Sage Quick Reference: Calculus William Stein Sage Version 3.4 Http

Total Page:16

File Type:pdf, Size:1020Kb

Sage Quick Reference: Calculus William Stein Sage Version 3.4 Http Sage Quick Reference: Calculus William Stein Simplifying and expanding Integrals Sage Version 3.4 Below f must be symbolic (so not a Python function): f(x)dx = integral(f,x) = f.integrate(x) http://wiki.sagemath.org/quickref Simplify: f.simplify_exp(), f.simplify_full(), integral(x*cos(x^2), x) GNU Free Document License, extend for your own use ! f.simplify_log(), f.simplify_radical(), b f(x)dx = integral(f,x,a,b) f.simplify_rational(), f.simplify_trig() a integral(x*cos(x^2), x, 0, sqrt(pi)) ! Expand: f.expand(), f.expand_rational() b Builtin constants and functions f(x)dx numerical_integral(f(x),a,b)[0] a ≈ numerical_integral(x*cos(x^2),0,1)[0] Constants: π = pi e = e i = I = i Equations ! = oo = infinity NaN=NaN log(2) =log2 assume(...): use if integration asks a question ∞ Relations: f = g: f == g, f = g: f != g, φ = golden_ratio γ = euler_gamma f g: f <= g, f & g: f >= g, assume(x>0) 0.915 catalan 2.685 khinchin f <≤ g: f < g, f >≥ g: f > g ≈ ≈ 0.660 twinprime 0.261 merten 1.902 brun Taylor and partial fraction expansion ≈ ≈ ≈ Solve f = g: solve(f == g, x), and Approximate: pi.n(digits=18) = 3.14159265358979324 solve([f == 0, g == 0], x,y) Taylor polynomial, deg n about a: n Builtin functions: sin cos tan sec csc cot sinh taylor(f,x,a,n) c0 + c1(x a) + + cn(x a) solve([x^2+y^2==1, (x-1)^2+y^2==1],x,y) ≈ − · · · − cosh tanh sech csch coth log ln exp ... Solutions: taylor(sqrt(x+1), x, 0, 5) S = solve(x^2+x+1==0, x, solution_dict=True) Partial fraction: Defining symbolic expressions S[0]["x"] S[1]["x"] are the solutions (x^2/(x+1)^3).partial_fraction() Create symbolic variables: Exact roots: (x^3+2*x+1).roots(x) var("t u theta") or var("t,u,theta") Real roots: (x^3+2*x+1).roots(x,ring=RR) Numerical roots and optimization Use * for multiplication and ^ for exponentiation: Complex roots: (x^3+2*x+1).roots(x,ring=CC) Numerical root: f.find_root(a, b, x) 5 2x + √2 = 2*x^5 + sqrt(2) (x^2 - 2).find_root(1,2,x) Typeset: show(2*theta^5 + sqrt(2)) 2θ5 + √2 Maximize: find (m, x ) with f(x ) = m maximal −→ 0 0 Factorization f.find_maximum_on_interval(a, b, x) Symbolic functions Factored form: (x^3-y^3).factor() Minimize: find (m, x0) with f(x0) = m minimal Symbolic function (can integrate, differentiate, etc.): List of (factor, exponent) pairs: f.find_minimum_on_interval(a, b, x) f(a,b,theta) = a + b*theta^2 (x^3-y^3).factor_list() Minimization: minimize(f, start point) Also, a “formal” function of theta: minimize(x^2+x*y^3+(1-z)^2-1, [1,1,1]) f = function(’f’,theta) Limits lim f(x) = limit(f(x), x=a) Multivariable calculus Piecewise symbolic functions: x a → Piecewise([[(0,pi/2),sin(x)],[(pi/2,pi),x^2+1]]) limit(sin(x)/x, x=0) Gradient: f.gradient() or f.gradient(vars) (x^2+y^2).gradient([x,y]) lim f(x) = limit(f(x), x=a, dir=’plus’) x a+ → Hessian: f.hessian() limit(1/x, x=0, dir=’plus’) (x^2+y^2).hessian() lim f(x) = limit(f(x), x=a, dir=’minus’) Jacobian matrix: jacobian(f, vars) x a → − limit(1/x, x=0, dir=’minus’) jacobian(x^2 - 2*x*y, (x,y)) Summing infinite series Python functions Derivatives Defining: d (f(x)) = diff(f(x),x) = f.diff(x) dx ∞ 1 π2 def f(a, b, theta=1): ∂ (f(x, y)) = diff(f(x,y),x) = ∂x n2 6 n=1 c = a + b*theta^2 diff = differentiate = derivative " return c diff(x*y + sin(x^2) + e^(-x), x) Not yet implemented, but you can use Maxima: Inline functions: s = ’sum (1/n^2,n,1,inf), simpsum’ SR(sage.calculus.calculus.maxima(s)) π2/6 f = lambda a, b, theta = 1: a + b*theta^2 −→.
Recommended publications
  • Sagemath and Sagemathcloud
    Viviane Pons Ma^ıtrede conf´erence,Universit´eParis-Sud Orsay [email protected] { @PyViv SageMath and SageMathCloud Introduction SageMath SageMath is a free open source mathematics software I Created in 2005 by William Stein. I http://www.sagemath.org/ I Mission: Creating a viable free open source alternative to Magma, Maple, Mathematica and Matlab. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 2 / 7 SageMath Source and language I the main language of Sage is python (but there are many other source languages: cython, C, C++, fortran) I the source is distributed under the GPL licence. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 3 / 7 SageMath Sage and libraries One of the original purpose of Sage was to put together the many existent open source mathematics software programs: Atlas, GAP, GMP, Linbox, Maxima, MPFR, PARI/GP, NetworkX, NTL, Numpy/Scipy, Singular, Symmetrica,... Sage is all-inclusive: it installs all those libraries and gives you a common python-based interface to work on them. On top of it is the python / cython Sage library it-self. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 4 / 7 SageMath Sage and libraries I You can use a library explicitly: sage: n = gap(20062006) sage: type(n) <c l a s s 'sage. interfaces .gap.GapElement'> sage: n.Factors() [ 2, 17, 59, 73, 137 ] I But also, many of Sage computation are done through those libraries without necessarily telling you: sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]]) sage : G . g a p () Group( [ (3,4), (1,2,3)(4,5) ] ) Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 5 / 7 SageMath Development model Development model I Sage is developed by researchers for researchers: the original philosophy is to develop what you need for your research and share it with the community.
    [Show full text]
  • Plotting Direction Fields in Matlab and Maxima – a Short Tutorial
    Plotting direction fields in Matlab and Maxima – a short tutorial Luis Carvalho Introduction A first order differential equation can be expressed as dx x0(t) = = f(t; x) (1) dt where t is the independent variable and x is the dependent variable (on t). Note that the equation above is in normal form. The difficulty in solving equation (1) depends clearly on f(t; x). One way to gain geometric insight on how the solution might look like is to observe that any solution to (1) should be such that the slope at any point P (t0; x0) is f(t0; x0), since this is the value of the derivative at P . With this motivation in mind, if you select enough points and plot the slopes in each of these points, you will obtain a direction field for ODE (1). However, it is not easy to plot such a direction field for any function f(t; x), and so we must resort to some computational help. There are many computational packages to help us in this task. This is a short tutorial on how to plot direction fields for first order ODE’s in Matlab and Maxima. Matlab Matlab is a powerful “computing environment that combines numeric computation, advanced graphics and visualization” 1. A nice package for plotting direction field in Matlab (although resourceful, Matlab does not provide such facility natively) can be found at http://math.rice.edu/»dfield, contributed by John C. Polking from the Dept. of Mathematics at Rice University. To install this add-on, simply browse to the files for your version of Matlab and download them.
    [Show full text]
  • CAS (Computer Algebra System) Mathematica
    CAS (Computer Algebra System) Mathematica- UML students can download a copy for free as part of the UML site license; see the course website for details From: Wikipedia 2/9/2014 A computer algebra system (CAS) is a software program that allows [one] to compute with mathematical expressions in a way which is similar to the traditional handwritten computations of the mathematicians and other scientists. The main ones are Axiom, Magma, Maple, Mathematica and Sage (the latter includes several computer algebras systems, such as Macsyma and SymPy). Computer algebra systems began to appear in the 1960s, and evolved out of two quite different sources—the requirements of theoretical physicists and research into artificial intelligence. A prime example for the first development was the pioneering work conducted by the later Nobel Prize laureate in physics Martin Veltman, who designed a program for symbolic mathematics, especially High Energy Physics, called Schoonschip (Dutch for "clean ship") in 1963. Using LISP as the programming basis, Carl Engelman created MATHLAB in 1964 at MITRE within an artificial intelligence research environment. Later MATHLAB was made available to users on PDP-6 and PDP-10 Systems running TOPS-10 or TENEX in universities. Today it can still be used on SIMH-Emulations of the PDP-10. MATHLAB ("mathematical laboratory") should not be confused with MATLAB ("matrix laboratory") which is a system for numerical computation built 15 years later at the University of New Mexico, accidentally named rather similarly. The first popular computer algebra systems were muMATH, Reduce, Derive (based on muMATH), and Macsyma; a popular copyleft version of Macsyma called Maxima is actively being maintained.
    [Show full text]
  • Running Sagemath (With Or Without Installation)
    Running SageMath (with or without installation) http://www.sagemath.org/ Éric Gourgoulhon Running SageMath 9 Feb. 2017 1 / 5 Various ways to install/access SageMath 7.5.1 Install on your computer: 2 options: install a compiled binary version for Linux, MacOS X or Windows1 from http://www.sagemath.org/download.html compile from source (Linux, MacOS X): check the prerequisites (see here for Ubuntu) and run git clone git://github.com/sagemath/sage.git cd sage MAKE=’make -j8’ make Run on your computer without installation: Sage Debian Live http://sagedebianlive.metelu.net/ Bootable USB flash drive with SageMath (boosted with octave, scilab), Geogebra, LaTeX, gimp, vlc, LibreOffice,... Open a (free) account on SageMathCloud https://cloud.sagemath.com/ Run in SageMathCell Single cell mode: http://sagecell.sagemath.org/ 1requires VirtualBox; alternatively, a full Windows installer is in pre-release stage at https://github.com/embray/sage-windows/releases Éric Gourgoulhon Running SageMath 9 Feb. 2017 2 / 5 Example 1: installing on Ubuntu 16.04 1 Download the archive sage-7.5.1-Ubuntu_16.04-x86_64.tar.bz2 from one the mirrors listed at http://www.sagemath.org/download-linux.html 2 Run the following commands in a terminal: bunzip2 sage-7.5.1-Ubuntu_16.04-x86_64.tar.bz2 tar xvf sage-7.5.1-Ubuntu_16.04-x86_64.tar cd SageMath ./sage -n jupyter A Jupyter home page should then open in your browser. Click on New and select SageMath 7.5.1 to open a Jupyter notebook with a SageMath kernel. Éric Gourgoulhon Running SageMath 9 Feb. 2017 3 / 5 Example 2: using the SageMathCloud 1 Open a free account on https://cloud.sagemath.com/ 2 Create a new project 3 In the second top menu, click on New to create a new file 4 Select Jupyter Notebook for the file type 5 In the Jupyter menu, click on Kernel, then Change kernel and choose SageMath 7.5 Éric Gourgoulhon Running SageMath 9 Feb.
    [Show full text]
  • Some Effective Methods for Teaching Mathematics Courses in Technological Universities
    International Journal of Education and Information Studies. ISSN 2277-3169 Volume 6, Number 1 (2016), pp. 11-18 © Research India Publications http://www.ripublication.com Some Effective Methods for Teaching Mathematics Courses in Technological Universities Dr. D. S. Sankar Professor, School of Applied Sciences and Mathematics, Universiti Teknologi Brunei, Jalan Tungku Link, BE1410, Brunei Darussalam E-mail: [email protected] Dr. Rama Rao Karri Principal Lecturer, Petroleum and Chemical Engineering Programme Area, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam E-mail: [email protected] Abstract This article discusses some effective and useful methods for teaching various mathematics topics to the students of undergraduate and post-graduate degree programmes in technological universities. These teaching methods not only equip the students to acquire knowledge and skills for solving real world problems efficiently, but also these methods enhance the teacher’s ability to demonstrate the mathematical concepts effectively along with suitable physical examples. The exposure to mathematical softwares like MATLAB, SCILAB, MATHEMATICA, etc not only increases the students confidential level to solve variety of typical problems which they come across in their respective disciplines of study, but also it enables them to visualize the surfaces of the functions of several variable. Peer learning, seminar based learning and project based learning are other methods of learning environment to the students which makes the students to learn mathematics by themselves. These are higher level learning methods which enhances the students understanding on the mathematical concepts and it enables them to take up research projects. It is noted that the teaching and learning of mathematics with the support of mathematical softwares is believed to be more effective when compared to the effects of other methods of teaching and learning of mathematics.
    [Show full text]
  • Sage Tutorial (Pdf)
    Sage Tutorial Release 9.4 The Sage Development Team Aug 24, 2021 CONTENTS 1 Introduction 3 1.1 Installation................................................4 1.2 Ways to Use Sage.............................................4 1.3 Longterm Goals for Sage.........................................5 2 A Guided Tour 7 2.1 Assignment, Equality, and Arithmetic..................................7 2.2 Getting Help...............................................9 2.3 Functions, Indentation, and Counting.................................. 10 2.4 Basic Algebra and Calculus....................................... 14 2.5 Plotting.................................................. 20 2.6 Some Common Issues with Functions.................................. 23 2.7 Basic Rings................................................ 26 2.8 Linear Algebra.............................................. 28 2.9 Polynomials............................................... 32 2.10 Parents, Conversion and Coercion.................................... 36 2.11 Finite Groups, Abelian Groups...................................... 42 2.12 Number Theory............................................. 43 2.13 Some More Advanced Mathematics................................... 46 3 The Interactive Shell 55 3.1 Your Sage Session............................................ 55 3.2 Logging Input and Output........................................ 57 3.3 Paste Ignores Prompts.......................................... 58 3.4 Timing Commands............................................ 58 3.5 Other IPython
    [Show full text]
  • 2015 Program for Women and Mathematics
    2015 Program for Women and Mathematics SageMath Installation Instructions Below are instructions for configuring your personal computer to run SageMath. Since one of the files that you need to download is quite large in size, we recommended that you complete the steps below on your personal computer prior to the start of the 2015 Program for Women and Mathematics. If you run into any issues with these instructions on your personal computer, please contact the School of Mathematics Help Desk at [email protected] or visit the SageMath website (http://www.sagemath.org/). Fedora 21 Operating System 1. Download and unpack the Fedora 21 pre-built SageMath binary tarball from the following location: http://www.sagemath.org/download-linux.html. 2. Create a symbolic link in /usr/local/bin that points to the path where you unpacked the pre-built SageMath binary in Step 1. For example, ln -s /path/to/sage-x.y.z-x86_64-Linux/sage /usr/local/bin/sage 3. Navigate to /usr/local/bin. 4. Type sage and press the Enter button. 5. You will be prompted to install “sagemath”. Enter y. Please wait for all required packages to be downloaded and installed. 6. Once the installation is complete, type sage. 7. Type notebook() to launch the browser-based notebook interface. 8. Type in a new password for the SageMath Notebook “admin” account twice. 9. The SageMath browser-based notebook should now be displayed. How to exit the Sage appliance 1. Click on the Sign out link at the top of the SageMath browser based notebook interface.
    [Show full text]
  • Using Octave and Sagemath on Taito
    Using Octave and SageMath on Taito Sampo Sillanpää 17 October 2017 CSC – Finnish research, education, culture and public administration ICT knowledge center Octave ● Powerful mathematics-oriented syntax with built- in plotting and visualization tools. ● Free software, runs on GNU/Linux, macOS, BSD, and Windows. ● Drop-in compatible with many Matlab scripts. ● https://www.gnu.org/software/octave/ SageMath ● SageMath is a free open-source mathematics software system licensed under the GPL. ● Builds on top of many existing open-source packages: NumPy, SciPy, matplotlib, Sympy, Maxima, GAP, FLINT, R and many more. ● http://www.sagemath.org/ Octave on Taito ● Latest version 4.2.1 module load octave-env octave Or octave --no-gui ● Interactive sessions on Taito-shell via NoMachine client https://research.csc.5/-/nomachine Octave Forge ● A central location for development of packages for GNU Octave. ● Packages can be installed on Taito module load octave-env octave --no-gui octave:> pkg install -forge package_name octave:> pkg load package_name SageMath on Taito ● installed version 7.6. module load sagemath sage ● Interactive sessions on Taito-shell via NoMachine client. ● Browser-based notebook sage: notebook() Octave Batch Jobs #!/bin/bash -l #mytest.sh #SBATCH --constraint="snb|hsw" #SBATCH -o output.out #SBATCH -e stderr.err #SBATCH -p serial #SBATCH -n 1 #SBATCH -t 00:05:00 #SBATCH --mem-per-cpu=1000 module load octave-env octave --no-gui/wrk/user_name/example.m used_slurm_resources.bash [user@taito-login1]$ sbatch mytest.sh SageMath Batch Jobs #!/bin/bash -l #mytest.sh #SBATCH --constraint="snb|hsw" #SBATCH -o output.out #SBATCH -e stderr.err #SBATCH -p serial #SBATCH -n 1 #SBATCH -t 00:05:00 #SBATCH --mem-per-cpu=1000 module load sagemath sage /wrk/user_name/example.sage used_slurm_resources.bash [user@taito-login1]$ sbatch mytest.sh Instrucons and Documentaon ● Octave – https://research.csc.5/-/octave – https://www.gnu.org/software/octave/doc/interp reter/ ● SageMath – https://research.csc.5/-/sagemath – http://doc.sagemath.org/ [email protected].
    [Show full text]
  • Highlighting Wxmaxima in Calculus
    mathematics Article Not Another Computer Algebra System: Highlighting wxMaxima in Calculus Natanael Karjanto 1,* and Husty Serviana Husain 2 1 Department of Mathematics, University College, Natural Science Campus, Sungkyunkwan University Suwon 16419, Korea 2 Department of Mathematics Education, Faculty of Mathematics and Natural Science Education, Indonesia University of Education, Bandung 40154, Indonesia; [email protected] * Correspondence: [email protected] Abstract: This article introduces and explains a computer algebra system (CAS) wxMaxima for Calculus teaching and learning at the tertiary level. The didactic reasoning behind this approach is the need to implement an element of technology into classrooms to enhance students’ understanding of Calculus concepts. For many mathematics educators who have been using CAS, this material is of great interest, particularly for secondary teachers and university instructors who plan to introduce an alternative CAS into their classrooms. By highlighting both the strengths and limitations of the software, we hope that it will stimulate further debate not only among mathematics educators and software users but also also among symbolic computation and software developers. Keywords: computer algebra system; wxMaxima; Calculus; symbolic computation Citation: Karjanto, N.; Husain, H.S. 1. Introduction Not Another Computer Algebra A computer algebra system (CAS) is a program that can solve mathematical problems System: Highlighting wxMaxima in by rearranging formulas and finding a formula that solves the problem, as opposed to Calculus. Mathematics 2021, 9, 1317. just outputting the numerical value of the result. Maxima is a full-featured open-source https://doi.org/10.3390/ CAS: the software can serve as a calculator, provide analytical expressions, and perform math9121317 symbolic manipulations.
    [Show full text]
  • Insight MFR By
    Manufacturers, Publishers and Suppliers by Product Category 11/6/2017 10/100 Hubs & Switches ASCEND COMMUNICATIONS CIS SECURE COMPUTING INC DIGIUM GEAR HEAD 1 TRIPPLITE ASUS Cisco Press D‐LINK SYSTEMS GEFEN 1VISION SOFTWARE ATEN TECHNOLOGY CISCO SYSTEMS DUALCOMM TECHNOLOGY, INC. GEIST 3COM ATLAS SOUND CLEAR CUBE DYCONN GEOVISION INC. 4XEM CORP. ATLONA CLEARSOUNDS DYNEX PRODUCTS GIGAFAST 8E6 TECHNOLOGIES ATTO TECHNOLOGY CNET TECHNOLOGY EATON GIGAMON SYSTEMS LLC AAXEON TECHNOLOGIES LLC. AUDIOCODES, INC. CODE GREEN NETWORKS E‐CORPORATEGIFTS.COM, INC. GLOBAL MARKETING ACCELL AUDIOVOX CODI INC EDGECORE GOLDENRAM ACCELLION AVAYA COMMAND COMMUNICATIONS EDITSHARE LLC GREAT BAY SOFTWARE INC. ACER AMERICA AVENVIEW CORP COMMUNICATION DEVICES INC. EMC GRIFFIN TECHNOLOGY ACTI CORPORATION AVOCENT COMNET ENDACE USA H3C Technology ADAPTEC AVOCENT‐EMERSON COMPELLENT ENGENIUS HALL RESEARCH ADC KENTROX AVTECH CORPORATION COMPREHENSIVE CABLE ENTERASYS NETWORKS HAVIS SHIELD ADC TELECOMMUNICATIONS AXIOM MEMORY COMPU‐CALL, INC EPIPHAN SYSTEMS HAWKING TECHNOLOGY ADDERTECHNOLOGY AXIS COMMUNICATIONS COMPUTER LAB EQUINOX SYSTEMS HERITAGE TRAVELWARE ADD‐ON COMPUTER PERIPHERALS AZIO CORPORATION COMPUTERLINKS ETHERNET DIRECT HEWLETT PACKARD ENTERPRISE ADDON STORE B & B ELECTRONICS COMTROL ETHERWAN HIKVISION DIGITAL TECHNOLOGY CO. LT ADESSO BELDEN CONNECTGEAR EVANS CONSOLES HITACHI ADTRAN BELKIN COMPONENTS CONNECTPRO EVGA.COM HITACHI DATA SYSTEMS ADVANTECH AUTOMATION CORP. BIDUL & CO CONSTANT TECHNOLOGIES INC Exablaze HOO TOO INC AEROHIVE NETWORKS BLACK BOX COOL GEAR EXACQ TECHNOLOGIES INC HP AJA VIDEO SYSTEMS BLACKMAGIC DESIGN USA CP TECHNOLOGIES EXFO INC HP INC ALCATEL BLADE NETWORK TECHNOLOGIES CPS EXTREME NETWORKS HUAWEI ALCATEL LUCENT BLONDER TONGUE LABORATORIES CREATIVE LABS EXTRON HUAWEI SYMANTEC TECHNOLOGIES ALLIED TELESIS BLUE COAT SYSTEMS CRESTRON ELECTRONICS F5 NETWORKS IBM ALLOY COMPUTER PRODUCTS LLC BOSCH SECURITY CTC UNION TECHNOLOGIES CO FELLOWES ICOMTECH INC ALTINEX, INC.
    [Show full text]
  • Programming for Computations – Python
    15 Svein Linge · Hans Petter Langtangen Programming for Computations – Python Editorial Board T. J.Barth M.Griebel D.E.Keyes R.M.Nieminen D.Roose T.Schlick Texts in Computational 15 Science and Engineering Editors Timothy J. Barth Michael Griebel David E. Keyes Risto M. Nieminen Dirk Roose Tamar Schlick More information about this series at http://www.springer.com/series/5151 Svein Linge Hans Petter Langtangen Programming for Computations – Python A Gentle Introduction to Numerical Simulations with Python Svein Linge Hans Petter Langtangen Department of Process, Energy and Simula Research Laboratory Environmental Technology Lysaker, Norway University College of Southeast Norway Porsgrunn, Norway On leave from: Department of Informatics University of Oslo Oslo, Norway ISSN 1611-0994 Texts in Computational Science and Engineering ISBN 978-3-319-32427-2 ISBN 978-3-319-32428-9 (eBook) DOI 10.1007/978-3-319-32428-9 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2016945368 Mathematic Subject Classification (2010): 26-01, 34A05, 34A30, 34A34, 39-01, 40-01, 65D15, 65D25, 65D30, 68-01, 68N01, 68N19, 68N30, 70-01, 92D25, 97-04, 97U50 © The Editor(s) (if applicable) and the Author(s) 2016 This book is published open access. Open Access This book is distributed under the terms of the Creative Commons Attribution-Non- Commercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, a link is provided to the Creative Commons license and any changes made are indicated.
    [Show full text]
  • They Have Very Good Docs At
    Intro to the Julia programming language Brendan O’Connor CMU, Dec 2013 They have very good docs at: http://julialang.org/ I’m borrowing some slides from: http://julialang.org/blog/2013/03/julia-tutorial-MIT/ 1 Tuesday, December 17, 13 Julia • A relatively new, open-source numeric programming language that’s both convenient and fast • Version 0.2. Still in flux, especially libraries. But the basics are very usable. • Lots of development momentum 2 Tuesday, December 17, 13 Why Julia? Dynamic languages are extremely popular for numerical work: ‣ Matlab, R, NumPy/SciPy, Mathematica, etc. ‣ very simple to learn and easy to do research in However, all have a “split language” approach: ‣ high-level dynamic language for scripting low-level operations ‣ C/C++/Fortran for implementing fast low-level operations Libraries in C — no productivity boost for library writers Forces vectorization — sometimes a scalar loop is just better slide from ?? 2012 3 Bezanson, Karpinski, Shah, Edelman Tuesday, December 17, 13 “Gang of Forty” Matlab Maple Mathematica SciPy SciLab IDL R Octave S-PLUS SAS J APL Maxima Mathcad Axiom Sage Lush Ch LabView O-Matrix PV-WAVE Igor Pro OriginLab FreeMat Yorick GAUSS MuPad Genius SciRuby Ox Stata JLab Magma Euler Rlab Speakeasy GDL Nickle gretl ana Torch7 slide from March 2013 4 Bezanson, Karpinski, Shah, Edelman Tuesday, December 17, 13 Numeric programming environments Core properties Dynamic Fast? and math-y? C/C++/ Fortran/Java − + Matlab + − Num/SciPy + − R + − Older table: http://brenocon.com/blog/2009/02/comparison-of-data-analysis-packages-r-matlab-scipy-excel-sas-spss-stata/ Tuesday, December 17, 13 - Dynamic vs Fast: the usual tradeof - PL quality: more subjective.
    [Show full text]