Dioscorea Spp., Dioscoreaceae) Reveals Natural Interspecific Hybridization of the Greater Yam (D

Total Page:16

File Type:pdf, Size:1020Kb

Dioscorea Spp., Dioscoreaceae) Reveals Natural Interspecific Hybridization of the Greater Yam (D Botanical Journal of the Linnean Society, 2016. With 3 figures Plastid phylogenetics of Oceania yams (Dioscorea spp., Dioscoreaceae) reveals natural interspecific hybridization of the greater yam (D. alata) HANA CHA€IR1*†, JULIE SARDOS2†, ANTHEA SUPPLY1, PIERRE MOURNET1, ROGER MALAPA3 and VINCENT LEBOT4 1CIRAD, UMR AGAP, F-34398 Montpellier, France 2Bioversity International, Parc Scientifique Agropolis II, 1990 Boulevard de la Lironde, 34397 Montpellier Cedex 5, France 3VARTC, PO Box 231, Santo, Vanuatu 4CIRAD, UMR AGAP, PO Box 946, Port Vila, Vanuatu Received 12 February 2015; revised 1 September 2015; accepted for publication 7 December 2015 Phylogenetic relationships of Oceanian staple yams (species of Dioscorea section Enantiophyllum) were investigated using plastid trnL-F and rpl32-trnL(UAG) sequences and nine nuclear co-dominant microsatellites. Analysis of herbarium specimens, used as taxonomic references, allowed the comparison with samples collected in the field. It appears that D. alata, D. transversa and D. hastifolia are closely related species. This study does not support a direct ancestry from D. nummularia to D. alata as previously hypothesized. The dichotomy in D. nummularia previously described by farmers in semi-perennial and annual types was reflected by molecular markers, but the genetic structure of D. nummularia appears more complex. Dioscorea nummularia displayed two haplotypes, each corresponding to a different genetic group. One, including a D. nummularia voucher from New Guinea, is closer to D. tranversa, D. alata and D. hastifolia and encompasses only semi-perennial types. The second group is composed of semi-perennial and annual yams. However, some of these annual yams also displayed D. alata haplotypes. Nuclear markers revealed that some annual yams shared alleles with D. alata and semi-perennial D. nummularia, suggesting a hybrid origin, which may explain their intermediate morphotypes and the difficulty met in classifying them.© 2016 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016 ADDITIONAL KEYWORDS: Dioscorea hastifolia – Dioscorea nummularia – Dioscorea transversa – rpl32-trnL(UAG) – trnL-F – Vanuatu. INTRODUCTION genetic relationships between species of Dioscoreales remain unresolved, although several studies have Yams are members of the genus Dioscorea L. attempted to clarify them (Caddick et al., 2002; (Dioscoreaceae; Dioscoreales). Dioscorea is the lar- Wilkin et al., 2005; Hsu et al., 2013). There is, how- gest and only dioecious genus in the family, compris- ever, a paucity of knowledge on the systematic rela- ing c. 640 species (Govaerts, Wilkin & Saunders, tionships between different species within sections. 2007) historically assembled into 32–59 sections It is even more complex in areas where yams are (Knuth, 1924; Ayensu, 1972). The genus had a considered as indigenous crops connected to local cul- pantropical distribution long before the advent of tures and traditions. In such areas, yam diversity is humans, with most of the species being isolated by managed by farmers through the use of wild, sponta- natural barriers into three continental groups: Asi- neous and cultivated yams (Malapa et al., 2005; atic, African and American (Hahn, 1995).The phylo- Scarcelli et al., 2006; Bousalem et al., 2010; Cha€ır et al., 2010), leading to confusion in the systematic *Corresponding author. E-mail: [email protected] identification of specimens. †These authors contributed equally to this work. © 2016 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016 1 2 H. CHA€IR ET AL. Dioscorea section Enanthiophyllum Uline is the used as climbing supports for the vines of this semi- most economically important section as it contains perennial plant. Left untouched for 3 to 4 years after the main cultivated edible species, notably plantation, they are then harvested once a year with- D. cayenensis Lam. and D. rotundata Poir. that orig- out seasonal constraints. This yam is an important inated in West Africa, D. nummularia Lam., a tem- food used in times of food scarcity in Vanuatu (Sar- perate yam, D. opposita Thunb. (probably a synonym dos, 2008; Lebot, 2009). In addition to the common of D. japonica Thunb.), D. transversa R.Br. from semi-perennial cultivars, some rare annual cultivars, Southeast Asia and Oceania; and D. alata L. for e.g. ‘Lapenae’, have also been reported (Malapa, which the origin remains unknown. Although many 2005). studies have attempted to clarify the relationships Additionally, another group of yams belonging to between African species (Cha€ır et al., 2005; Girma unidentified taxa (Malapa, 2005) and named ‘strong et al., 2014), the relationships between Asian and yam’ by farmers in Vanuatu, is also cultivated in Oceanian species, namely D. alata, D. nummularia Oceania, often in the same plots as D. alata. Strong and D. transversa, remain unclear. yams are also annual types and are appreciated for Dioscorea alata, or greater yam, is believed to have their high dry matter content when compared with originated from Southeast Asia (Burkill, 1960) and D. alata. Generally associated with D. nummularia then to have been introduced to the South Pacific [e.g. Kirch (1994) for Futuna or Thaman (1988) in islands, where it has a high cultural value. It was Fiji], some of the strong yam cultivars grown in Van- dispersed from New Guinea by the first Lapita set- uatu, but not all, have been recently associated with tlers who spread eastwards from the Bismarck the Australian species D. transversa. Strong yams Archipelago > 3000 years ago (Kirch, 2000; Bedford, cultivars named ‘Marou’ (Malapa et al., 2006) are 2006). It is now the most widely distributed culti- believed to have been introduced into neighbouring vated yam species in the world and is probably also New Caledonia at the beginning of the 20th century the oldest, with an ancient domestication history by blackbirded workers coming back from Queens- (Hahn, 1995; Lebot, 2009). Dioscorea alata is a mor- land (Bourret, 1973) and to have further spread to phologically distinct species, although unknown in Vanuatu. the wild, and is not known to hybridize with other Dioscorea transversa, or pencil yam, is an Aus- Dioscorea spp. (Lebot et al., 1998). It was suggested tralian species growing in eastern and northern that it could have been domesticated by human parts of the country. It was commonly harvested, selection from wild forms of common origin with consumed and even stored by Australian Aboriginals D. hamiltonii Hook.f., and the synonymous D. per- (Clarke, 2007). Dioscorea transversa is not cultivated similis Prain & Burk., occurring in an area extend- in continental Asia and, so far, it has been reported ing from northern India to Taiwan (Coursey, 1976; only in Melanesia and Australia. Its edible tubers http://e-monocot.org). However, recent amplified frag- have high dry matter content and good organoleptic ment length polymorphism (AFLP) studies indicated quality, higher than D. alata and similar to D. num- that this species is not the direct ancestor of mularia (Lebot, 2009). D. alata, and D. alata is close to D. nummularia and Despite the unique square stems with wings at a cultivated form of yam found in Oceanian islands each angle of D. alata, confusion over its morphology thought to be D. transversa (Malapa et al., 2005). with D. nummularia and D. transversa has been Proximity of D. nummularia and D. alata was con- reported in the Philippines (Cruz & Ramirez, 1999), firmed with subsequent rbcL and matK sequencing Indonesia (Sastrapradja, 1982) and New Caledonia (Wilkin et al., 2005). (Bourret, 1973). Consequently, and despite their Dioscorea nummularia, or spiny yam, is native to major importance in local diets, the taxonomy of Melanesia and to Island South-East Asia (ISEA) these three species in section Enantiophyllum and (http://e-monocot.org). An important centre of diver- their phylogenetic relationships remain unclear: the sity is most probably New Guinea, but in the Solo- strong yams cannot be strictly assigned to a particu- mon Islands and Vanuatu spontaneous and wild lar species, the relationships between D. nummula- forms also occur in the forest in addition to several ria and D. alata are still not resolved and their cultivars (Walter & Lebot, 2003). Dioscorea nummu- phylogenetic relationships with D. transversa remain laria is known in Vanuatu, where this species has unclear. been the most documented (Malapa, 2005), as ‘wael In the present study, herbarium specimens were yam’, which means wild yam in Bislama, a local Pid- used as taxonomic references and two plastid non- gin English. It is a spontaneous and semi-perennial coding regions, namely trnL-F (Taberlet et al., 1991) yam subjected to unusual cultivation practices that and the rpl32-trnL(UAG) intergenic spacer (Shaw are close to paracultivation (Dounias, 2001). Tubers et al., 2007), widely used for studying intra- and are planted under the canopy and living trees are interspecific-level phylogenetic relationships were © 2016 The Linnean Society of London, Botanical Journal of the Linnean Society 2016 YAM OCEANIA 3 combined. Consequently, the phylogenetic relation- societies (Hallam, 1975; Denham, 2008) and was ships of the three yam species commonly planted in apparently cultivated in large plots (Grey in Gam- Melanesia, namely D. transversa, D. nummularia mage, 2009). Today, it is not consumed and its distri- and D. alata, and the strong yams were investigated. bution is restricted to the west coast of Australia. In addition and to explore all possible origins of the Of the 28 specimens from field collections, provided strong yams and resolve the difficulty met in classi- by the Vanuatu Agricultural and Technical Center fying them, putative hybridization events between (VARTC), six belong to D. alata, seven belong to the the different taxa were also investigated using a set local strong yam group and 15 specimens are identi- of nuclear microsatellite markers. Lastly, the find- fied as D. nummularia and classified as wael yam, ings are discussed to address the impact of the tradi- including one specimen, DnLapenae, which is culti- tional management system on yam phylogenetics in vated by farmers as an annual crop.
Recommended publications
  • Dioscorea Sphaeroidea (Dioscoreaceae), a Threatened New Species from the High- Altitude Grasslands of Southeastern Brazil with Wingless Seeds
    Phytotaxa 163 (4): 229–234 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.163.4.3 Dioscorea sphaeroidea (Dioscoreaceae), a threatened new species from the high- altitude grasslands of southeastern Brazil with wingless seeds RICARDO SOUSA COUTO1*, ROSANA CONRADO LOPES2 & JOÃO MARCELO ALVARENGA BRAGA3 1Museu Nacional, Universidade Federal do Rio de Janeiro. Quinta da Boa Vista s.n., São Cristovão. 20940-040, Rio de Janeiro, RJ, Brazil 2Universidade Federal do Rio de Janeiro. Rua Prof. Rodolfo Paulo Rocco s.n., CCS. 21941-490, Rio de Janeiro, RJ, Brazil. 3Instituto de Pesquisas Jardim Botânico do Rio de Janeiro. Rua Pacheco Leão, 915. 22460-030, Rio de Janeiro, RJ, Brazil. *Corresponding author: [email protected] Abstract Dioscorea sphaeroidea is endemic to the high-altitude grasslands of the Serra dos Órgãos National Park located in southeastern Brazil. Based on the spheroid shape of its fruit and seed, i.e., not flattened or winged, this new species is morphologically unusual in the Dioscorea genus. Moreover, its unique morphology leaves this new species with no clear position in the infrageneric taxonomy of Dioscorea. Herein we present the morphological description of this species, including a discussion of its ecology and habitat, distribution, and preliminary risk of extinction assessment. Key words: Atlantic rainforest, critically endangered species, Dioscoreales, endemism, neotropics Introduction Dioscoreaceae is comprised of four genera and about 650 species distributed worldwide, but particularly in tropical regions (Govaerts et al. 2007; WCSP 2014). With over 600 species, Dioscorea Linnaeus (1753: 1032) is the genus with largest number of species, and it is the most widely distributed genus in the family (Govaerts et al.
    [Show full text]
  • Tree of Life Marula Oil in Africa
    HerbalGram 79 • August – October 2008 HerbalGram 79 • August Herbs and Thyroid Disease • Rosehips for Osteoarthritis • Pelargonium for Bronchitis • Herbs of the Painted Desert The Journal of the American Botanical Council Number 79 | August – October 2008 Herbs and Thyroid Disease • Rosehips for Osteoarthritis • Pelargonium for Bronchitis • Herbs of the Painted Desert • Herbs of the Painted Bronchitis for Osteoarthritis Disease • Rosehips for • Pelargonium Thyroid Herbs and www.herbalgram.org www.herbalgram.org US/CAN $6.95 Tree of Life Marula Oil in Africa www.herbalgram.org Herb Pharm’s Botanical Education Garden PRESERVING THE FULL-SPECTRUM OF NATURE'S CHEMISTRY The Art & Science of Herbal Extraction At Herb Pharm we continue to revere and follow the centuries-old, time- proven wisdom of traditional herbal medicine, but we integrate that wisdom with the herbal sciences and technology of the 21st Century. We produce our herbal extracts in our new, FDA-audited, GMP- compliant herb processing facility which is located just two miles from our certified-organic herb farm. This assures prompt delivery of freshly-harvested herbs directly from the fields, or recently HPLC chromatograph showing dried herbs directly from the farm’s drying loft. Here we also biochemical consistency of 6 receive other organic and wildcrafted herbs from various parts of batches of St. John’s Wort extracts the USA and world. In producing our herbal extracts we use precision scientific instru- ments to analyze each herb’s many chemical compounds. However, You’ll find Herb Pharm we do not focus entirely on the herb’s so-called “active compound(s)” at fine natural products and, instead, treat each herb and its chemical compounds as an integrated whole.
    [Show full text]
  • Pacific Root Crops
    module 4 PACIFIC ROOT CROPS 60 MODULE 4 PACIFIC ROOT CROPS 4.0 ROOT CROPS IN THE PACIFIC Tropical root crops are grown widely throughout tropical and subtropical regions around the world and are a staple food for over 400 million people. Despite a growing reliance on imported flour and rice products in the Pacific, root crops such as taro (Colocasia esculenta), giant swamp taro (Cyrtosperma chamissonis), giant taro (Alocasia macrorhhiza), tannia (Xanthosoma sagittifolium), cassava (Manihot esculenta), sweet potato (Ipomoea batatas) and yams (Dioscorea spp.) remain critically important components of many Pacific Island diets, particularly for the large rural populations that still prevail in many PICTs (Table 4.1). Colocasia taro, one of the most common and popular root crops in the region, has become a mainstay of many Pacific Island cultures. Considered a prestige crop, it is the crop of choice for traditional feasts, gifts and fulfilling social obligations in many PICTs. Though less widely eaten, yams, giant taro and giant swamp taro are also culturally and nutritionally important in some PICTs and have played an important role in the region’s food security. Tannia, cassava and sweet potato are relatively newcomers to the Pacific region but have rapidly gained traction among some farmers on account of their comparative ease of establishment and cultivation, and resilience to pests, disease and drought. Generations of accumulated traditional knowledge relating to seasonal variations in rainfall, temperature, winds and pollination, and their influence on crop planting and harvesting times now lie in jeopardy given the unparalleled speed of environmental change impacting the region.
    [Show full text]
  • Weed Notes: Dioscorea Bulbifera, D. Alata, D. Sansibarensis Tunyalee
    Weed Notes: Dioscorea bulbifera, D. alata, D. sansibarensis TunyaLee Morisawa The Nature Conservancy Wildland Invasive Species Program http://tncweeds.ucdavis.edu 27 September 1999 Background: Dioscorea bulbifera L. is commonly called air-potato, potato vine, and air yam. The genus Dioscorea (true yams) is economically important world-wide as a food crop. Two-thirds of the worldwide production is grown in West Africa. The origin of D. bulbifera is uncertain. Some believe that the plant is native to both Asia and Africa. Others believe that it is a native of Asia and was subsequently introduced into Africa (Hammer, 1998). In 1905, D. bulbifera was imported into Florida for scientific study. A perennial herbaceous vine with annual stems, D. bulbifera climbs to a height of 9 m or more by twining to the left. Potato vine has alternate, orbicular to cordate leaves, 10-25 cm wide, with prominent veins (Hammer, 1998). Dioscorea alata (white yam), also found in Florida, is recognizable by its winged stems. These wings are often pink on plants growing in the shade. Unlike D. bulbifera, D. alata twines to the right. Native to Southeast Asia and Indo-Malaysia, this species is also grown as a food crop. The leaves are heart-shaped like D. bulbifera, but more elongate and primarily opposite. Sometimes the leaves are alternate in young, vigorous stems and often one leaf is aborted and so the vine appears to be alternate, but the remaining leaf scar is still visible. Stems may root and develop underground tubers that can reach over 50 kg in weight if they touch damp soil.
    [Show full text]
  • Micronesica 38(1):93–120, 2005
    Micronesica 38(1):93–120, 2005 Archaeological Evidence of a Prehistoric Farming Technique on Guam DARLENE R. MOORE Micronesian Archaeological Research Services P.O. Box 22303, GMF, Guam, 96921 Abstract—On Guam, few archaeological sites with possible agricultural features have been described and little is known about prehistoric culti- vation practices. New information about possible upland planting techniques during the Latte Phase (c. A.D. 1000–1521) of Guam’s Prehistoric Period, which began c. 3,500 years ago, is presented here. Site M201, located in the Manenggon Hills area of Guam’s interior, con- tained three pit features, two that yielded large pieces of coconut shell, bits of introduced calcareous rock, and several large thorns from the roots of yam (Dioscorea) plants. A sample of the coconut shell recovered from one of the pits yielded a calibrated (2 sigma) radiocarbon date with a range of A.D. 986–1210, indicating that the pits were dug during the early Latte Phase. Archaeological evidence and historic literature relat- ing to planting, harvesting, and cooking of roots and tubers on Guam suggest that some of the planting methods used in historic to recent times had been used at Site M201 near the beginning of the Latte Phase, about 1000 years ago. I argue that Site M201 was situated within an inland root/tuber agricultural zone. Introduction The completion of numerous archaeological projects on Guam in recent years has greatly increased our knowledge of the number and types of prehis- toric sites, yet few of these can be considered agricultural. Descriptions of agricultural terraces, planting pits, irrigation canals, or other agricultural earth works are generally absent from archaeological site reports, although it has been proposed that some of the piled rock alignments in northern Guam could be field boundaries (Liston 1996).
    [Show full text]
  • Plant Production--Root Vegetables--Yams Yams
    AU.ENCI FOR INTERNATIONAL DEVILOPME4T FOR AID USE ONLY WASHINGTON. 0 C 20823 A. PRIMARYBIBLIOGRAPHIC INPUT SHEET I. SUBJECT Bbliography Z-AFOO-1587-0000 CL ASSI- 8 SECONDARY FICATIDN Food production and nutrition--Plant production--Root vegetables--Yams 2. TITLE AND SUBTITLE A bibliography of yams and the genus Dioscorea 3. AUTHOR(S) Lawani,S.M.; 0dubanjo,M.0. 4. DOCUMENT DATE IS. NUMBER OF PAGES 6. ARC NUMBER 1976 J 199p. ARC 7. REFERENCE ORGANIZATION NAME AND ADDRESS IITA 8. SUPPLEMENTARY NOTES (Sponaoring Ordanization, Publlahera, Availability) (No annotations) 9. ABSTRACT This bibliography on yams bring together the scattered literature on the genus Dioscorea from the early nineteenth century through 1975. The 1,562 entries in this bibliography are grouped into 36 subject categories, and arranged within each category alphabetically by author. Some entries, particularly those whose titles are not sufficiently informative, are annotated. The major section titles in the book are as follows: general and reference works; history and eography; social and cultural importance; production and economics; botany including taxonomy, genetics, and breeding); yam growing (including fertilizers and plant nutrition); pests and diseases; storage; processing; chemical composition, nutritive value, and utilization; toxic and pharmacologically active constituents; author index; and subject index. Most entries are in English, with a few in French, Spanish, or German. 10. CONTROL NUMBER I1. PRICE OF DOCUMENT PN-AAC-745 IT. DrSCRIPTORS 13. PROJECT NUMBER Sweet potatoes Yams 14. CONTRACT NUMBER AID/ta-G-1251 GTS 15. TYPE OF DOCUMENT AID 590-1 44-741 A BIBLIOGRAPHY OF YAMS AND THE GENUS DIOSCOREA by S.
    [Show full text]
  • The Hawaiian Islands Case Study Robert F
    FEATURE Origin of Horticulture in Southeast Asia and the Dispersal of Domesticated Plants to the Pacific Islands by Polynesian Voyagers: The Hawaiian Islands Case Study Robert F. Bevacqua1 Honolulu Botanical Gardens, 50 North Vineyard Boulevard, Honolulu, HI 96817 In the islands of Southeast Asia, following the valleys of the Euphrates, Tigris, and Nile tuber, and fruit crops, such as taro, yams, the Pleistocene or Ice ages, the ancestors of the rivers—and that the first horticultural crops banana, and breadfruit. Polynesians began voyages of exploration into were figs, dates, grapes, olives, lettuce, on- Chang (1976) speculates that the first hor- the Pacific Ocean (Fig. 1) that resulted in the ions, cucumbers, and melons (Halfacre and ticulturists were fishers and gatherers who settlement of the Hawaiian Islands in A.D. 300 Barden, 1979; Janick, 1979). The Greek, Ro- inhabited estuaries in tropical Southeast Asia. (Bellwood, 1987; Finney, 1979; Irwin, 1992; man, and European civilizations refined plant They lived sedentary lives and had mastered Jennings, 1979; Kirch, 1985). These skilled cultivation until it evolved into the discipline the use of canoes. The surrounding terrestrial mariners were also expert horticulturists, who we recognize as horticulture today (Halfacre environment contained a diverse flora that carried aboard their canoes many domesti- and Barden, 1979; Janick, 1979). enabled the fishers to become intimately fa- cated plants that would have a dramatic impact An opposing view associates the begin- miliar with a wide range of plant resources. on the natural environment of the Hawaiian ning of horticulture with early Chinese civili- The first plants to be domesticated were not Islands and other areas of the world.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Discovery of Three Varieties of Dioscorea Trifida Grown in Venezuelan Amazons, with Quite Low-Amylose Starch: I
    Discovery of three varieties of Dioscorea trifida grown in Venezuelan Amazons, with quite low-amylose Starch: I. Physical attributes and proximate composition of the tubers and characterization of its waxy starches. Pérez, E.; Jiménez, Y.; Dufour, D.; Sanchez, T., Giraldo, A.; Gibert, O.; Reynes, M. Instituto de Ciencia y Tecnología de Alimentos (ICTA), Facultad de Ciencias Universidad Central de Venezuela. International Centre for Tropical Agriculture (CIAT), Cali, Colombia Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR, Qualisud, Montpellier, Francia ABSTRACT Yam Dioscorea trifida, is an economical and cultural important crop for indigenous from Amazon region of South America. These crops could be a potential supply of starch that would be good source for different food industries. Nonetheless, is very little known about their composition and its starch type. Consequently, in this study were characterized the physical attributes and proximate composition of the tubers, and were also isolated, purified and characterized the starches of three varieties of Dioscorea trifida, cultured at the Amazons of Venezuela by the indigenous community “Piaroa”. Results reveal noticeable differences in the morphology, whole external appearance of the three tubers, and also in the color, forms and sizes. The protein, ash, starch and fat contents were higher in the white variety than those of purple and black ones, but the total carbohydrates showed inverse tendency. The dietary fiber content was obviously higher in the black variety, than the other two. Despite in literature there are not report for waxy Dioscorea trifida, the data of amylose content reveal that these starches are waxy. Its starches are white with quite low amylose content, with some mineral content, especially phosphorous, with similar rheological behaviors; exhibiting a quite stable viscosity during the holding stage, high breakdown, similar consistency and low setback upon cooling down.
    [Show full text]
  • Alien Flora of Europe: Species Diversity, Temporal Trends, Geographical Patterns and Research Needs
    Preslia 80: 101–149, 2008 101 Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs Zavlečená flóra Evropy: druhová diverzita, časové trendy, zákonitosti geografického rozšíření a oblasti budoucího výzkumu Philip W. L a m b d o n1,2#, Petr P y š e k3,4*, Corina B a s n o u5, Martin H e j d a3,4, Margari- taArianoutsou6, Franz E s s l7, Vojtěch J a r o š í k4,3, Jan P e r g l3, Marten W i n t e r8, Paulina A n a s t a s i u9, Pavlos A n d r i opoulos6, Ioannis B a z o s6, Giuseppe Brundu10, Laura C e l e s t i - G r a p o w11, Philippe C h a s s o t12, Pinelopi D e l i p e t - rou13, Melanie J o s e f s s o n14, Salit K a r k15, Stefan K l o t z8, Yannis K o k k o r i s6, Ingolf K ü h n8, Hélia M a r c h a n t e16, Irena P e r g l o v á3, Joan P i n o5, Montserrat Vilà17, Andreas Z i k o s6, David R o y1 & Philip E. H u l m e18 1Centre for Ecology and Hydrology, Hill of Brathens, Banchory, Aberdeenshire AB31 4BW, Scotland, e-mail; [email protected], [email protected]; 2Kew Herbarium, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AB, United Kingdom; 3Institute of Bot- any, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic, e-mail: [email protected], [email protected], [email protected], [email protected]; 4Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 01 Praha 2, Czech Republic; e-mail: [email protected]; 5Center for Ecological Research and Forestry Applications, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain, e-mail: [email protected], [email protected]; 6University of Athens, Faculty of Biology, Department of Ecology & Systematics, 15784 Athens, Greece, e-mail: [email protected], [email protected], [email protected], [email protected], [email protected]; 7Federal Environment Agency, Department of Nature Conservation, Spittelauer Lände 5, 1090 Vienna, Austria, e-mail: [email protected]; 8Helmholtz Centre for Environmental Research – UFZ, Department of Community Ecology, Theodor-Lieser- Str.
    [Show full text]
  • Université Des Antilles Et De La Guyane Faculté De Sciences Exactes Et Naturelles École Doctorale Pluridisciplinaire
    Université des Antilles et de la Guyane Faculté de Sciences Exactes et Naturelles École doctorale pluridisciplinaire Thèse pour le doctorat en Sciences de la Vie NEMORIN Alice Acquisition de connaissances sur la génétique de l’espèce Dioscorea alata L. pour la production de variétés polyploïdes Sous la direction de Jacques DAVID et Amadou BA Soutenue le 29 Juin 2012 à l’Université des Antilles et de la Guyane Jury : Anne-Marie CHEVRE, Directeur de recherche, INRA Rennes, Rapporteur Alexandre DANSI, Professeur, Université d’Abomey-Calavi Benin, Rapporteur Jacques DAVID, Professeur, Supagro Montpellier, Directeur de thèse Gemma ARNAU, Checheur, CIRAD Guadeloupe, examinateur Alain ROUSTEAU, Maître de conférences, UAG Guadeloupe, examinateur Nora SCARCELLI, Chercheur, IRD Montpellier, examinateur A mes parents Alexandrine CECILIA NEMORIN et Joël NEMORIN qui ont été mes épaules, au fruit de mes entrailles mon fils Alan KANDASSAMY—NEMORIN qui a été mon cœur, à mon compagnon Alain KANDASSAMY qui été ma côte, à mes frères et sœurs Michel, Fanny et Maxime qui ont été mes bras droits et à mon souffle, l’Invisible omniprésent… « On cultivait la fleur d’igname car on disait qu’elle réjouissait le cœur des bons esprits. Mais rares étaient ceux qui s’y essayaient. La plante en effet était délicate, poussait difficilement, et de plus, ses feuilles, même cuisinées, ne se mangeaient pas. » Isabelle REVOL, 2001, p.5. Fleur d’igname, Nouméa, Éditions Catherine Ledru, 24 p. Demeurez toujours attachés à vos racines… ii Remerciements Ce chapitre a débuté un beau matin en 2007 où Mr Daugrois m’a suggéré de faire une thèse alors que j’avais déjà renoncé à cette idée.
    [Show full text]
  • A Practical Guide to Identifying Yams CROPS
    CROPS IRETA Publication 1/88 A Practical Guide to Identifying Yams The Main Species of Dioscorea in the Pacific Islands AUTHOR: Jill E. Wilson, Senior Fellow, USP Institute for Research, Extension and Training in Agriculture. Assisted by Linda S. Hamilton, Project Manager, South Pacific Region Agricultural Development Project. All or part of this publication may be reproduced for educational purposes. When doing so, please credit the USP Institute for Research, Extension and Training in Agriculture (IRETA). Published February 1988, by the Institute for Research, Extension and Training in Agriculture with financial assistance from the US Agency for International Development, SPRAD Project. IRETA Publications USP Alafua Campus P.O. Private Bag Apia, WESTERN SAMOA 28/88-1.5M Here is a simple guide to identifying the species of cultivated yams (Dioscorea) commonly found in the Pacific Islands. To use this guide in the field, look first at the way the yam stem twines as it climbs up its support. Then follow the guide, using other characteristics such as presence or absence of spines, aerial tubers, etc., to identify the species. Check your decision by reading the descriptive notes given for each species at the end of the guide. Stems Climb to the Right * Stem at BASE of plant usually winged but in * Stems at TOP of plant round some cultivars has few D. alata or with more than 4 ridges. spines and no wings. * Aerial tubers (bulbils) in some cultivars. * Many spines at stem BASE. * Long lateral branches. * Short tuber dormancy Stems climb to the (usually shorter than D. nummularia RIGHT.
    [Show full text]