Colorado Register
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cisco Controlled Substances Specification Revision B6 EDCS-661823 Page 1
Cisco Controlled Substances Specification Revision B6 EDCS-661823 Page 1 Doc Number: EDCS-661823 Last Revision Date: 04/30/2021 Policy Owner: Jack Allen Joe Johnson Policy Owner’s Org: Supply Chain Transformation: Sustainability Legal Market Access: Environmental Affairs Next Review Date: Upon changes in applicable global market access requirements Cisco Controlled Substances Specification Revision B6 Cisco Systems, Inc Page 1 of 35 CISCO CONFIDENTIAL All printed copies and duplicate soft copies are considered un-Controlled copies and the original on-line version should be referred for latest version Cisco Controlled Substances Specification Revision B6 EDCS-661823 Page 2 – Table of Contents – Executive Summary .................................................................................................................................... 3 Scope ........................................................................................................................................................... 3 Policy Statement ......................................................................................................................................... 3 1.1. Substances Restricted in Products ........................................................................................................... 3 1.2. Assessment Substances ............................................................................................................................ 7 1.3. Manufacturing Controlled Substances & Consumable Materials .......................................................... -
PHD-12-MCATEER (2).Pdf
CRANFIELD UNIVERSITY Daniel McAteer The Development of Novel, Low Sensitivity, Gas-generating Formulations for Hotwire Ignited Devices Department of Engineering and Applied Science PhD Academic Year: 2012 - 2013 Supervisors: Professor J Akhavan & Dr A Contini April 2013 CRANFIELD UNIVERSITY DEAS PhD Academic Year 2012 - 2013 Daniel McAteer The Development of Novel, Low Sensitivity, Gas-generating Formulations for Hotwire Ignited Devices Supervisors: Professor J Akhavan & Dr A Contini April 2013 © Cranfield University 2013. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. Abstract A novel, low sensitivity, gas-generating composition was developed to replace an existing primary explosive, potassium picrate, for use in a generic squib device. The novel composition was based on energetic materials researched from the open literature. The chosen materials were synthesised or purchased and combined in order to produce formulations which would reproducibly ignite when contacted with a hotwire. The formulations were assessed for their chemical compatibility and homogeneity by small-scale hazard testing, differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR) spectroscopy. The compositions were test fired within squibs coupled to a pressure bomb and the pressure generation and rise time was measured using a piezoelectric gauge. Keywords: Squib, Bridgewire, Electroexplosive Device, Igniter i Acknowledgements I was able to pursue this PhD thanks to the support and encouragement provided by my parents, without them I would not have made it this far. A courtesy note is included for my brother and sisters who, although thoroughly uninterested in my research, were present throughout my studies and offered support of a sort. -
Prohibited and Restricted Chemical List
School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List PROHIBITED AND RESTRICTED CHEMICAL LIST Introduction After incidents of laboratory chemical contamination at several schools, DCPS, The American Association for the Advancement of Science (AAAS) and DC Fire and Emergency Management Services developed an aggressive program for chemical control to eliminate student and staff exposure to potential hazardous chemicals. Based upon this program, all principals are required to conduct a complete yearly inventory of all chemicals located at each school building to identify for the removal and disposal of any prohibited/banned chemicals. Prohibited chemicals are those that pose an inherent, immediate, and potentially life- threatening risk, injury, or impairment due to toxicity or other chemical properties to students, staff, or other occupants of the school. These chemicals are prohibited from use and/or storage at the school, and the school is prohibited from purchasing or accepting donations of such chemicals. Restricted chemicals are chemicals that are restricted by use and/or quantities. If restricted chemicals are present at the school, each storage location must be addressed in the school's written emergency plan. Also, plan maps must clearly denote the storage locations of these chemicals. Restricted chemicals—demonstration use only are a subclass in the Restricted chemicals list that are limited to instructor demonstration. Students may not participate in handling or preparation of restricted chemicals as part of a demonstration. If Restricted chemicals—demonstration use only are present at the school, each storage location must be addressed in the school's written emergency plan. Section 7: Appendices – October 2009 37 School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List Following is a table of chemicals that are Prohibited—banned, Restricted—academic curriculum use, and Restricted—demonstration use only. -
System Documentation
TOXICS RELEASE INVENTORY DATA DELIVERY SYSTEM TRI-DDS 2001 System Documentation Prepared for: DoD EPCRA TRI Working Group Prepared by: URS Corporation 1093 Commerce Park Drive, Suite 100 Oak Ridge, Tennessee 37830 Doc #F9906181.MW97 April 2002 Please Note: The following distribution restriction applies only to the TRI-DDS Software. It does not apply to this document. Distribution authorized to the Department of Defense and U.S. DoD contractors only to protect technical or operational data or information from automatic dissemination under the International Exchange Program or by other means (effective 7 February 2002). Other requests shall be referred to the Deputy Undersecretary of Defense, Installation and Environment [DUSD(I&E)]. WARNING - This document contains technical data whose export is restricted by the Arms Export Control Act (Title 22, U.S.C., Sec 2751, et seq.) or the Export Administration Act of 1979, as amended, Title 50, U.S.C., App. 2401 et seq. Violations of these export laws are subject to severe criminal penalties. Disseminate in accordance with provisions of DoD Directive 5230.25. Destroy by any method that will prevent disclosure of contents or reconstruction of the document. Table of Contents List of Tables.........................................................................................................................v Chapter 1 OVERVIEW ...........................................................................................................................1-1 1.1 Background ......................................................................................................................1-3 -
Harrison School District Chemical Hygiene Plan
Harrison School District Chemical Hygiene Plan Updated & Approved by Mark Wilsey on 10-11-2019 Table of Contents Introduction and Overview .................................................................................................... 3 Section I: Annual Review ................................................................................................................ 3 Section II: Laboratory Hazardous Materials and Chemical Management .......................................... 3 Section II (a): Administrative Positions and Duties ......................................................................................... 3 Section III: Purchasing Procedures .................................................................................................. 4 Section IV: On-Site Hazardous Materials and Chemical Management ............................................... 5 Management of Chemicals .................................................................................................... 8 Acquisition of Chemicals ................................................................................................................. 8 General Rules and Procedures ........................................................................................................ 8 Inventory and Tracking ................................................................................................................... 9 Safety Data Sheets ........................................................................................................................ -
WO 201 1/056841 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number ι (43) International Publication Date ¾ ί t 12 May 2011 (12.05.2011) WO 201 1/056841 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07C 213/02 (2006.01) C07D 271/12 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US2010/055248 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 3 November 2010 (03.1 1.2010) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/257,721 3 November 2009 (03.1 1.2009) U S (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): PACIF¬ GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, IC SCIENTIFIC ENERGETIC MATERIALS COM¬ ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, PANY [US/US]; 7073 W . -
Making Plastic Explosives from Bleach by the Jolly Roger Potassium
Making Plastic Explosives from Bleach by The Jolly Roger Potassium chlorate is an extremely volatile explosive compound, and has been used in the past as the main explosive filler in grenades, land mines, and mortar rounds by such countries as France and Germany. Common household bleach contains a small amount of potassium chlorate, which can be extracted by the procedure that follows. First off, you must obtain: 1.A heat source (hot plate, stove, etc.) 2.A hydrometer, or battery hydrometer 3.A large Pyrex, or enameled steel container (to weigh chemicals) 4.Potassium chloride(sold as a salt substitute at health and nutrition stores) Take one gallon of bleach, place it in the container, and begin heating it. While this solution heats, weigh out 63 grams of potassium chloride and add this to the bleach being heated. Constantly check the solution being heated with the hydrometer, and boil until you get a reading of 1.3. If using a battery hydrometer, boil until you read a FULL charge. Take the solution and allow it to cool in a refrigerator until it is between room temperature and 0øC. Filter out the crystals that have formed and save them. Boil this solution again and cool as before. Filter and save the crystals. Take the crystals that have been saved, and mix them with distilled water in the following proportions: 56 grams per 100 milliliters distilled water. Heat this solution until it boils and allow to cool. Filter the solution and save the crystals that form upon cooling. This process of purification is called "fractional crystallization". -
The Fluorosulfuric Acid Solvent System. VI. Solutions of Phosphorus, Arsenic, Bismuth, and Niobium Pentafluorides and Titanium Tetrafluoride
Vol. 8, No. 1, January 1969 THEFLUOROSVLFURIC ACIDSOLVENT SYSTEM 63 enzyme was not created. One particularly active cat- Acknowledgment.-This research was carried out alyst was tested, but the mode of catalysis is not yet under Grant GM 11989 from the National Institutes of understood. Health. CONTRIBUTIONFROM THE DEPARTMEKTOF CHEMISTRY, MCMASTERUNIVERSITY, HAMILTON, OKTARIO, CANADA The Fluorosulfuric Acid Solvent System. VI. Solutions of Phosphorus, Arsenic, Bismuth, and Niobium Pentafluorides and Titanium Tetrafluoride BY R. J. GILLESPIE, K. OUCHI, AND G. P. PEZ Received September 4, 1968 Conductivity measurements on solutions of PFs, AsF5, BiF5, NbF5, PFs-SOa, NbFj-SOa, and AsFg-S03 are reported. Con- ductometric titrations have been carried out on solutions of AsFj, BiF5, and AsF5.SOa. The results are compared with those obtained previously for SbF5 and SbF5-SO3. It is concluded that acid strength increases in the order: PFs - NbF5 < TiF4 - AsFr < BiF6 < AsFd(S03F) < SbF5 < AsFz(SO~F)~< SbFz(S03F)s. It was shown in part 111 of this series that antimony any of them are stronger acids than SbFS. The effect pentafluoride is a rather weak acid of the fluorosulfuric of sulfur trioxide on the acidity of some of the systems acid solvent system ionizing according to the equation was also studied. SbFj + 2HS03F +H[SbFj(SOsF)] + HSOsF Experimental Section HzS03F+ + SbF5(SOsF)- Niobium Pentafluoride.-Technical grade Ozark-Mahoning the acid H [SbF5(S03F)] having a dissociation constant material was purified by triple distillation under vacuum at 100-110”, mp 79-81’. K = 3.7 X 10-3 mol kg-l. Although antimony penta- Bismuth Pentafluoride.-Bismuth trifluoride was fluorinated in fluoride is not fully ionized, these solutions have an ex- a flow system at 500°.4 The crude BiFs was purified by sublima- tremely high acidity because of the rather high concen- tion under vacuum in an apparatus made entirely of Vycor glass tration of the fluorosulfuric acidium ion HzS03F+ and which is not attacked by BiF5 at -100”. -
Ammunition) to Manual Small Arms 2.1
Chapter 2 THEORETICAL AND LEGAL SUPPORT OF CRIMINALISTIC RESEARCH OF CARTRIDGES (AMMUNITION) TO MANUAL SMALL ARMS 2.1. Cartridges (ammunition) as objects criminalistic research (concept, essence, classification) Currently, one of the unresolved problems of assessing the conclu- sion of forensic ballistic examination is the use in its content of terms and their definitions that do not meet modern scientific ideas about the objects under study. This applies to both legislative acts and normative legal acts regulating the conduct of relevant examinations, in particular the study of cartridges (ammunition) used for shooting from small arms, traces of their use. However, the accuracy and unambiguity of terminol- ogy used in forensic ballistic examination of cartridges (ammunition) are important to ensure its uniform understanding and use in both foren- sic and law enforcement activities. It is no coincidence that the literature emphasizes that one of the main elements of the concept of the General theory of forensic examina- tion is the doctrine of the means and forms of communicative activity in the production of forensic examinations; the Central part of this element is the language of the expert, the system of expert concepts and terms designating them. The development and improvement of the General theory of forensic examination largely depend on the development and improvement of its conceptual apparatus, in-depth disclosure of the es- sence of objects, phenomena reflected in each concept [3, p. 103]. R. S. Belkin notes that the introduction of new terms and their definitions into forensic examination as a specific sphere of scientific knowledge is carried out by expanding the existing basis of theoretical provisions and empirical data [36, p. -
Bismuth-Trifluoride Modified Carbon Paste Electrode for Electrochemical Stripping Analysis of Heavy Metals
Int. J. Electrochem. Sci., 8 (2013) 5657 - 5671 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Bismuth-Trifluoride Modified Carbon Paste Electrode for Electrochemical Stripping Analysis of Heavy Metals Matěj Stočes* and Ivan Švancara Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, HB/C, CZ-532 10, Pardubice, Czech Republic. *E-mail: [email protected] Received: 15 February 2013 / Accepted: 18 March 2013 / Published: 1 April 2013 In this article, a novel type metal-film based electrode, bismuth trifluoride-bulk-modified carbon paste electrode (BiF3-CPE), is for the first time reported and examined in electrochemical stripping analysis for determination of selected heavy metals at the ppb (μgL-1) concentration level. Optimal amount of bismuth trifluoride, as the source of in-nascenti generated bismuth film, was 10% (w/w). All important experimental and instrumental parameters have been optimized in the square-wave anodic stripping voltammetric mode when using Cd(II) and Pb(II) as the model ions. As found, BiF3-CPE has exhibited a linear response in several concentration ranges tested, starting from the low ppb level (2–12 μg·L-1) via a mid level (10–150 μg·L-1), up to rather high concentrations in the range of 200–1200 μg·L-1; the repeatability of (10%)BiF3-CPE, expressed by the RSD, being 1.7 % (for n=10) for Cd(II) and 1.4% for Pb(II). Interferences from selected heavy metals were also studied and no serious negative effects revealed. Finally, the (10%)BiF3-CPE has been examined in analysis of certified reference material (sewage sludge with extremely high content of Pb) with a satisfactory agreement with the declared value (2233.2 μg·g-1 versus 2290 ± 110 μg·g-1 Pb in the CRM). -
Title a Study on Acid-Base Reactions of Halides and Oxide Halides In
A study on acid-base reactions of halides and oxide halides in Title anhydrous inorganic solvents( Dissertation_全文 ) Author(s) Katayama, Yasushi Citation 京都大学 Issue Date 1996-03-23 URL https://doi.org/10.11501/3110575 Right Type Thesis or Dissertation Textversion author Kyoto University ·__ ~ :"'~';;'~,~r~: .. _, -,-- .- . -".~~~--- """""-o-o.~ -~~~--...:=.: " ---~--- .-..--~~~-,. • d}, ---"- -:=-- ~-"--.......-...._-,~~:..~::"-=:: ~-- <---- ----===-;-~- ;::;:..'~~- --~~--....=,~= -.';'"-'"~'~~~._---_":-~~~~-- ~-~-~--~~._~--_ .. "=-~------~==-=--- -~. ._"~------'<._--- -"~" ~~----~~.---,-----~£~"-=-'~ .... A STUDY ON ACID-BASE REACTIONS OF HALIDES AND OXIDE HALIDES IN ANHYDROUS INORGANIC SOLVENTS 199 6 YASUSHI KATAYAMA CONTENTS Chapter 1 General introduction 1 References 4 Chapter 2 Experimental techniques 7 2.1 Material handling 7 2.1.1 Solids 7 2.1.2 Gases 8 2.1.3 Liquids 10 2.2 Reactors 12 2.2.1 FEP reactors 12 2.2.2 Monel reactors 13 2.2.3 Pyrex and quartz glass reactors 14 2.2.4 Sublimation apparatus 15 2.3 Transparent electric furnace 15 2.4 Experimental techniques 16 2.4.1 Experimental technique for handling anhydrous hydrogen fluoride 16 2.4.2 Experimental technique for handling molten cWorides 17 2.5 X-ray powder diffraction 17 2.6 Raman spectroscopy of solid samples 18 2.7 IR spectroscopy 18 2.7.1 Solid sample 18 2.7.2 Gaseous sample 19 References 20 Chapter 3 Reactions of silver(I,II) fluorides with tungsten oxide tetrafluoride in anhydrous hydrogen fluoride 21 3.1 Introduction 21 3.2 Reagents 22 3.3 Result') 22 3.4 Discussion -
Title a Study on Acid-Base Reactions of Halides and Oxide Halides in Anhydrous Inorganic Solvents( Dissertation 全文 )
A study on acid-base reactions of halides and oxide halides in Title anhydrous inorganic solvents( Dissertation_全文 ) Author(s) Katayama, Yasushi Citation Kyoto University (京都大学) Issue Date 1996-03-23 URL http://dx.doi.org/10.11501/3110575 Right Type Thesis or Dissertation Textversion author Kyoto University ·__ ~ :"'~';;'~,~r~: .. _, -,-- .- . -".~~~--- """""-o-o.~ -~~~--...:=.: " ---~--- .-..--~~~-,. • d}, ---"- -:=-- ~-"--.......-...._-,~~:..~::"-=:: ~-- <---- ----===-;-~- ;::;:..'~~- --~~--....=,~= -.';'"-'"~'~~~._---_":-~~~~-- ~-~-~--~~._~--_ .. "=-~------~==-=--- -~. ._"~------'<._--- -"~" ~~----~~.---,-----~£~"-=-'~ .... A STUDY ON ACID-BASE REACTIONS OF HALIDES AND OXIDE HALIDES IN ANHYDROUS INORGANIC SOLVENTS 199 6 YASUSHI KATAYAMA CONTENTS Chapter 1 General introduction 1 References 4 Chapter 2 Experimental techniques 7 2.1 Material handling 7 2.1.1 Solids 7 2.1.2 Gases 8 2.1.3 Liquids 10 2.2 Reactors 12 2.2.1 FEP reactors 12 2.2.2 Monel reactors 13 2.2.3 Pyrex and quartz glass reactors 14 2.2.4 Sublimation apparatus 15 2.3 Transparent electric furnace 15 2.4 Experimental techniques 16 2.4.1 Experimental technique for handling anhydrous hydrogen fluoride 16 2.4.2 Experimental technique for handling molten cWorides 17 2.5 X-ray powder diffraction 17 2.6 Raman spectroscopy of solid samples 18 2.7 IR spectroscopy 18 2.7.1 Solid sample 18 2.7.2 Gaseous sample 19 References 20 Chapter 3 Reactions of silver(I,II) fluorides with tungsten oxide tetrafluoride in anhydrous hydrogen fluoride 21 3.1 Introduction 21 3.2 Reagents 22 3.3 Result')