’t trouble us much for most worker castes. Other organisms feedback systems operate in multicellular organisms. Genes in a that have these traits have since nearly every aspect of social insect macrophage can easily be selected been added: some aphids and colony functioning, just as they do to cause their cells to specialize on thrips, a beetle, some snapping in other organisms. non-reproductive tasks, because shrimp and the naked mole rat. In Besides the clear similarities they are the same genes that will eusocial species, non- between organisms and be transmitted through the germ reproductive workers care for the superorganismal colonies, there line. This is ensured by clonal young of the reproductive queens are some differences that show us descent from a single-celled (and sometimes kings). As such, that entities with organism-like zygote. William D. Hamilton workers are analogous to the functionality and integration can showed that the same kind of somatic cells of an organism, operate in unfamiliar ways. For explanation applies to eusocial which work for the transmission example, the cells of organisms insects, but in a less absolute way. of their genes by proxy, via the terminally differentiate into Members of social insect colonies germ line cells. Like the cells of numerous specialized types, while are relatives, sometimes just a an organism, the members of a social insect colonies have at most single queen and her progeny. eusocial colony have evolved only a few terminally differentiated Therefore, though they are not elaborate mechanisms to castes. Instead, much of the clonal, the do share a large fraction enhance the survival and division of labor is carried out by of their genes. A gene causing self reproduction of the larger unit. means of a temporal specialization, sacrifice can thus be favored by The colony consisting of one or often with the youngest adults selection if it aids relatives who more queens and workers has tending the brood, older ones might bear copies of the gene, but been called a superorganism, carrying out other activities in the the aid has to be large enough to Current Biology Vol 13 No 22 R862 expansion in this area, it may be Nectar Nectar better to stay at home and help Search collecting processing than to take the risks of dispersing time rate rate to find a new home. Fortress defenders would include aphids and thrips that live in plant galls, termites that inhabit wood, the social shrimp that live in sponges, Number Number and the naked mole rats in their Waggle Tremble of of food dancing dancing extensive subterranean tunnel foragers storers systems. In contrast, life insurers, which may include most ants, bees, and wasps, forage outside Current Biology their nest to bring food back to their helpless young. This is a Figure 1. difficult lifestyle to follow as a Regulatory network controlling allocation of honeybee workers to nectar gathering solitary individual, because outside the hive and nectar processing within the hive. After Figure 6.14 of Seeley (1995). foraging entails risks of predation, and the death of the adult means compensate for the chance that had evolved over a dozen times in the death of all her dependent the aided relative does not carry a the Hymenoptera as against once young. It works much better when copy of the gene. So honeybee or twice in the diploid termites, and groups of adults share the risk; if workers can gain by stinging large also why workers are only female one dies, her investments in young vertebrate intruders, because they in the Hymenoptera, but both are not wasted because the may save their whole colony full of sexes in the termites. surviving adults can carry on. relatives who pass on the genes This elegant hypothesis Despite the organismal quality of for stinging. They have even dominated discussions of the eusocial colonies, there are limits evolved barbs on their stingers that evolution of eusociality for many to cooperation. If the worker increase the effectiveness of years, but has been weakened by honeybee’s use of her sting wins stinging by anchoring tightly in the further analysis. Once models prizes for altruism, the young victim, even though it also incorporated all the details of honeybee queen puts her sting to disembowels and kills the worker. reproductive value, sex ratios, and a strikingly different use. Honeybee This selection via effects on especially the fact that a female’s colonies reproduce by splitting. relatives, known as kin selection, is high relatedness to sisters is The old queen departs with the quantified in Hamilton’s rule, the countered by an unusually low majority of the worker force (Figure simplest version of which is c < b*r. relatedness to brothers, it became 2), leaving the remaining workers The fitness cost for the altruist (c) evident that any haplodiploid to await the emergence of several must be less than the fitness relatedness effect was not only new queens, who have been benefit to its relative (b), multiplied smaller than had been thought, but developing in specially prepared by the relatedness (r). In diploid transitory. Even though Hamilton’s cells. If the worker force is still species, the relatedness is 1/2 to specific haplodiploid hypothesis quite large, the first new queen to mothers, fathers, children, and full has been weakened, his general emerge may also leave with some siblings; it is 1/4 to half siblings, theory of kin selection remains of them to start another colony. If, uncles, aunts, nephews and central to the understanding of the however, the worker force is nieces, and so on. Hamilton also origin of eusociality. However, the smaller, the new queen stays and noticed that these relatedness focus has shifted from kin selection battles to the death with her sister values do not all apply to the ants, driven by unusually high queens for the right to set up bees, and wasps.
Recommended publications
  • Major Evolutionary Transitions in Individuality COLLOQUIUM
    PAPER Major evolutionary transitions in individuality COLLOQUIUM Stuart A. Westa,b,1, Roberta M. Fishera, Andy Gardnerc, and E. Toby Kiersd aDepartment of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; bMagdalen College, Oxford OX1 4AU, United Kingdom; cSchool of Biology, University of St. Andrews, Dyers Brae, St. Andrews KY16 9TH, United Kingdom; and dInstitute of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands Edited by John P. McCutcheon, University of Montana, Missoula, MT, and accepted by the Editorial Board March 13, 2015 (received for review December 7, 2014) The evolution of life on earth has been driven by a small number broken down into six questions. We explore what is already known of major evolutionary transitions. These transitions have been about the factors facilitating transitions, examining the extent to characterized by individuals that could previously replicate inde- which we can generalize across the different transitions. Ultimately, pendently, cooperating to form a new, more complex life form. we are interested in the underlying evolutionary and ecological For example, archaea and eubacteria formed eukaryotic cells, and factors that drive major transitions. cells formed multicellular organisms. However, not all cooperative Defining Major Transitions groups are en route to major transitions. How can we explain why major evolutionary transitions have or haven’t taken place on dif- A major evolutionary transition has been most broadly defined as a change in the way that heritable information is stored and ferent branches of the tree of life? We break down major transi- transmitted (2). We focus on the major transitions that lead to a tions into two steps: the formation of a cooperative group and the new form of individual (Table 1), where the same problems arise, transformation of that group into an integrated entity.
    [Show full text]
  • Comparative Methods Offer Powerful Insights Into Social Evolution in Bees Sarah Kocher, Robert Paxton
    Comparative methods offer powerful insights into social evolution in bees Sarah Kocher, Robert Paxton To cite this version: Sarah Kocher, Robert Paxton. Comparative methods offer powerful insights into social evolution in bees. Apidologie, Springer Verlag, 2014, 45 (3), pp.289-305. 10.1007/s13592-014-0268-3. hal- 01234748 HAL Id: hal-01234748 https://hal.archives-ouvertes.fr/hal-01234748 Submitted on 27 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2014) 45:289–305 Review article * INRA, DIB and Springer-Verlag France, 2014 DOI: 10.1007/s13592-014-0268-3 Comparative methods offer powerful insights into social evolution in bees 1 2 Sarah D. KOCHER , Robert J. PAXTON 1Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA 2Institute for Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany Received 9 September 2013 – Revised 8 December 2013 – Accepted 2 January 2014 Abstract – Bees are excellent models for studying the evolution of sociality. While most species are solitary, many form social groups. The most complex form of social behavior, eusociality, has arisen independently four times within the bees.
    [Show full text]
  • Cheaters Must Prosper: Reconciling Theoretical and Empirical Perspectives on Cheating in Mutualism
    Ecology Letters, (2015) 18: 1270–1284 doi: 10.1111/ele.12507 REVIEW AND SYNTHESIS Cheaters must prosper: reconciling theoretical and empirical perspectives on cheating in mutualism Abstract Emily I. Jones,1,2,3† Cheating is a focal concept in the study of mutualism, with the majority of researchers considering Michelle E. Afkhami,4 Erol Akßcay,5 cheating to be both prevalent and highly damaging. However, current definitions of cheating do Judith L. Bronstein,6 Redouan not reliably capture the evolutionary threat that has been a central motivation for the study of Bshary,7 Megan E. Frederickson,4 cheating. We describe the development of the cheating concept and distill a relative-fitness-based Katy D. Heath,8 Jason D. definition of cheating that encapsulates the evolutionary threat posed by cheating, i.e. that chea- Hoeksema,9 Joshua H. Ness,10 ters will spread and erode the benefits of mutualism. We then describe experiments required to 11 conclude that cheating is occurring and to quantify fitness conflict more generally. Next, we dis- M. Sabrina Pankey, Stephanie S. ‡ cuss how our definition and methods can generate comparability and integration of theory and Porter,12 Joel L. Sachs,12 Klara experiments, which are currently divided by their respective prioritisations of fitness consequences Scharnagl13 and Maren L. and traits. To evaluate the current empirical evidence for cheating, we review the literature on sev- Friesen13*,† eral of the best-studied mutualisms. We find that although there are numerous observations of low-quality partners, there is currently very little support from fitness data that any of these meet our criteria to be considered cheaters.
    [Show full text]
  • The Personality Behind Cheating: Behavioural Types and the Feeding Ecology of Cleaner Fish Alexander D
    ethologyinternational journal of behavioural biology Ethology The Personality Behind Cheating: Behavioural Types and the Feeding Ecology of Cleaner Fish Alexander D. M. Wilson*†, Jens Krause†‡, James E. Herbert-Read§ & Ashley J. W. Ward¶ * Department of Biology, Carleton University, Ottawa, ON, Canada † Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany ‡ Department for Crop and Animal Sciences, Humboldt University, Berlin, Germany § Mathematics Department, Uppsala University, Uppsala, Sweden ¶ School of Biological Sciences, University of Sydney, Sydney, NSW, Australia Correspondence Abstract Alexander D. M. Wilson, Department of Biology, Carleton University, Ottawa, ON The complex mutualistic relationship between the cleaner fish (Labroides K1S5B6, Canada. dimidiatus) and their ‘clients’ in many reef systems throughout the world E-mail: [email protected] has been the subject of debate and research interest for decades. Game- theory models have long struggled with explaining how the mixed strate- Received: February 8, 2014 gies of cheating and honesty might have evolved in such a system and Initial acceptance: April 6, 2014 while significant efforts have been made theoretically, demonstrating the Final acceptance: May 4, 2014 nature of this relationship empirically remains an important research (W. Koenig) challenge. Using the experimental framework of behavioural syndromes, we sought to quantitatively assess the relationship between personality doi: 10.1111/eth.12262 and the feeding ecology of cleaner fish to provide novel insights into the Keywords: mutualism, behavioural underlying mechanistic basis of cheating in cleaner-client interactions. syndromes, Labroides dimidiatus, First, we observed and filmed cleaner fish interactions with heterospecif- personality, game theory, boldness ics, movement patterns and general feeding ecology in the wild.
    [Show full text]
  • The Evolutionary Ecology of Cheating: Does Superficial Oviposition
    Ecological Entomology (2008), 33, 765–770 DOI: 10.1111/j.1365-2311.2008.01031.x The evolutionary ecology of cheating: does superfi cial oviposition facilitate the evolution of a cheater yucca moth? KARI A. SEGRAVES 1 , DAVID M. ALTHOFF 1 a n d O L L E P E L L M Y R 2 1 Department of Biology, Syracuse University, Syracuse, New York, U.S.A. and 2 Department of Biological Sciences, University of Idaho, Life Sciences South, Moscow, Idaho, U.S.A. Abstract . 1. A major question in the study of mutualism is to understand how mutualists may revert to antagonists that exploit the mutualism (i.e. switch to cheating ). In the classic pollination mutualism between yuccas and yucca moths, the cheater moth Tegeticula intermedia is sister to the pollinator moth T. cassandra . These moth species have similar ovipositor morphology, but T. intermedia emerges later, oviposits into fruit rather than flowers, and does not pollinate. 2. We tested if the pollinator, T. cassandra , was pre-adapted to evolve a cheater lineage by comparing its emergence and oviposition behaviour on yucca fruit to a distantly related pollinator, T. yuccasella , that differs in ovipositor morphology and oviposition behaviour. We predicted that if T. cassandra was pre-adapted to cheat, then these pollinators would emerge later and be able to oviposit into fruit in contrast to T. yuccasella . 3. Contrary to expectations, a common garden-rearing experiment demonstrated that emergence of T. cassandra was not significantly delayed relative to T. yuccasella . Moth emergence patterns overlapped broadly. 4. No choice oviposition experiments with female moths demonstrated that both pollinator species attempted to oviposit into fruit, but only T.
    [Show full text]
  • Worker Thelytoky Allows Requeening of Orphaned Colonies but Increases
    Worker thelytoky allows requeening of orphaned colonies but increases susceptibility to reproductive cheating in an ant Claudie Doums, Pierre Federici, Pascaline Chifflet-Belle, Thibaud Monnin To cite this version: Claudie Doums, Pierre Federici, Pascaline Chifflet-Belle, Thibaud Monnin. Worker thelytoky allows requeening of orphaned colonies but increases susceptibility to reproductive cheating in an ant. Animal Behaviour, Elsevier Masson, 2018, 135, pp.109-119. 10.1016/j.anbehav.2017.11.013. hal-01730713 HAL Id: hal-01730713 https://hal.sorbonne-universite.fr/hal-01730713 Submitted on 13 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Worker thelytoky allows requeening of orphaned colonies but increases susceptibility to 2 reproductive cheating in an ant 3 4 5 Claudie Doums12, Pierre Fédérici3, Pascaline Chifflet-Belle12, Thibaud Monnin3 6 7 1 Institut de Systématique, Evolution et Biodiversité, UMR 7205, EPHE, CNRS, MNHN, 8 UPMC Univ Paris 06, Sorbonne Universités, Paris, France 9 2 PSL Research University, EPHE, Paris, France 10 3 Institute of Ecology and Environmental Sciences of Paris UMR 7618, CNRS, Sorbonne 11 Universités, UPMC Univ Paris 06, Paris, France 12 13 14 Corresponding author: Claudie Doums 15 ISYEB, UMR 7205 (CNRS MNHN UPMC EPHE) 16 Muséum National d'Histoire Naturelle, CP39 17 Bât.
    [Show full text]
  • Cheating Viruses and Game Theory
    Cheating Viruses and Game Theory The theory of games can explain how viruses evolve when they compete against one another in a test of evolutionary fitness Paul E. Turner he 19th-century circus showman reptitious copulations. This strategy them easy subjects for manipulation TP. T. Barnum is reputed to have is very successful for maintaining a and study. Although the experiments coined the phrase “There’s a sucker subpopulation of sneakers, but it’s un- are conducted in the laboratory, evo- born every minute”—although Bar- likely that the population will evolve lution proceeds by natural selection num denied the saying was his, and to contain only cheaters because ter- because the laboratory habitat dictates it has been variously attributed by ritorial males are most attractive to fe- which genetic variants are favored to biographers. In any event, whoever male mates. contribute their genes to the next gen- did voice this cynical view of human In general, cheaters are highly suc- eration. This is very different from ar- gullibility could not have predicted cessful when they are rare because tificial selection, such as dog breeding, that the terms “cheaters” and “suck- they frequently encounter suckers. The where the experimenter determines ers” would describe individuals in benefits of cheating wane as more indi- the variants that will reproduce. Per- the world of microorganisms as well. viduals in the population opt to cheat. haps most important, microorganisms However, my colleagues and I have In the parlance of evolutionary biology, can be stored in a freezer indefinitely, been studying interactions between vi- the success of cheaters should be gov- creating a “fossil record” that permits ruses, and it seems that strategies for erned by frequency-dependent selection.
    [Show full text]
  • Cheating in Arbuscular Mycorrhizal Mutualism: a Network and Phylogenetic Analysis of Mycoheterotrophy
    Research Cheating in arbuscular mycorrhizal mutualism: a network and phylogenetic analysis of mycoheterotrophy 1,2 1,3 € 4 2 Beno^ıt Perez-Lamarque , Marc-Andre Selosse , Maarja Opik ,Helene Morlon and Florent Martos1 1Institut de Systematique, Evolution, Biodiversite (ISYEB), Museum national d’histoire naturelle, CNRS, Sorbonne Universite, EPHE, Universite des Antilles, CP39, 57 rue Cuvier, 75 005 Paris, France; 2Institut de Biologie de l’Ecole Normale Superieure (IBENS), Ecole Normale Superieure, CNRS, INSERM, Universite PSL, 46 rue d’Ulm, 75 005 Paris, France; 3Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; 4University of Tartu, 40 Lai Street, 51 005 Tartu, Estonia Summary Author for correspondence: Although mutualistic interactions are widespread and essential in ecosystem functioning, ^ Benoıt Perez-Lamarque the emergence of uncooperative cheaters threatens their stability, unless there are some phys- Tel: +33 1 40 79 32 05 iological or ecological mechanisms limiting interactions with cheaters. Email: [email protected] In this framework, we investigated the patterns of specialization and phylogenetic distribu- Received: 2 September 2019 tion of mycoheterotrophic cheaters vs noncheating autotrophic plants and their respective Accepted: 20 January 2020 fungi, in a global arbuscular mycorrhizal network with> 25 000 interactions. We show that mycoheterotrophy evolved repeatedly among vascular plants, suggesting New Phytologist (2020) low phylogenetic constraints for plants. However, mycoheterotrophic plants are significantly doi: 10.1111/nph.16474 more specialized than autotrophic plants, and they tend to be associated with specialized and closely related fungi. These results raise new hypotheses about the mechanisms (e.g. sanc- Key words: arbuscular mycorrhiza, cheating, tions, or habitat filtering) that actually limit the interaction of mycoheterotrophic plants and ecological networks, mutualism, their associated fungi with the rest of the autotrophic plants.
    [Show full text]
  • The Genetic Control of the Social Parasitism in the Cape Honey Bee
    The genetic control of the social parasitism in the Cape honey bee, A. m. capensis ESCH. Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Naturwissenschaftlichen Fakultät I – Biowissenschaften – der Martin-Luther-Universität Halle-Wittenberg, vorgelegt von Frau Denise Aumer geb. am 05.07.1987 in Pegnitz Gutachter: 1. Prof. Dr. Dr. h.c. Robin F.A. Moritz (Martin-Luther-Universität Halle-Wittenberg, Germany) 2. Prof. Dr. Robin M. Crewe (University of Pretoria, South Africa) 3. Prof. Dr. Jürgen Heinze (Universität Regensburg, Germany) Tag der öffentlichen Verteidigung: 13.12.2018 Table of Contents General Introduction ............................................................................................................................ 1 1 Evolution of eusociality .................................................................................................................. 1 2 The Western honey bee (Apis mellifera) ........................................................................................ 2 3 Worker reproduction in A. mellifera ............................................................................................... 4 4 The special case of A. m. capensis Esch. ........................................................................................ 6 5 Social parasitism of A. m. capensis workers ................................................................................. 10 6 Genetic control of thelytoky in A. m. capensis ............................................................................
    [Show full text]
  • Facultative Cheating Supports the Coexistence of Diverse Quorum-Sensing Alleles
    Facultative cheating supports the coexistence of diverse quorum-sensing alleles Shaul Pollaka, Shira Omer-Bendoria, Eran Even-Tova, Valeria Lipsmana, Tasneem Bareiaa, Ishay Ben-Ziona, and Avigdor Eldara,1 aDepartment of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Edited by Joan E. Strassmann, Washington University, St. Louis, MO, and approved December 16, 2015 (received for review October 20, 2015) Bacterial quorum sensing enables bacteria to cooperate in a density- a minority and returns to cooperation when its frequency increases dependent manner via the group-wide secretion and detection of (Fig. 1B). This model can thus explain both the observed diversity specific autoinducer molecules. Many bacterial species show high and the rapid horizontal gene transfer of quorum-sensing alleles. intraspecific diversity of autoinducer–receptor alleles, called phero- The Bacillus subtilis ComQXP quorum-sensing system is one types. The autoinducer produced by one pherotype activates its of the best-studied systems with multiple characterized pherotypes coencoded receptor, but not the receptor of another pherotype. It is (Fig. 1C) (19). This system is encoded by a single locus that con- unclear what selection forces drive the maintenance of pherotype tains a three-gene operon. The ComX autoinducer production diversity. Here, we use the ComQXPA system of Bacillus subtilis as a genes (comQ, comX) and the region of comP encoding for the model system, to show that pherotype diversity can be maintained extracellular part of the ComP receptor are highly variable and by facultative cheating—a minority pherotype exploits the majority, encode for multiple different pherotypes, which coexist in the soil but resumes cooperation when its frequency increases.
    [Show full text]
  • Parasites May Help Stabilize Cooperative Relationships Ainslie EF Little1,2,3 and Cameron R Currie*1,2,3
    BMC Evolutionary Biology BioMed Central Research article Open Access Parasites may help stabilize cooperative relationships Ainslie EF Little1,2,3 and Cameron R Currie*1,2,3 Address: 1Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA, 2Smithsonian Tropical Research Institute, Apartado Box 2072, Balboa, Ancon, Panama and 3Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA Email: Ainslie EF Little - [email protected]; Cameron R Currie* - [email protected] * Corresponding author Published: 1 June 2009 Received: 17 April 2009 Accepted: 1 June 2009 BMC Evolutionary Biology 2009, 9:124 doi:10.1186/1471-2148-9-124 This article is available from: http://www.biomedcentral.com/1471-2148/9/124 © 2009 Little and Currie; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The persistence of cooperative relationships is an evolutionary paradox; selection should favor those individuals that exploit their partners (cheating), resulting in the breakdown of cooperation over evolutionary time. Our current understanding of the evolutionary stability of mutualisms (cooperation between species) is strongly shaped by the view that they are often maintained by partners having mechanisms to avoid or retaliate against exploitation by cheaters. In contrast, we empirically and theoretically examine how additional symbionts, specifically specialized parasites, potentially influence the stability of bipartite mutualistic associations. In our empirical work we focus on the obligate mutualism between fungus-growing ants and the fungi they cultivate for food.
    [Show full text]
  • Moral Action As Cheater Suppression in Human Superorganisms
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 22 March 2017 doi: 10.3389/fsoc.2017.00002 Moral Action as Cheater Suppression in Human Superorganisms Robert Aunger* London School of Hygiene and Tropical Medicine, London, UK For it is peculiar to man as compared to the other animals that he alone has a perception of good and bad and just and unjust and other things [of this sort]; and partnership in these things is what makes a household and a city. (Aristotle, The Politics 37) Aristotle. The Politics. Trans. Carnes Lord. Chicago: University of Chicago Press, 1984. Developments in human technology and social organization have enabled the kinds of social roles that individuals can undertake to proliferate—creating a degree of interde- pendence not seen in other species. Human societies cannot rely on shared genetic interests or dyadic reciprocity to ensure social cohesion because genetic similarity is low while indirect reciprocity is rife; nevertheless, such societies cohere, due to the evolution of novel regulatory mechanisms that inhibit defaulting on social obligations: moral sentiments and actions. While the degree of social cooperation created by these mechanisms remains less than that of the eusocial insects, it is sufficient to suggest that contemporary human societies constitute crude “superorganisms” to which their mem- Edited by: bers have wide-ranging responsibilities. The present paper argues that the domains and Doug Marshall, extent of moral regulation can be most usefully identified by defining the set of functions University of South Alabama, USA required to sustain a human superorganism.
    [Show full text]