Taylor's Approximation Revisited Some Time Ago, We Proved Theorem Let F

Total Page:16

File Type:pdf, Size:1020Kb

Taylor's Approximation Revisited Some Time Ago, We Proved Theorem Let F Lecture 18: Taylor's approximation revisited Some time ago, we proved Theorem Let f be a function on an interval [a; b] and c a point in the interior of the interval. Suppose that f is n−2 times continuously differentiable on [a; b], that the n−1st derivative of f exists everywhere on the interior of (a; b) and that the nth derivative of f exists at c. Then f (n)(c) f(x) = f(c) + f 0(c)(x − c) + ::: + (x − c)n + o((x − c)n): n! With the fundamental theorem of Calculus in hand, the proof is much easier to give, so we review it. Proof We prove this by induction on n, the base case being n = 2. We know from the definition of the derivative f 00)(c) of f 0 that f 0(x) = f 0(c) + (x − c)f 00(c) + o(x − c): Now, we use the fundamental theorem of calculus to obtain f(x) − f(c) Z x f 0(y)dy c Z x : (f 0(c) + (y − c)f 00(c)(y − c) + o(y − c))dy c f 00(c) = f 0(c)(x − c) + (x − c)2 + o((x − c)2) 2 Having obtained the base case, we are now ready to do the induction. We assume the theorem for n − 1. Now under the hypotheses, we can Taylor approximate the first derivative n−1 X f (j+1)(c) f 0(x) = (x − c)j + o((x − c)n−1): j! j=0 Now, we repeat the proof of the base case, with this new information f(x) − f(c) Z x f 0(y)dy c n−1 Z x X f (j+1)(c) ( (y − c)j + o((y − c)n−1):)dy j! c j=0 n−1 X f (j+1)(c) = (x − c)j+1 + o((x − c)n): (j + 1)! j=0 1 (n) 0 f (c) n The expression in the Theorem, f(c) + f (c)(x − c) + ::: + n! (x − c) is referred to as the Taylor polynomial of f at c. It is, of course, a polynomial of degree n which approximates f at c. We know that the error is o((x − c)n) so that it is getting small quite fast as x approaches c. But, of course, the definition of o(:) involves a limit, and we don't know how fast that limit converges. We saw an application where we might need that information last time. We used Taylor's approximation to develop numerical methods of integration, but we don't know yet exactly what the errors depend on, so we don't yet have a good method of predicting what step size we would need to get a respectable approximation of the integral. We rectify this now. We will need to use integration by parts. Lemma Let f and g be once continuously differentiable functions on the interval [a; b] then Z b (f 0(x)g(x) + f(x)g0(x))dx = f(b)g(b) − f(a)g(a): a Proof Just apply the product rule to convert the integral to Z b d (f(x)g(x))dx; a dx and apply the fundamental theorem of calculus. Theorem (Taylor's theorem with remainder) Assume f is n + 1 times continu- ously differentiable in the interval [a; b] having c in the interior. Then for every x 2 [a; b] we have n X f (j)(c) f(x) = (x − c)j + R (x); j! n j=0 with Z x 1 n (n+1) Rn(x) = (x − y) f (y)dy: n! c Here the expression Rn(x) is referred as the remainder in the nth Taylor approximation of f at a. Proof We will prove this, of course, by induction. The base case, n = 0 is nothing more than the fundamental theorem of calculus, so we will assume that Z x 1 n (n+1) Rn(x) = (x − y) f (y)dy; n! c and we will try to calculate Rn+1 under the assumption that f has n + 2 continuous derivatives. We observe that as long as the result holds f (n+1)(c) R (x) = R (x) − (x − c)n+1: n+1 n (n + 1)! 2 Now we combine this with the induction hypothesis, taking the n + 1 factor from the n+1 n+1 (x−c) R x n denominator to turn (x−c) into an integral from c to x, namely n+1 = c (x−y) dy Rn+1(x) 1 Z x f (n+1)(c) Z x = (x − y)nf (n+1)(y)dy − (x − y)ndy n! c n! c 1 Z x = (x − y)n(f (n+1)(y) − f (n+1)(c))dy n! c 1 Z x = (x − y)n+1f (n+2)(y)dy: (n + 1)! c Here, the last is by integration by parts. We integrate (x − y)n and differentiate f (n+1)(y) − f (n+1)(c). Note that the boundary terms vanish since (x − y)n vanishes at y = x and f (n+1)(y) − f (n+1)(c) vanishes at y = c. Having this remarkable formula for Rn, we look for a way to apply it. We first write down a general result about integrals of continuous functions which is in analogy with the mean value theorem. Theorem (Mean Value theorem for integrals) Let f and g be continuous func- tions on [a; b]. Assume that g never changes sign on [a; b]. Then there is c 2 (a; b) so that Z b Z b f(x)g(x)dx = f(c) g(x)dx: a a Proof Let R b f(x)g(x)dx M = a : R b a g(x)dx Suppose that every on (a; b), we have that f(x) < M. Then Z b Z b f(x)g(x)dx < M g(x)dx; a a which is a contradiction. Similarly, it is not the case that f(x) > M for every x in (a; b). Then since f is continuous, by the intermediate value theorem, there must be c so that f(c) = M. We now apply this mean value theorem for integrals to our expression for the remainder in Taylor's approximation. Z x 1 n (n+1) Rn(x) = (x − y) f (y)dy: n! c 3 Observe that 1 Z x 1 (x − y)ndy = (x − c)n+1: n! c (n + 1)! Thus we observe that there is some d between c and x so that f (n+1)(d)(x − c)n+1 R (x) = : n (n + 1)! We conclude n X f (j)(c) f (n+1)(d)(x − c)n+1 f(x) = (x − c)j + : j! (n + 1)! j=0 If, as last time, we begin with an a priori estimate for the (n + 1)st derivative, we obtain an estimate for the error term. 4.
Recommended publications
  • Notes on Calculus II Integral Calculus Miguel A. Lerma
    Notes on Calculus II Integral Calculus Miguel A. Lerma November 22, 2002 Contents Introduction 5 Chapter 1. Integrals 6 1.1. Areas and Distances. The Definite Integral 6 1.2. The Evaluation Theorem 11 1.3. The Fundamental Theorem of Calculus 14 1.4. The Substitution Rule 16 1.5. Integration by Parts 21 1.6. Trigonometric Integrals and Trigonometric Substitutions 26 1.7. Partial Fractions 32 1.8. Integration using Tables and CAS 39 1.9. Numerical Integration 41 1.10. Improper Integrals 46 Chapter 2. Applications of Integration 50 2.1. More about Areas 50 2.2. Volumes 52 2.3. Arc Length, Parametric Curves 57 2.4. Average Value of a Function (Mean Value Theorem) 61 2.5. Applications to Physics and Engineering 63 2.6. Probability 69 Chapter 3. Differential Equations 74 3.1. Differential Equations and Separable Equations 74 3.2. Directional Fields and Euler’s Method 78 3.3. Exponential Growth and Decay 80 Chapter 4. Infinite Sequences and Series 83 4.1. Sequences 83 4.2. Series 88 4.3. The Integral and Comparison Tests 92 4.4. Other Convergence Tests 96 4.5. Power Series 98 4.6. Representation of Functions as Power Series 100 4.7. Taylor and MacLaurin Series 103 3 CONTENTS 4 4.8. Applications of Taylor Polynomials 109 Appendix A. Hyperbolic Functions 113 A.1. Hyperbolic Functions 113 Appendix B. Various Formulas 118 B.1. Summation Formulas 118 Appendix C. Table of Integrals 119 Introduction These notes are intended to be a summary of the main ideas in course MATH 214-2: Integral Calculus.
    [Show full text]
  • A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- Sity, Pomona, CA 91768
    A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- sity, Pomona, CA 91768 In a recent calculus course, I introduced the technique of Integration by Parts as an integration rule corresponding to the Product Rule for differentiation. I showed my students the standard derivation of the Integration by Parts formula as presented in [1]: By the Product Rule, if f (x) and g(x) are differentiable functions, then d f (x)g(x) = f (x)g(x) + g(x) f (x). dx Integrating on both sides of this equation, f (x)g(x) + g(x) f (x) dx = f (x)g(x), which may be rearranged to obtain f (x)g(x) dx = f (x)g(x) − g(x) f (x) dx. Letting U = f (x) and V = g(x) and observing that dU = f (x) dx and dV = g(x) dx, we obtain the familiar Integration by Parts formula UdV= UV − VdU. (1) My student Victor asked if we could do a similar thing with the Quotient Rule. While the other students thought this was a crazy idea, I was intrigued. Below, I derive a Quotient Rule Integration by Parts formula, apply the resulting integration formula to an example, and discuss reasons why this formula does not appear in calculus texts. By the Quotient Rule, if f (x) and g(x) are differentiable functions, then ( ) ( ) ( ) − ( ) ( ) d f x = g x f x f x g x . dx g(x) [g(x)]2 Integrating both sides of this equation, we get f (x) g(x) f (x) − f (x)g(x) = dx.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Integration by Parts
    3 Integration By Parts Formula ∫∫udv = uv − vdu I. Guidelines for Selecting u and dv: (There are always exceptions, but these are generally helpful.) “L-I-A-T-E” Choose ‘u’ to be the function that comes first in this list: L: Logrithmic Function I: Inverse Trig Function A: Algebraic Function T: Trig Function E: Exponential Function Example A: ∫ x3 ln x dx *Since lnx is a logarithmic function and x3 is an algebraic function, let: u = lnx (L comes before A in LIATE) dv = x3 dx 1 du = dx x x 4 v = x 3dx = ∫ 4 ∫∫x3 ln xdx = uv − vdu x 4 x 4 1 = (ln x) − dx 4 ∫ 4 x x 4 1 = (ln x) − x 3dx 4 4 ∫ x 4 1 x 4 = (ln x) − + C 4 4 4 x 4 x 4 = (ln x) − + C ANSWER 4 16 www.rit.edu/asc Page 1 of 7 Example B: ∫sin x ln(cos x) dx u = ln(cosx) (Logarithmic Function) dv = sinx dx (Trig Function [L comes before T in LIATE]) 1 du = (−sin x) dx = − tan x dx cos x v = ∫sin x dx = − cos x ∫sin x ln(cos x) dx = uv − ∫ vdu = (ln(cos x))(−cos x) − ∫ (−cos x)(− tan x)dx sin x = −cos x ln(cos x) − (cos x) dx ∫ cos x = −cos x ln(cos x) − ∫sin x dx = −cos x ln(cos x) + cos x + C ANSWER Example C: ∫sin −1 x dx *At first it appears that integration by parts does not apply, but let: u = sin −1 x (Inverse Trig Function) dv = 1 dx (Algebraic Function) 1 du = dx 1− x 2 v = ∫1dx = x ∫∫sin −1 x dx = uv − vdu 1 = (sin −1 x)(x) − x dx ∫ 2 1− x ⎛ 1 ⎞ = x sin −1 x − ⎜− ⎟ (1− x 2 ) −1/ 2 (−2x) dx ⎝ 2 ⎠∫ 1 = x sin −1 x + (1− x 2 )1/ 2 (2) + C 2 = x sin −1 x + 1− x 2 + C ANSWER www.rit.edu/asc Page 2 of 7 II.
    [Show full text]
  • Integration-By-Parts.Pdf
    Integration INTEGRATION BY PARTS Graham S McDonald A self-contained Tutorial Module for learning the technique of integration by parts ● Table of contents ● Begin Tutorial c 2003 [email protected] Table of contents 1. Theory 2. Usage 3. Exercises 4. Final solutions 5. Standard integrals 6. Tips on using solutions 7. Alternative notation Full worked solutions Section 1: Theory 3 1. Theory To differentiate a product of two functions of x, one uses the product rule: d dv du (uv) = u + v dx dx dx where u = u (x) and v = v (x) are two functions of x. A slight rearrangement of the product rule gives dv d du u = (uv) − v dx dx dx Now, integrating both sides with respect to x results in Z dv Z du u dx = uv − v dx dx dx This gives us a rule for integration, called INTEGRATION BY PARTS, that allows us to integrate many products of functions of x. We take one factor in this product to be u (this also appears on du the right-hand-side, along with dx ). The other factor is taken to dv be dx (on the right-hand-side only v appears – i.e. the other factor integrated with respect to x). Toc JJ II J I Back Section 2: Usage 4 2. Usage We highlight here four different types of products for which integration by parts can be used (as well as which factor to label u and which one dv to label dx ). These are: sin bx (i) R xn· or dx (ii) R xn·eaxdx cos bx ↑ ↑ ↑ ↑ dv dv u dx u dx sin bx (iii) R xr· ln (ax) dx (iv) R eax · or dx cos bx ↑ ↑ ↑ ↑ dv dv dx u u dx where a, b and r are given constants and n is a positive integer.
    [Show full text]
  • U-Substitution and Integration by Parts
    U-Substitution and Integration by Parts U-Substitution The general form of an integrand which requires U-Substitution is R f(g(x))g0(x)dx. This can be rewritten as R f(u)du. A big hint to use U-Substitution is that there is a composition of functions and there is some relation between two functions involved by way of derivatives. Examplep 1 R 3x + 2dx 1 R p 1 Let u = 3x + 2. Then du = 3dx and thus dx = 3 du. We then consider u( 3 )du. 1 R p 1 u3=2 2 3=2 3 udu = 3 3=2 + C = 9 u + C Next we must make sure to have everything in terms of x like we had in the beginning of the problem. From our previous choice of u, we know u = 3x + 2. 2 3=2 So our final answer is 9 (3x + 2) + C. For indefinite integrals, always make sure to switch back to the variable you started with. Example 2 R 2 3 4 1 x cos(x + 3)dx 4 3 1 3 Let u = x + 3. So du = 4x dx. Then 4 du = x dx From here we have two options. We can either switch back to x later and plug in our bounds after or we can change our integral bounds along with our U-Substitution and solve. Option 1: R b 1 If we do not change our bounds, we have a 4 cos(u)du. Note that we use a and b as placeholders for now.
    [Show full text]
  • Review of Differentiation and Integration Rules from Calculus I and II for Ordinary Differential Equations, 3301 General Notatio
    Review of di®erentiation and integration rules from Calculus I and II for Ordinary Di®erential Equations, 3301 General Notation: a; b; m; n; C are non-speci¯c constants, independent of variables e; ¼ are special constants e = 2:71828 ¢ ¢ ¢, ¼ = 3:14159 ¢ ¢ ¢ f; g; u; v; F are functions f n(x) usually means [f(x)]n, but f ¡1(x) usually means inverse function of f a(x + y) means a times x + y, but f(x + y) means f evaluated at x + y fg means function f times function g, but f(g) means output of g is input of f t; x; y are variables, typically t is used for time and x for position, y is position or output 0;00 are Newton notations for ¯rst and second derivatives. d d2 d d2 Leibnitz notations for ¯rst and second derivatives are and or and dx dx2 dt dt2 Di®erential of x is shown by dx or ¢x or h f(x + ¢x) ¡ f(x) f 0(x) = lim , derivative of f shows the slope of the tangent line, rise ¢x!0 ¢x over run, for the function y = f(x) at x General di®erentiation rules: dt dx 1a- Derivative of a variable with respect to itself is 1. = 1 or = 1. dt dx 1b- Derivative of a constant is zero. 2- Linearity rule (af + bg)0 = af 0 + bg0 3- Product rule (fg)0 = f 0g + fg0 µ ¶ f 0 f 0g ¡ fg0 4- Quotient rule = g g2 5- Power rule (f n)0 = nf n¡1f 0 6- Chain rule (f(g(u)))0 = f 0(g(u))g0(u)u0 7- Logarithmic rule (f)0 = [eln f ]0 8- PPQ rule (f ngm)0 = f n¡1gm¡1(nf 0g + mfg0), combines power, product and quotient 9- PC rule (f n(g))0 = nf n¡1(g)f 0(g)g0, combines power and chain rules 10- Golden rule: Last algebra action speci¯es the ¯rst di®erentiation rule to
    [Show full text]
  • Integration by Parts
    Integration by parts mc-TY-parts-2009-1 A special rule, integration by parts, is available for integrating products of two functions. This unit derives and illustrates this rule with a number of examples. In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. After reading this text, and/or viewing the video tutorial on this topic, you should be able to: • state the formula for integration by parts • integrate products of functions using integration by parts Contents 1. Introduction 2 2. Derivation of the formula for integration by parts dv du u dx = uv v dx 2 Z dx − Z dx 3. Using the formula for integration by parts 5 www.mathcentre.ac.uk 1 c mathcentre 2009 1. Introduction Functions often arise as products of other functions, and we may be required to integrate these products. For example, we may be asked to determine x cos x dx . Z Here, the integrand is the product of the functions x and cos x. A rule exists for integrating products of functions and in the following section we will derive it. 2. Derivation of the formula for integration by parts We already know how to differentiate a product: if y = u v then dy d(uv) dv du = = u + v . dx dx dx dx Rearranging this rule: dv d(uv) du u = v . dx dx − dx Now integrate both sides: dv d(uv) du u dx = dx v dx . Z dx Z dx − Z dx The first term on the right simplifies since we are simply integrating what has been differentiated.
    [Show full text]
  • Nonlocal Vector Calculus by Fahad Hamoud Almutairi B.E., Kuwait University, 2013 a REPORT Submitted in Partial Fulfillment of Th
    Nonlocal Vector Calculus by Fahad Hamoud Almutairi B.E., Kuwait University, 2013 A REPORT submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Mathematics College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2018 Approved by: Major Professor Bacim Alali Abstract Nonlocal vector calculus, introduced in4;6, generalizes differential operators' calculus to nonlocal calculus of integral operators. Nonlocal vector calculus has been applied to many fields including peridynamics, nonlocal diffusion, and image analysis1{3;5;7. In this report, we present a vector calculus for nonlocal operators such as a nonlocal divergence, a non- local gradient, and a nonlocal Laplacian. In Chapter 1, we review the local (differential) divergence, gradient, and Laplacian operators. In addition, we discuss their adjoints, the divergence theorem, Green's identities, and integration by parts. In Chapter 2, we define nonlocal analogues of the divergence and gradient operators, and derive the corresponding adjoint operators. In Chapter 3, we present a nonlocal divergence theorem, nonlocal Green's identities, and integration by parts for nonlocal operators. In Chapter 4, we establish a con- nection between the local and nonlocal operators. In particular, we show that, for specific integral kernels, the nonlocal operators converge to their local counterparts in the limit of vanishing nonlocality. Table of Contents List of Figures . iv Introduction . .1 1 Local Operators . .2 1.1 The divergence theorem . .3 1.2 Adjoints for the divergence and the gradient operators . .3 1.3 Integration by parts formula . .4 1.4 Green's identities for local operators . .5 2 Nonlocal Operators .
    [Show full text]
  • Math 116 – Spring 2009 – Taylor Polynomials Using Integration by Parts
    Math 116 { Spring 2009 { Taylor Polynomials using Integration by Parts The extension from local linear approximation to local quadratic approximation was made in connection with understanding the trapezoid and midpoint rules for numerical inte- gration. Viewing the linear approximation as having constant derivative then suggests extending to the case of a linear approximation for f 0(x) near x = c, which means a quadratic approximation of the original function. In this handout, the further extension to a local approximation by a polynomial of any given order, known as a Taylor polyno- mial is developed. The error made by such an approximation is given in several equivalent forms. The use of Taylor polynomials is then illustrated in several settings. The local linear approximation to a di®erentiable function f(x) near x = c is given by f(c) + f 0(c) ¢ (x ¡ c). If this approximation is made to f 0(x), namely f 0(c) + f 00(c) ¢ (x ¡ c), and then integrating back to approximate f(x) using the value at x = c generates a quadratic approximation: (x ¡ c)2 f(x) ¼ P (x) = f(c) + f 0(c) ¢ (x ¡ c) + f 00(c) ¢ : 2 2 p Example: The function f(x) = 1 + x can be di®erentiated easily, with the following 1 3 0 1 ¡ 2 00 1 ¡ 2 results: f (x) = 2 (1 + x) and f (x) = ¡ 4 (1 + x) : Using the location c = 0 where 0 1 00 1 f(0) = 1, f (0) = 2 , f (0) = ¡ 4 , leads to the approximation: p 1 x2 1 + x ¼ 1 + x ¡ : 2 8 To get a sensep of the accuracy of this approximation, considerp two numerical examples we know: 1:21 = 1:1 which uses x = 0:21 and closer in 1:0201 = 1:01 which uses x = 0:0201.
    [Show full text]
  • 4. Taylor's Theorem for Functions of One Variable: Suppose That F ∈ C
    4. Taylor’s Theorem for Functions of One Variable: Suppose that f ∈ Cn[a, b]andthe (n+1) derivative f exists on [a, b], and let x0 ∈ [a, b]. For every x ∈ [a, b] there exists η(x) between x0 and x such that (2) (n) (n+1) (1) f (x0) 2 f (x0) n f (η) n+1 f(x)=f(x0)+f (x0)(x−x0)+ (x−x0) +···+ (x−x0) + (x−x0) . 2! n! (n +1)! Proof Use integration by parts: x (1) f(x)=f(x0)+ f (t) dt x0 x (1) x (2) = f(x0) − f (t)(x − t) + f (t)(x − t) dt x 0 x0 x (1) (2) 1 2 (n) 1 n = f(x0) − f (t)(x − t)+f (t) (x − t) + ...+ f (t) (x − t) 2 n! x0 1 x + f (n+1)(t)(x − t)n dt n! x0 (1) (2) 1 2 (n) 1 n = f(x0)+f (x0)(x − x0)+f (x0) (x − x0) + ...+ f (x0) (x − x0) 2 n! 1 x + f (n+1)(t)(x − t)n dt . n! x0 n The remainder term is in Young’s integral form. Noting that (x − t) has one sign on [x0,x], application of the generalised integral mean value theorem gives x x (n+1) 1 (n+1) n (n+1) 1 n f (η) n+1 f (t)(x − t) dt = f (η) (x − t) dt = (x − x0) . n! x0 n! x0 (n +1)! 1 5. Taylor’s Theorem for Functions of Two Variables: Suppose that f(x, y) and its partial derivatives of all orders less than or equal to n + 1 are continuous on D = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d} and let (x0,y0) ∈ D.
    [Show full text]
  • An Integration by Parts Formula in a Markovian Regime Switching Model and Application to Sensitivity Analysis
    An integration by parts formula in a Markovian regime switching model and application to sensitivity analysis Yue Liu Nicolas Privault School of Finance and Economics School of Physical and Mathematical Sciences Jiangsu University Nanyang Technological University Zhenjiang 212013 21 Nanyang Link P.R. China Singapore 637371 August 5, 2017 Abstract We establish an integration by parts formula for the random functionals of a continuous-time Markov chain, based on partial differentiation with respect to jump times. In comparison with existing methods, our approach does not rely on the Girsanov theorem and it imposes less restrictions on the choice of directions of differentiation, while assuming additional continuity conditions on the considered functionals. As an application we compute sensitivities (Greeks) using stochastic weights in an asset price model with Markovian regime switch- ing. Key words: Integration by parts, Markov chains, regime switching, sensitivity anal- ysis. Mathematics Subject Classification (2010): 60G40; 35R35; 93E20; 60J28; 91G80. 1 Introduction Integration by parts methods on the Wiener space have been successfully applied to the sensitivity analysis of diffusion models in finance, cf. [10]. This framework has also been implemented for jump processes, using the absolute continuity of jump sizes, 1 cf. [1], or the process jump times as in [13]. More generally, integration by parts formulas for discrete and jump processes can be obtained using multiple stochastic integral expansions and finite difference operators, or the absolute continuity of jump times. In the setting of continuous-time Markov chains, integration by parts formulas have recently been proposed in [19] and [6], based on finite difference and differential operators.
    [Show full text]