University of South Florida Scholar Commons

Graduate Theses and Dissertations Graduate School

6-26-2007 Electrochemical Behavior of Aluminized Type 2 in Scale-Forming Waters Leonardo Caseres University of South Florida

Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons

Scholar Commons Citation Caseres, Leonardo, "Electrochemical Behavior of Aluminized Steel Type 2 in Scale-Forming Waters" (2007). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/660

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected].

ElectrochemicalBehaviorofAluminizedSteelType2inScaleFormingWaters

by LeonardoCaseres Adissertationsubmittedinpartialfulfillment oftherequirementsforthedegreeof DoctorofPhilosophy DepartmentofCivilandEnvironmentalEngineering CollegeofEngineering UniversityofSouthFlorida

MajorProfessor:AlbertoSagüés,Ph.D. StanleyKranc,Ph.D. RajanSen,Ph.D. NoreenPoor,Ph.D. JohnWolan,Ph.D. DateofApproval: June26,2007 Keywords:cathodicbehavior,modeling,EIS,galvanic,durability ©Copyright2007,LeonardoCaseres

Dedication

Iwouldliketodedicatethisdissertationtomylovelywife,Clara,that withouthersupportandpatientthiscompletionwouldnothavehappened.Also, thededicationisextendedtomylittlepreciousson,Maximo,forbeingthelightof mylife.

2 Acknowledgments

Firstofall,IwouldliketoexpressmysincereappreciationtoDr.AlbertoA.

Sagüésforhisguidance,encouragement,andcriticismthroughoutmystudies.

Hisdetailedscientificapproachtoconductresearchwillhave,withoutdoubt,a positiveimpactonmyfuturecareer.

IamalsoverygratefultoDr.StanleyC.Kranc,Dr.RajanSen,Dr.Noreen

Poor,andDr.JohnWolanforservinginthecommittee,andDr.ScottCampbell forbeingthecommitteechairperson.ManythankstoMr.RodneyPowersand

IvanLassaoftheFloridaDepartmentofTransportationMaterialsCorrosion

Laboratoryforprovidingvaluablecontributionstothisproject.Iwouldalsoliketo thankstoDr.N.BirbilisoftheOhioStateUniversityforprovidingsamples andContechConstructionProductsInc.forprovidingthetestmaterial.

ThankstomycolleaguesoftheCorrosionEngineeringLaboratory,in specialtoMersedehAkhoondanforherhelpinconductinglaboratorywork,Dr.

LucianoTaveira,KingsleyLau,MargarethDugarte,CristianeCotrim,andJaime

LopezSabandofortheirhelpinthepastfewyears.Thanksalsotothe undergraduatestudentsMr.AdamVerdonandEdwardLopez,andthestaff membersoftheCivilandEnvironmentalEngineeringDepartment,theComputing andEngineeringShops.

IgratefullyacknowledgethesupportfromtheFloridaDepartmentof

TransportationandtheFederalHighwayAdministrationinfundingthisresearch.

Theopinions,findings,andconclusionsexpressedherearethoseoftheauthor andnotnecessarilythoseofthesupportingagency.

3

TableofContents

ListofTables iv

ListofFigures viii

Abstract xviii

Chapter1Introduction 1 1.1BackgroundonMetalCulvertPipeDurability 1 1.1.1TheCaliforniaMethod 2 1.1.2TheAmericanIronandSteelInstitute(AISI)Method 4 1.1.3TheFloridaDepartmentofTransportation(FDOT)Method 5 1.1.4TheAKSteelMethod 5 1.2CorrosionResistanceofAluminizedSteelType2 7 1.2.1ManufactureandSurfaceMorphology 7 1.2.2OverviewofAluminumCorrosion 8 1.2.2.1PittingCorrosionofAluminum 10 1.2.3FieldStudiesontheDurabilityofAluminizedSteelType2 13 1.2.4GalvanicCorrosionofAluminizedSteelType2 17 1.3ObjectivesofthisInvestigation 22 1.4Approach 23 1.5SignificanceofResearch 25 1.6Overview 26 Chapter2CorrosionofAsRolledAluminizedSteelType2inScale FormingWaters 31 2.1Introduction 31 2.2ExperimentalProcedure 32 2.3Results 36 2.3.1EOC TrendsandDirectObservationsofCorrosion 36 2.3.2SolutionComposition 38 2.3.3ImpedanceBehavior 39 2.4Discussion 41 2.4.1DirectEvidenceofCorrosionPerformance 41 2.4.2CorrosionMechanismsandAnalysisoftheImpedance Response 42 2.4.2.1SolutionPandSolutionNPbeforeSurface Discoloration 46 2.4.2.2SolutionsC,SW,andSolutionNPafterSurface Discoloration 51 i 2.4.3ComputationoftheNominalCorrosionCurrentDensity 58 2.5ImplicationoftheResults 60 2.6Conclusions 66 Chapter3SpecialIssuesintheCathodicBehaviorofAluminizedSteel Type2inScaleFormingWaters 83 3.1Introduction 83 3.2ExperimentalProcedure 85 3.3Results 87 3.3.1MicrostructureAnalysis 88 3.3.2SolutionComposition 88 3.3.3EOC andCYPTrends 89 3.4Discussion 91 3.5Conclusions 99 Chapter4GalvanicBehaviorontheCorrosionResistanceofAluminized SteelType2 106 4.1Introduction 106 4.2ExperimentalProcedure 107 4.3Results 112 4.3.1SolutionCompositions 112 4.3.2BlemishedSpecimens 113 4.3.2.1EOC Trends 113 4.3.2.2DirectObservationsofCorrosion 115 4.3.2.2.1TheAluminizedCoating 115 4.3.2.2.2TheExposedSteel 118 4.3.2.3ImpedanceBehavior 120 4.3.2.3.1LCBSpecimens 120 4.3.2.3.2SCBSpecimens 121 4.3.3MacrocellAssemblies 123 4.3.3.1EOC andMacrocellCurrentTrends 123 4.3.3.2ImpedanceBehavior 123 4.3.4UncoupledSteelSpecimens 124 4.3.5CoatingThicknessMeasurements 125 4.4Discussion 126 4.4.1EOC TrendsandCorrosionMechanisms 126 4.4.1.1SolutionP 127 4.4.1.2SolutionNP 130 4.4.1.3SolutionC 132 4.4.1.4SolutionSW 133 4.4.2GalvanicMacrocells 134 4.4.3CorrelationbetweenA RandTimetoInitialDiscoloration 136 4.4.4InterpretationoftheImpedanceResponse 137 4.4.4.1MacrocellAssemblies 137 4.4.4.2BlemishedSpecimens 138 4.4.5ComputationoftheNominalCorrosionCurrentDensity 140 ii 4.5ImplicationoftheResults 143 4.6Conclusions 149 Chapter5Computationof ac and dc CurrentandPotentialDistributions ofAluminizedSteelType2withCoatingBreaks 187 5.1Introduction 187 5.2TheModelSystem 189 5.2.1The dc Model 189 5.2.1.1Implementationofthe dc Model 194 5.2.1.2CasesStudied 197 5.2.2The ac Model 198 5.2.2.1Implementationofthe ac Model 200 5.3ResultsandDiscussion 201 5.3.1The dc Model 201 5.3.2The ac Model 206 5.4Conclusions 207 Chapter6Conclusions 216 References 222 Appendices 232 AppendixA:ResultsfromReplicateUnblemishedSpecimens 233 AppendixB:ReplicateResultsoftheBlemishedSpecimens 239 AppendixC:InterpretationoftheTwoStepReactionMechanism 254 AbouttheAuthor EndPage

iii

ListofTables

Table2.1: Chemicalcompositionofsteelsubstrate(%weight). 70 Table2.2: Syntheticsolutioncompositionsandproperties. 70 Table2.3: Chemicalcompositionofthesimulatedoceanwaterreported bythemanufacturer. 70 Table2.4: ValuesoftheequivalentcircuitcomponentsinFigure2.16 estimatedfromEISdatafitforthespecimen#1exposedto solutionP. 70 Table2.5: ValuesoftheequivalentcircuitcomponentsinFigure2.16 estimatedfromEISdatafitforthespecimen#1exposedto solutionNP. 71 Table2.6: ValuesoftheequivalentcircuitcomponentsinFigure2.16 estimatedfromEISdatafitforthespecimen#1exposedto solutionSW. 71 Table2.7: ValuesoftheequivalentcircuitcomponentsinFigure2.16 estimatedfromEISdatafitforthespecimen#1exposedto solutionC. 71 Table2.8: Comparisonofdurabilityestimates,inyr,obtainedbythe applicationofselectedforecastingmethodsandthose obtainedinthisChapter. 72 Table3.1: Parameterschosenforcyclicalpolarizationmodeling. 101

Table4.1: Averagethicknessmeasurements,permagneticcoating thicknesstest,andthecorrespondingnominalcorrosionrate estimatesforselectedspecimens. 153 Table4.2: SummaryofvisualassessmentandEOC trends. 154

iv Table4.3: EvolutionofthenominalcorrosioncurrentdensityfortheLCB specimens#1exposedtosolutionsNP,P,andSW.The parametersofthesimplifiedanalogequivalentcircuitsshownin Figure4.41arealsoincluded.Immuneconditionfortheexposed steelwasassumedwhenthesystemE OC reached<800mV. Passiveconditionfortheouteraluminizedcoatingwasassumed whenthealuminizedsurfacewasbrightwithnovisiblepits. 155 Table4.4: Evolutionofthenominalcorrosioncurrentdensityforthe SCBspecimens#1exposedtosolutionsNP,P,SW,andC. Theparametersofthesimplifiedanalogequivalentcircuits showninFigure4.41arealsoincluded.Immunecondition fortheexposedsteelwasassumedwhenthesystemEOC reached<800mV.Passiveconditionfortheouter aluminizedcoatingwasassumedwhenthealuminized surfacewasbrightwithnovisiblepits. 156 Table4.5: EISparametersfromanalogequivalentcircuitinFigure4.40 andnominalcorrosioncurrentdensityforthealuminizedand steelcomponentsinthemacrocellassemblies. 158 Table4.6: Comparisonofdurabilityestimates,inyr,obtainedby applicationofcommonlyusedforecastingmethodsand thoseobtainedinthisinvestigation. 159 Table5.1: Computationparametersusedforthe dc modelforallσ evaluated. 209 Table5.2: Computationparametersusedfortheac modelforthebase case. 209 TableA.1: ValuesoftheequivalentcircuitcomponentsinFigure2.16 estimatedfromEISdatafitfortheunblemishedspecimen#2 exposedtosolutionP. 237 TableA.2: ValuesoftheequivalentcircuitcomponentsinFigure2.16 estimatedfromEISdatafitfortheunblemishedspecimen#2 exposedtosolutionSW. 237 TableA.3: Valuesoftheequivalentcircuitcomponentsestimatedfrom EISdatafitfortheunblemishedspecimen#2exposedto solutionNP. 237 TableA.4: ValuesoftheequivalentcircuitcomponentsinFigure2.16 estimatedfromEISdatafitfortheunblemishedspecimen#2 exposedtosolutionC. 238 v TableB.1: Evolutionofthenominalcorrosioncurrentdensityofthe steelandaluminizedportionsforthereplicateLCB specimensexposedtosolutionP.Theparametersofthe simplifiedequivalentcircuitsshowninFigure4.41arealso included.Immuneconditionfortheexposedsteelwas assumedwhenthesystemE OC reached<800mV.Passive conditionfortheouteraluminizedcoatingwasassumed whenthealuminizedsurfacewasbrightwithnovisiblepits. 243 TableB.2: Evolutionofthenominalcorrosioncurrentdensityofthe steelandaluminizedportionsforthereplicateLCB specimensexposedtosolutionNP.Theparametersofthe simplifiedequivalentcircuitsshowninFigure4.41arealso included.Immuneconditionfortheexposedsteelwas assumedwhenthesystemE OC reached<800mV.Passive conditionfortheouteraluminizedcoatingwasassumed whenthealuminizedsurfacewasbrightwithnovisiblepits. 244 TableB.3: Evolutionofthenominalcorrosioncurrentdensityofthe aluminizedportionforthereplicateLCBspecimensexposed tosolutionSW.Theparametersofthesimplifiedequivalent circuitsshowninFigure4.41arealsoincluded.Immune conditionfortheexposedsteelwasassumedwhenthe systemE OC reached<800mV. 245 TableB.4: Evolutionofthenominalcorrosioncurrentdensityofthe aluminizedportionforthereplicateSCBspecimensexposed tosolutionNP.Theparametersofthesimplifiedequivalent circuitsshowninFigure4.41arealsoincluded.Immune conditionfortheexposedsteelwasassumedwhenthe systemE OC reached<800mV. 250 TableB.5: Evolutionofthenominalcorrosioncurrentdensityofthe aluminizedportionforthereplicateSCBspecimensexposed tosolutionP.Theparametersofthesimplifiedequivalent circuitsshowninFigure4.41arealsoincluded.Immune conditionfortheexposedsteelwasassumedwhenthe systemE OC reached<800mV. 250 TableB.6: Evolutionofthenominalcorrosioncurrentdensityofthe aluminizedportionforthereplicateSCBspecimensexposed tosolutionSW.Theparametersofthesimplifiedequivalent circuitsshowninFigure4.41arealsoincluded.Immune conditionfortheexposedsteelwasassumedwhenthe systemE OC reached<800mV. 251 vi TableB.7: Evolutionofthenominalcorrosioncurrentdensityofthe aluminizedportionforthereplicateSCBspecimensexposed tosolutionC.Theparametersofthesimplifiedequivalent circuitsshowninFigure4.41arealsoincluded.Immune conditionfortheexposedsteelwasassumedwhenthe systemE OC reached<800mV. 251

vii

ListofFigures

Figure1.1: RefinedCaliforniamethodchartforestimatingyearsto perforationof18gagegalvanizedculvertpipe(California Test643,1999). 28

Figure1.2: TheAISImethodchartforestimatingyearstoperforationof galvanizedsteelpipesof18gageculvertpipe.Computing servicelifeisthesameasintherefinedCaliforniamethod (HandbookofSteelDrainage&HighwayConstruction Products,AmericanIronandSteelInstitute,1994). 29

Figure1.3: TheFDOTchartforestimationyearstoperforationof16 gagealuminizedsteelType2culvertpipes(solidlines) (CerlanekandPowers,1993).Dashedlinescorrespondto servicelifeestimationusingtherefinedCaliforniamethodfor galvanizedsteel. 29

Figure1.4: TheAKSteelmethodchartforestimatingservicelifeof14 gagegalvanizedandaluminizedsteelType2culvertpipes (Bednar,1989). 30 Figure1.5: Schematicofthetypicalmanufacturingprocessof aluminizedsteelType2(source:www.aksteel.com). 30 Figure2.1: Crosssectionperpendiculartorollingdirectionofa16gage (~1.59mm)thicknessflataluminizedsteelType2after etchingwith2%Nitalsolutionshowingtheouterandinner coatinglayersonbasesteel.Lightfeaturesintheouter coatingareFerichinclusionsperSEMEDSanalysis. 72 Figure2.2: SEMlinescanconductedonthecrosssectionofaluminized steelType2(perpendiculartorollingdirection)showingthe mainconstituentsinthedualcoatinglayerandthebase steel. 73 Figure2.3: Schematicofthetestcellarrangement. 73 Figure2.4: Photographofthetestcell. 74

viii Figure2.5: EOC evolutionofreplicatespecimensinsolutionC.Endof exposurecorrespondstothelastdatum. 74 Figure2.6: EOC evolutionofreplicatespecimensinsolutionNP.Endof exposurecorrespondstothelastdatum. 75 Figure2.7: EOC evolutionofreplicatespecimensinsolutionP.Arrows indicatetwoCaCO 3 additionsto#1and#2.Endofexposure correspondstothelastdatum. 75 Figure2.8: EOC evolutionofreplicatespecimensexposedtosolution SW.Endofexposurecorrespondstothelastdatum. 76 Figure2.9: EvolutionofthesolutionbulkpHwithexposuretime. 76 Figure2.10: TypicalEISplotofthehighfrequencylimitforNP,P,and SW. 77 Figure2.11: EISbehaviorofthespecimen#1insolutionNP(100KHz1 mHz5points/decadeunlessindicatedotherwise). 77 Figure2.12: EISbehaviorofthespecimen#1insolutionP(100KHz1 mHz5points/decade). 78 Figure2.13: EISbehaviorofthespecimen#3insolutionP(100KHz1 mHz5points/decade). 78 Figure2.14: EISbehaviorofthespecimen#1insolutionSW(100KHz 1mHz5points/decade). 79 Figure2.15: EISbehaviorofthespecimen#1insolutionC(100KHz1 mHz5points/decadeunlessindicatedotherwise). 79 Figure2.16: AnalogequivalentcircuitusedtosimulatetheEIS responses. 80 Figure2.17: Evolutionoftheadmittanceparameterasafunctionoftime forthespecimens#1insolutionsNP(circles),P(squares), __ C(triangles),andSW(diamonds)(Y F, YAL2).Arrows indicateCaCO 3 additionstosolutionP(#1). 80 Figure2.18: Evolutionoftheresistivecomponentsasafunctionof exposuretimeforthespecimens#1insolutionsNP(circles),

P(squares),C(triangles),andSW(diamonds)(R AL1,— RAL2).ArrowsindicateCaCO 3 additionstosolutionP(#1). 81 ix Figure2.19: MottSchottkyplotoftheoxidefilmcapacitancerecordedfor NPandPsystems(specimens#3and#4)at~330hrof 2 exposure.C F valuesobtainedbyEISatEOC ofthe duplicatespecimens#1and#2atcomparableexposureage areplottedaswell(specimen#isdenotedinparenthesis). 81 Figure2.20: Nominalcorrosioncurrentdensityevolutionforthe specimens#1inallmedia.NoextrapowderedCaCO 3was addedtothetriplicatespecimeninsolutionP(#3). 82 Figure3.1: SEMimagesoftheunexposedFG(left)andAR(right) surfaceconditions.LightfeaturescorrespondtoFerich inclusions. 101 Figure3.2: EOC evolutionoftheARandFGsurfaceconditions. Specimennumberisdenotedinparenthesis. 101 Figure3.3: CyclicalcathodicpolarizationoftheARandFGsurface conditionsinunstirrednaturallyaeratedsolutionat408hrof exposure.Returnscancurrentwasalwaysgreaterthanfor theforwardscanasexemplifiedbyarrows. 102 Figure3.4: CyclicalcathodicpolarizationoftheFeAlandAl1100alloys inunstirrednaturallyaeratedsolutionat408hrofexposure. Returnscancurrentwasalwaysgreaterthanfortheforward scanasexemplifiedbyarrows. 103 Figure3.5: CyclicalcathodicpolarizationoftheARandFGsurface conditionsinunstirreddeaeratedsolutionafter650hrof exposure. 104 Figure3.6: CyclicalcathodicpolarizationoftheFeAlandAl1100alloys inunstirreddeaeratedsolutionafter650hrofexposure. 105 Figure3.7: ModelresultsfortheARsurfaceconditionintheaerated solution. 105 Figure4.1: Photographofthetestcellusedtomonitorgalvaniccurrents andimpedancebehavioroftheunblemishedaluminized steelandsteelcomponents. 159 Figure4.2: Schematicofthetestcellarrangement. 160 Figure4.3: EvolutionofthesolutionbulkpHfortheLCBconfiguration. 160 Figure4.4: EvolutionofthesolutionbulkpHfortheSCBconfiguration. 161 x Figure4.5: EOC evolutionoftheLCBspecimensinsolutionP.Endof exposurecorrespondstothetimeofthelastdatumtaken. 161 Figure4.6: EOC evolutionoftheLCBspecimensinsolutionNP.Endof exposurecorrespondstothetimeofthelastdatumtaken. 162 Figure4.7: EOC evolutionoftheLCBspecimensinsolutionSW.Endof exposurecorrespondstothetimeofthelastdatumtaken. 162 Figure4.8: EOC evolutionoftheSCBspecimensinsolutionP.Thetest exposureswereterminated~450hrafterthelastdatum. 163 Figure4.9: EOC evolutionasafunctionoftimeoftheSCBspecimens exposedtosolutionNP.Endofexposurecorrespondstothe timeofthelastdatum. 163 Figure4.10: EOC evolutionasafunctionoftimeoftheSCBspecimens exposedtosolutionSW.Endofexposurecorrespondstothe timeofthelastdatum. 164 Figure4.11: EOC evolutionasafunctionoftimeoftheSCBspecimens exposedtosolutionC.Endofexposurecorrespondstothe timeofthelastdatum. 164 Figure4.12: EOC evolutionasafunctionoftimeofthereplicateuncoupled steelspecimens.Endofexposurecorrespondstothetimeof thelastdatum. 165 Figure4.13: CrosssectionoftheLCBspecimen#1exposedtosolution NPshowingcompleteoutercoatinglosssurroundingthe exposedsteel. 165 Figure4.14: SEMimage:(1)1000xmagnificationand(2)5000x magnificationofthesurfacemorphologyoftheLCB specimen#1insolutionNPtakenaftertheendofexposure. 166 Figure4.15: SEMEDSanalysisofcorrosiondepositsonthealuminized surfaceoftheLCBspecimen#1insolutionNP. 167 Figure4.16: CrosssectionoftheLCBspecimen#1exposedtosolution SWneartheedgeoftheexposedsteel. 168 Figure4.17: CrosssectionoftheSCBspecimen#1exposedtosolution Cshowingthatapit~0.5mmdiameterthatreachedthe underlyingsteel. 168 xi Figure4.18: CrosssectionoftheSCBspecimen#1exposedtosolution NPshowingcompleteoutercoatinglosssurroundingthe exposedsteel. 169 Figure4.19: CrosssectionoftheSCBspecimen#1exposedtosolution SWneartheexposedsteelregion. 169 Figure4.20: CrosssectionoftheLCBspecimen#1exposedtosolution NPshowingadditionalmetallossatthecentralregionofthe exposedsteel. 170 Figure4.21: Postexposurephotographsofselectedblemished specimens. 171 Figure4.22: NyquistplotoftheimpedanceresponseoftheLCB specimen#1insolutionNP(100KHz1mHz5 points/decade). 172 Figure4.23: NyquistplotoftheimpedanceresponseoftheLCB specimen#1insolutionP(100KHz1mHz5 points/decade). 172 Figure4.24: NyquistplotoftheimpedanceresponseoftheLCB specimen#1insolutionSW(100KHz1mHz5 points/decade). 173 Figure4.25: NyquistplotoftheimpedanceresponseoftheSCB specimen#1insolutionNP(100KHz1mHz5 points/decade). 173 Figure4.26: NyquistplotoftheimpedanceresponseoftheSCB specimen#1insolutionP(100KHz1mHz5 points/decade). 174 Figure4.27: NyquistplotoftheimpedanceresponseoftheSCB specimen#1insolutionSW(100KHz1mHz5 points/decade). 174 Figure4.28: NyquistplotoftheimpedanceresponseoftheSCB specimen#1insolutionC(100KHz1mHz5 points/decade). 175 Figure4.29: NyquistplotoftheimpedanceresponseoftheSCB specimen#2insolutionC(100KHz1mHz5 points/decade). 176 xii Figure4.30: EOC andgalvaniccurrentI galv measurementsforthe macrocellassembliesexposedtosolutionsP(circles)and NP(squares).Thesteelcomponentswerealwaysnet cathodes. 176 Figure4.31: Nyquistplotoftheimpedanceresponseofthemacrocell assemblyandtheindividualcomponentsexposedtosolution P(100kHz–1mHz,5points/decade)before(~900hr)the EOC drop. 177 Figure4.32: Nyquistplotoftheimpedanceresponseofthemacrocell assemblyandtheindividualcomponentsexposedtosolution P(100kHz–1mHz,5points/decade)after(~1,780hr)the EOC drop. 177 Figure4.33: Nyquistplotoftheimpedanceresponseofthemacrocell assemblyandtheindividualcomponentsexposedtosolution NP(100kHz–1mHz,5points/decade)before(~900hr)the EOC drop. 178 Figure4.34: Nyquistplotoftheimpedanceresponseofthemacrocell assemblyandtheindividualcomponentsexposedtosolution NP(100kHz–1mHz,5points/decade)after(~1,780hr)the EOC drop. 179 Figure4.35: Nyquistplotoftheimpedanceresponseofthereplicate uncoupledsteelspecimensexposedtosolutionsNPandP (100kHz–1mHz,5points/decade). 179 Figure4.36: Schematicofatypicalaluminizedcoatingcrosssectionofa LCBspecimen#1exposedtosolutionNP. 180 Figure4.37: SchematicoftheE OC trendsshowninFigures4.5through 4.11. 180 Figure4.38: Schematicdescriptionofthecorrosionmechanismof aluminizedsteelaroundtheFerichinclusionpresentinthe outeraluminizedlayer:(A)developmentofhighpHregion aroundtheinclusionduetothecathodicreaction,(B) corrosioninitiationofthesurroundingaluminumexposing largerinclusionareawithconsequentenhancementofthe cathodicreaction,(C)detachmentoftheinclusionasafree particlefromthealuminummatrix,(D)dissolutionofthefree particleandplatingofFeonaluminizedsurface,(E) developmentofahighpHregionaroundtheplatedFe. 181 xiii Figure4.39: Averageofthetimetoinitialdiscolorationofreplicate specimensasafunctionofA R.ResultsforA R=0andA R=3 10 4insolutionPareminimumvaluesasindicatedbythe arrows. 182 Figure4.40: Analogequivalentcircuitusedtosimulatetheimpedance responseofthemacrocellassembliesinsolutionsNPandP fortheregimesbeforeandaftertheE OC drop. 182 Figure4.41: Simplifiedequivalentcircuitusedtosimulatetheimpedance responseoftheLCBandSCBspecimens.Thecircuit(A) wasemployedsolelyfortheLCBspecimensexposedto solutionsNPandPbeforetheE OC drop.Thecircuit(B)was usedforallsolutionsaftertheE OC drop. 183 Figure4.42: Evolutionofi corrFE oftheexposedsteelportionfortheLCB specimens(#1)insolutionsNPandPobtainedperanalog equivalentcircuitshowninFigure4.41(A)andthesteel componentinthemacrocellassembliesobtainedperthe upperbranchoftheanalogequivalentcircuitinFigure4.40. 183 Figure4.43: Evolutionofi corrAL ofthealuminizedportionfortheLCB specimens(#1)obtainedusingtheanalogequivalentcircuit showninFigure4.41(B)andthealuminizedcomponentin themacrocellassembliesusingthelowerbranchofthe analogequivalentcircuitshowninFigure4.40. 184 Figure4.44: Evolutionofi corrAL ofthealuminizedportionfortheSCB specimens(#1)obtainedusingtheanalogequivalentcircuit showninFigure4.41(B). 184 Figure4.45: Correlationbetweentheintegratedcoatinglossobtainedby EISandthenominalcoatingthicknesslossdeterminedby magneticcoatingthicknessmeasurementsforselected specimensshowninTable4.1. 185 Figure4.46: CrosssectionoftheLCBspecimen#1exposedtosolution NP.Thedarkouterlayercoveringtheentireouter aluminizedcoatinglayercorrespondstocorrosiondeposits of~1015mthick. 186 Figure5.1: SchematicofhalfportionoftheLCBspecimen(of dimensionsr 0=1cm,r e=5cm,andH=6.5cm)andthe twodimensionalcylindricalgradednetworkusedforthe modelimplementation(r=z=0.1cm). 210 xiv Figure5.2: ChangeofthetotalanodicandcathodiccurrentsI aandI C respectively,withthenumberofiterationsshowing convergenceofthe dc model.Thecalculationsareforthe case1(200S/cm),startingpotentialvalues=717mV, 7 relaxationfactorα=0.6,andO 2concentration=310 mol/cm 3. 211 Figure5.3: Representationofthe ac modelimplementationtotheLCB specimenconfiguration. 212 Figure5.4: Anodiccurrentdensitydistributionasafunctionofradius (—basecase(2,000S/cm),case1(200S/cm), .... case2(10S/cm)).Boldandlightlinescorrespondtothe periodbeforeandaftertheE OC drop,respectively. 213 Figure5.5: Cathodiccurrentdensitydistributionasafunctionofradius (—basecase(2,000S/cm),case1(200S/cm), .... case2(10S/cm)).Boldandlightlinescorrespondtothe periodbeforeandaftertheE OC drop,respectively. 213 Figure5.6: Potentialdistributionnexttothemetalsurfaceasafunction ofradius.(—basecase(2,000S/cm),case1(200 S/cm), .... case2(10S/cm)).Boldandlightlines correspondtotheperiodbeforeandaftertheE OC drop, respectively. 214 Figure5.7: ComputedmacrocellcurrentsI galv asafunctionofσforthe firstscenario(squares),beforeE OC drop,andthesecond scenario(circles),afterE OC drop. 214 Figure5.8: CalculatedimpedanceshownasNyquistdiagramsforthe basecaseforthethreereferenceelectrodepositions measuredfromthecenteroftheexposedsteelsurface(test frequencyrange:10 5to10 3Hzand5pointsperdecade). Curve(A)wasobtainedbyassumingthatallsurface elementsinthenetworkaresubjecttoauniform ac potential. 215 FigureA.1: EISbehavioroftheunblemishedspecimen#2insolutionNP (100KHz1mHz5points/decadeunlessindicated otherwise). 233 FigureA.2: EISbehavioroftheunblemishedspecimen#2insolutionP (100KHz1mHz5points/decade). 233 FigureA.3: EISbehavioroftheunblemishedspecimen#2insolution SW(100KHz1mHz5points/decade). 234 xv FigureA.4: EISbehavioroftheunblemishedspecimen#2insolutionC (100KHz1mHz5points/decadeunlessindicated otherwise). 234 FigureA.5: Evolutionoftheadmittanceparameterasafunctionoftime fortheunblemishedspecimens#2insolutionsNP(circles), __ P(squares),C(triangles),andSW(diamonds)(Y F, YAL2 ).ArrowsindicateCaCO 3 additionstosolutionP(#2). 235 FigureA.6: Evolutionoftheresistivecomponentsasafunctionof exposuretimefortheunblemishedspecimens#2in solutionsNP(circles),P(squares),C(triangles),andSW

(diamonds)(R AL1 ,— RAL2 ).ArrowsindicateCaCO 3 additionstosolutionP(#2). 235 FigureA.7: Nominalcorrosioncurrentdensityevolutionforthe unblemishedspecimens#2. 236 FigureB.1: NyquistplotoftheEISresponseoftheLCBspecimen#2in solutionNP(100KHz1mHz5points/decade). 239 FigureB.2: NyquistplotoftheEISresponseoftheLCBspecimen#3in solutionNP(100KHz1mHz5points/decade). 240 FigureB.3: NyquistplotoftheEISresponseoftheLCBspecimen#2in solutionP(100KHz1mHz5points/decade). 241 FigureB.4: NyquistplotoftheEISresponseoftheLCBspecimen#3in solutionP(100KHz1mHz5points/decade). 242 FigureB.5: NyquistplotoftheEISresponseoftheLCBspecimen#2in solutionSW(100KHz1mHz5points/decade). 242 FigureB.6: NyquistplotoftheEISresponseoftheSCBspecimen#2in solutionNP(100KHz1mHz5points/decade). 246 FigureB.7: NyquistplotoftheEISresponseoftheSCBspecimen#2in solutionP(100KHz1mHz5points/decade). 247 FigureB.8: NyquistplotoftheEISresponseoftheSCBspecimen#2in solutionSW(100KHz1mHz5points/decade). 248 FigureB.9: NyquistplotoftheEISresponseoftheSCBspecimen#3in solutionC(100KHz1mHz5points/decade). 249

xvi FigureB.10: Evolutionofi corrAL ofthealuminizedportionforthereplicate LCBandmacrocellassemblies. 252 FigureB.11: Evolutionofi corrAL ofthealuminizedportionforthereplicate SCBspecimens. 252 FigureB.12: Evolutionofi corrFE oftheexposedsteelportionforthe replicateLCBspecimensinsolutionsNPandPobtainedper equivalentcircuitshowninFigure4.41A. 253

xvii

ElectrochemicalBehaviorofAluminizedSteelType2inScaleFormingWaters

LeonardoCaseres

ABSTRACT

AluminizedsteelType2(AST2),oftenusedforculvertpipes,issubjectto corrosionwhichisthemostimportantdurabilitylimitationfactor.Itwasdesiredto determineiftheouteraluminizedlayerwillretainpassivityandifprotective galvanicactionwilldevelop.Thus,corrosionofunblemishedandblemished

AST2surfaceswasinvestigatedinsimulatednaturalwaters.

Experimentswithunblemishedspecimensshowedpassivecorrosionrates

(~0.06m/yr)inscaleforming,0.01MCl solutionsbutsustainedcorrosionin otherlessprotectivemedia(withrates3~10m/yr).Corrosionwasmanifested macroscopicallybydiscolorationandfewmacropits,butitlikelyproceededalso microscopicallyattheFerichinclusionspacescale.Forblemishedspecimens, thealuminizedcoatinggalvanicallyprotectedtosomeextentthesteelinall solutions.However,in0.01MCl solutions,protectionwasdelayeduntilafter somesteelcorrosionhadoccurred.Insomesolutions,completeconsumptionof theouteraluminizedcoatingaroundexposedsteelwasnoted.Elsewhere, coatingappearancewassimilartothatoftheunblemishedcondition.Nominal durabilityprojectionsmadefor16gageAST2rangedfrom>100yrfor unblemishedAST2to~10yrfortheblemishedcondition.Thepresentfindings

xviii wereusedasafirststepinproposingrefinementsofpresentlyuseddurability guidelinesofAST2culvertpipe.

CycliccathodicpolarizationteststoexamineO2andH 2reductionatthe

Ferichinclusionsshowedsignificanthysteresis,morepronouncedwith decreasingscanrate.TheeffectwastentativelyassociatedtotheamountofFe +2 beingdepositedduringthedownwardscan,ahypothesissupportedbyresults fromaphysicalmodel.

Astaticpolarizationmodelwasformulatedfortheblemishedconfiguration.

Resultsmatchedexperimentaltrendsandpermittedevaluatingtheeffectof solutionconductivityσbeyondtheexperimentalrange.Exposedsteelcorrosion ratesatthesteelwereincreasinglylargefordecreasingσ.Forthelowestσ, corrosionratesattheexposedsteelcenterweredistinctlylargerthanatthe edge,consistentwithexperiments.Animpedancebehaviormodelwasalso formulated.Resultsshowedfrequencydependentcurrentdistributionand predictedrelativelysmallartifactsthatwereandnotevidentexperimentally,but shouldbeconsideredwhenexploringothersystemconditions.

xix

Chapter1

Introduction

1.1 BackgroundonMetalCulvertPipeDurability

Thedurabilityofmetallicdrainagepipesplaysacrucialroleinthe economicsofhighwaystructures.Anoptimumservicelifedesignfordrainage pipesandothermetalliccomponentscanpreventunexpectedcostlyrepairsor structurereplacement.Forinstance,theFloridaDepartmentofTransportation

(FDOT)hasanextensiveinventoryofmetalliccomponentsindirectcontactwith soilsandwaters.Themetalliccomponentsincludemetallicculvertpipesmadeof cladaluminumalloy,galvanizedsteel,andtheincreasinglypopularaluminized steel,intheformofaluminizedsteelType2.Inaddition,structuralsteelpiling

(bothsteelshapesandpipes),galvanizedtiestripsinmechanicallystabilized earthwalls,andburiedmetalsarealsobeenutilizedinavarietyofengineering applications.However,corrosionisthemostimportantdurabilitylimitationfactor inthesecomponents,whichmustoperateforlongdesignservicelives(e.g.75yr andbeyond)(CerlanekandPowers,1993).Therefore,itisofnecessitytohavein placereliablemeansofpredictingcorrosionratessothatmaterialsselections commensuratewiththedesireddesignservicelivescanbemade.

Inactualmetalformingandsubsequentfieldapplicationpractice, galvanizedsteelandaluminizedsteelType2componentsareliabletosurface 1 distressthatmayrangefromminortosevere,exposingacertainamountofbase steel.Atpresent,allservicelifeforecastingmethodsdonothaveprovisionfor considerationoftheeffectofsubstantiallocalizedgalvanized/aluminizedcoating damageontheservicelifeofthesecomponents.Suchconsiderationwouldneed toinvolveassessingthealuminizedsteelcorrosionperformance,inparticularthe extentofgalvanicprotectiontothebasesteel,criticallyneededforimproved forecastanalysis.

ThisChapterpresentsadescriptionoftherelevantservicelifepredictive methods(e.g.California,AISI,FDOT,andAKSteelmethods)currentlyin practiceandareasofneededimprovementarenotedwithemphasisondrainage aluminizedsteelType2pipedurabilityexposedtoenvironmentssimilartothose foundinFlorida.Wherepossible,examplesofthemethodsaregivenonthe basisoffieldtestinglocationsinthisstudy.Inaddition,aliteraturereviewonthe corrosionofaluminum(maincomponentoftheouteraluminizedcoating),the fabricationprocessofaluminizedsteelType2,andpaststudiesonthecorrosion ofaluminizedsteelType2arepresented.

1.1.1 TheCaliforniaMethod

TheCaliforniamethodwasdevelopedbytheCaliforniaDepartmentof

Transportation(CALTRANS)inthe1950’stoassesspipedurabilitybasedonthe examinationof~7,000galvanizedculvertpipes(BeatonandStratfull,1962).A graphicalanalysisoftheenvironmentalparametersgatheredversuspipe conditionallowedtoobtainthemostsignificantparametersaffectingthepipe

2 servicelife.Theservicelifepredictionmethodhasbeenfurtherrefinedoverthe yearsasastandardizedprocedure(CaliforniaTest643,1999),whichcontains detailedinformationregardingtheparametermeasuringproceduresaswellas theuseofthoseparameterstoforecastservicelifeofgalvanizedculvertpipes.

TherefinedCaliforniamethodusespHtogetherwiththeminimumresistivityof bothsoilsideandwaterside(interiorofapipe)andmetalgaugethickness,askey inputparameterstoforecastdurabilityofgalvanizedsteelpipeasshownin

Figure1.1.

InthisrefinedCaliforniamethod,pipedurabilityisdefinedbasedonthe numberofyearstofirstpenetrationofamaintenancefreecorrugatedmetallic component.Perthelatestdocumentationexaminedforthisdissertation

(CaliforniaTest643,1999),therefinedCaliforniamethodwasinitiallyintended forservicelifepredictionsofgalvanizedsteelpipesnotincludingprovisionsfor aluminizedsteelType2servicelifeforecast.Therefinedmethodestablishesthat lowpHandminimumresistivityvaluesresultinshortservicelifeforecasts.

However,surfacewatermayhavearelativelylowpHandstillnotbevery

+2 +2 2 aggressivebecauseotherdissolvedspecies(e.g.Ca ,Mg ,CO 3 ),not consideredintherefinedmethod,mayprecipitateaprotectivescale(hard waters)onthemetalsurfacewhichtendstogreatlydecreaseitscorrosionrate.

Conversely,highpHbyitselfmaynotguaranteeextendedservicelifeifthewater doesnotpromotetheformationoftheprotectivescale(softwaters).

Substantialexperimentalevidence(CerlanekandPowers,1993and

Bednar,1989)suggeststhattherefinedCaliforniamethodyieldshighly

3 conservativepredictionsinhardwatersandliberalresultsinsoftnonscaling waters.Similarlimitationsexistfortheunqualifiedapplicationofresistivity,which asaparametercannotdifferentiatebetweenthepresenceofbeneficialorof detrimentalionsinthemedium.

1.1.2 TheAmericanIronandSteelInstitute(AISI)Method

TheAmericanIronandSteelInstitute(AISI)developedamethod,derived fromtherefinedCaliforniamethod,forpredictingtheservicelifeofcorrugated galvanizedsteelculvertpipes(HandbookofSteelDrainage&Highway

ConstructionProducts,AmericanIronandSteelInstitute,1994).TheAISI methodusespHandminimumresistivityvaluesasintherefinedCalifornia methodforservicelifeforecastasshowninFigure1.2.Contrarilytotherefined

Californiamethod,theAISImethoddoesnotconsiderthatsmallperforations significantlydegradepipeperformance,sincetheconsequencesofthose perforationsaredeemedtobeminimalinagravityflowpipesuchasmoststorm sewersandculvertsinstalledinnonerodiblegranularbedding.Inreality,theAISI methodestablishesa25%totalmetallossasthepracticallimitforestimationof galvanizedsteelpipedurability,yieldingservicelivesthatareapproximately twiceasmuchastothoseobtainedbytherefinedCaliforniamethod.TheAISI methodinitiallyappliedtogalvanizedsteelandlatertoaluminizedsteelType2 showedreasonablyconservativepredictionsasreportedbytheGeorgia

DepartmentofTransportation(SoutheasternCorrugatedSteelPipeAssociation,

1977).

4 1.1.3 TheFloridaDepartmentofTransportation(FDOT)Method

Intheneedofimprovingservicelifeguidelinesforhighwaydrainage culverts,theFDOTMaterialsLaboratoryundertookafiveyearinvestigationto assessdrainagemetallicculvertperformanceinvariousenvironmentalconditions inFlorida.Thefieldstudycompletedin1993revealedthataluminizedsteelType

2outperformedgalvanizedsteelbyafactorof2.9whenusingtherefined

Californiamethodforpredictingservicelifeofgalvanizedsteelculverts(Cerlanek andPowers,1993).Asaresult,theFDOTintroducedadurabilityprediction method—currentlyinuseinFlorida—derivedfromtherefinedCaliforniamethod foraluminizedsteelType2coatedcorrugatedsteelthattakesintoaccountthe factorof2.9overtherefinedCaliforniamethodinenvironmentswithpHbetween

5.0and9.0andminimumresistivitieslargerthan1,000cmasindicatedbythe shiftinservicelifeestimation(solidlinesinFigure1.3).Forinstance,inaneutral pHmediumwithaminimumresistivityof4,000cm,theFDOTmethodpredicts servicelivesof~90yrand~30yrfor16gaugealuminizedandgalvanizedsteel, respectively.AsintherefinedCaliforniamethod,durabilitypredictionsbythe

FDOTmethoddonottakeintoaccountthesystemcomplexityandthevarietyof responsesduetotheexistenceofscaleformingwaters.

1.1.4 TheAKSteelMethod

Analternativeservicelifeforecastingmethodbasedonfieldobservations wasproposedbyAKSteel(MorrisandBednar,1998andBednar,1989)to incorporatethetendencyforwaterscaling,mainlyproducedbytheformationof

5 adherentCaCO 3filmonthesurfaceofapipe,intotheservicelifepredictionof corrugatedgalvanizedandaluminizedsteelType2culvertpipes.InsteadofpH andminimumresistivity,theAKSteelmethod(showninFigure1.4)usesthe scalingtendencyparameterequaltothetotalhardnessplustotalalkalinityminus freeCO 2,versusthesolutionconductivity(oritsinverse,theresistivity).

Contrarilytotheotherpredictivemethods,theAKSteelmethodconsiders thatwaterscalingprotectsthemetalfromsubsequentcorrosion.Ifthescaling tendencyparameterversussolutionconductivityfallsonthestraightline,a protectivescaleisexpectedtobeformedonthemetalsurfaceandcorrosivityof themediumwouldbeminimal.Theidealizedcurveslabeled50yr,35yr,and20 yrinFigure1.4exemplifytheeffectondurabilityofincreasinglylargeamountsof

2 aggressiveanionssuchasCl andSO 4 ionsand/orlargeramountoffreeCO 2 whichcausesscaledissolutionwithaconsequentincreaseofthemetalcorrosion rates.

Preliminaryapplicationofthismethodhasshownencouragingresultsin predictingtheperformanceofgalvanizedsteelandaluminizedsteelType2 culvertsintropicalandsubtropicalenvironmentscomparabletothose encounteredinFlorida.Experimentalevidencegatheredtosupportthe applicabilityofthismethodisneverthelesslimitedandseveralimportantissues remainunsolvedthatnecessitateadditionallaboratoryexperimentation.Those issuesincludethepossibilitythatthealuminizedcoatingcouldbesusceptibleto depassivationifcarbonatescalespromotesalkalineconditionsasindicatedby

PorterandHadden(1953).

6 1.2 CorrosionResistanceofAluminizedSteelType2

1.2.1 ManufactureandSurfaceMorphology

Severalaluminizingmethodssuitableforsteelcoatinghavebeenwidely usedforthepastdecades(Suzuki,1989).Themethodsdifferonlyonthetypeof protectionprocessofthesteelsubstrateagainstoxidationbeforethehotdipping stage.TheArmcoSendzimirmethod,however,iscommonlyadoptedforthebulk ofproductionofaluminizedsteelType2brieflyexplainednext.

Thesteeltobehotdippedisdegreasedbyalkalicleaningorbyheatingat

450600˚Cfollowedbywaterrinsing,pickling,andwaterrinsingagain

(pretreatmentprocess).Afterwards,thepretreatedsteeliscleanedbyexposure toaH2gasatmosphereathightemperature(activatingprocess).Cleaningthe metalstripinanonoxidizing/reducingatmosphereassuresapristinesurfacefor coatingadherence.Attheendoftheactivatingprocess,aluminumcoatingis continuouslyappliedtothepretreatedsteelbyhotdippinginaclosed environmentat~700˚C.Thesteelisannealedinthelineandthecoating thicknessiscontrolledbythelinespeed,hotdippingtemperature,andair finishingknivesasschematicallydepictedinFigure1.5.Thereactionrate betweenmoltenaluminumandsteelisrelativelyfast,formingaduplexcoatingon topofthesteelsubstrate.AccordingtotheASTMA929andASSHTOM274 standardprocedures,thefinalproductmustcomplywithaminimumcoating weightof1oz/ft 2whichcorrespondstoaminimumcoatingthicknessof~40m, andaminimumtensileandstrengthsofabout310MPaand228MPa, respectively.

7 MicroscopicexaminationofaluminizedsteelType2incrosssection showsanearlypearlitefreeferritelowcarbonsteelsubstratewithregulargrains, apartlycolumnarinneralloylayer~15mthick,andanouteraluminumrich layer~30mthick.TheinneralloylayerisofcompositionFe 2Al 5(Anetal,2001,

Lietal.,2003)althoughothershaveshowntheformationofFeAl 3insomecases

(Serraetal.,1998,Boucheetal,1998).Theinneralloylayerisanessential ingredientofthecoatingprotectionsystem,supplementingtheouteraluminum richlayerandpossiblyprovidingasecondlineofdefenseagainstcorrosion.The compositionoftheouterlayerispredominantlyamatrixofaluminumandFerich intermetallicprecipitates(611wt%Fe)(CaseresandSagüés,2005).During manufacturing,smalldiscontinuitiesinthealuminizedcoating,possiblycaused bycoldworkingcanextendtothesubstratesteel,creatingcoatingbreaksthat mayresultintheformationofgalvanicmacrocells.

1.2.2 OverviewofAluminumCorrosion

Aluminumderivesitscorrosionresistancefromthepresenceofathin protectivepassiveoxidelayer,whichwhenincontactwithair,greatlydecreases therateofmetaloxidation.Whenincontactwithwater,otherformsofprotective layersmayformbeingthemostcommonthehydratedaluminumoxidewith compositionAl 2O3.3H 2O(Godardetal.,1967).However,thealuminumoxidefilm maybesubjecttolocalizedbreakdownresultinginaccelerateddissolutionofthe underlyingmetal.Inparticular,aluminumoxidestendtodissolveuniformlyin extremeacidoralkalinemedium.Innoncomplexingsolutionsof~4

8 aluminumtendstobecomecoveredwiththeprotectiveoxidefilmasfirst proposedbyPourbaix(Pourbaix,1974).Underthiscondition,theoxidefilmhas verylowsolubilityanditselectronicconductivityisalsoverysmall.However,a smallbutfinitecurrentcanbemeasuredduringmetalpolarizationasaresultof thepresenceofintrinsicdefectsintheoxidefilm.Others(HunterandFowle,

1956,LeeandPyun,1999)proposedthattheoxidefilmconsistsoftwo distinctivelayers.Theinneroxidelayernexttothemetalisacompact amorphousbarrierlayerofthicknessdeterminedmainlybythetemperatureof theenvironment.Coveringthebarrierlayerisathicker,morepermeableouter layerofhydratedoxide.

Asmentionedearlier,inalkalinesolutions(pH>~8.5)theinitiallyprotective

oxidefilmisexpectedtouniformlydissolvewiththeformationofAlO 2 ions.In acidicsolutions(pH<~4),theoxidefilmdecomposestoformAl +3 ionsresulting alsoinconsiderablelargercorrosionratesthanotherwise.However,the predictionsproposedbyPourbaixintheseenvironmentalconditionsshouldbe takencautiouslyasbeingonlygeneralguidelinesforestimationcorrosion resistanceintheabsenceofcontaminants(Pourbaix,1974).

Ithasbeenwidelydemonstratedthatthealuminumoxidefilm,ifpresent, iscoveredwithalayerofhydroxylgroups(McCafferty,2003),whichhasLewis acid–Lewisbaseproperties,thatdictatesthesurfacechargeoftheoxidefilm whenimmersedinaqueoussolutions.Thesurfacechargehascloseconnection tothesolutionpHwhencomparedwiththeoxideisoelectricpoint(typicallyat pH~9.5).IfthesolutionpH<9.5,theoxidefilmwillacquirepositivechargesso

9 that,e.g.chlorideions,canbeattractedtotheoxidesurface.Ifthesolution pH>~9.5,thesurfacewillacceptnegativecharges.Theattractiveforcesare mainlycoulombicofion–ioninteractiontype.Thepresenceofchlorideionson thealuminumsurfacecaninducelocalizedcorrosionofaluminumeveninthe rangeofaluminumpassivity.Notably,chlorideionscancausepittingof aluminumattheregionoflocalbreakdownofthepassivefilmasdiscussednext.

1.2.2.1 PittingCorrosionofAluminum

Ingeneral,pitsinitiateatsomechemicalorphysicalheterogeneitiesatthe metalsurfacesuchasinclusions,secondphases,grainboundaries,flaws, mechanicaldamage,orsurfacedislocations.Pittingofaluminumisconsideredto beautocatalyticinnature;thatisonceapitstartstogrowtheconditionsinside thepitaresuchthatfurthergrowthispromoted.Thelocalpitenvironment becomesdepletedinoxygen(assumedtobethemaincathodicreactantinwell aeratedsolutions)andenrichedinhydrolyzedaluminumcationicandanionic species,maintainingchargeneutralityinsidethepit.Asaresult,thepHinsidethe pitislow(McCafferty,2003).Itiswelldocumentedthatwithinaluminumpits, chloridesaltsexist:aluminumchloride(AlCl 3)andaluminumoxychloridessuch asAl(OH) 2ClandAl(OH)Cl 2.Dependinguponthekindofchloridesalts,different pHvalueswithinthepitcanbeexpected.Forinstance,inthepresenceofAlCl 3 thepHmaybeaslowas1(Vermilyea,1971,Hoch,1974),andasaturated solutionofAl(OH) 2ClmayexhibitapH~3(Vijh,1973andKaesche,1974)

10 determinedbythefreezingmethod,whereasthepHofthebulksolutionwas~11

(WongandAlkire,1990).

Considerableunderstandingofthepittingphenomenonhasbeen achievedbutanindepthdescriptionofthestepsassociatedwithpittingcorrosion isstilllacking.Thestagesofpittingwillbediscussedbelow,frompassivefilm breakdown,tometastablepitting,andlastlytopitgrowth.

Thefirststageofpittingisthepassivealuminumfilmbreakdownfollowed bypitinitiation.Typically,aluminumpassivefilmsarecharacterizedbyextremely highelectricfieldsontheorderof10 610 7V/cmandbybeingverysmallin thickness(nmscale).Passivefilmbreakdownandpitinitiationcanbeinterpreted bythreemechanisms:filmpenetration,anionicspeciesadsorption,orfilm breaking.Hoar(1965)establishedthatthefilmpenetrationmechanismis associatedwiththetransportbymigrationofaggressiveanionsthroughthe passivefilmtothemetal/oxideinterfacewhereactivealuminumdissolution occurs.Thepenetrationmechanismissupportedbytheexistenceofaninduction timeforpittingafterchlorideionsareincontactwiththeoxidefilm.Nevertheless, acriticalchlorideconcentrationintheoxidefilmatthemetalsurfacehastobe attainedinordertodisplayfilmbreakdownandpitinitiation.Incontrast,Berzins etal.(1977),Woodetal.(1978),andAugustynskietal.(1978)foundthatthe thereisnochlorideconcentrationthresholdbelowwhichpittingwillnotoccurand thatpittinginitiationandpropagationdependsupontheparticularpropertiesof thechlorideadsorptionsitesatthealuminumsurface.

11 Anotherapproachtodescribepitinitiationisbythepointdefectmodel developedbyChaoandcoworkers(Chaoetal.,1981).Thisapproachassumes thatchlorideionspenetratetheouterportionoftheoxidefilmresultinginthe formationofcationicvacancies.Thesevacanciesmigratetowardsthe metal/oxideinterfacewheretheyareconsumedbytheformationofcationsfrom themetal.However,iftherearemorevacanciesthancationsformed,the vacanciesremainingmaycondenseatthemetal/oxideinterfacecreatingavoid.

Thevoidispresumedtobethefirststepinthepittingprocessaccordingtothis model.Opticalandscanningelectronmicroscopyconductedonionimplanted aluminumsurfacesafterpolarizationabovethealuminumpittingpotentialin0.1

MNaClhasshownthatthepropagationofcorrosionpitsisassociatedwiththe formationandruptureofblistersbeneaththeoxidefilmduetoelectrochemical reactionsoccurringattheoxide/metalinterface(NatishanandMcCafferty,1989) validatingthepostulationsofthepointdefectmodel.

Foley(1986)proposedinonehisearlyworksthatpitinitiationinvolves adsorptionofchlorideionsattheoxidefilmsurfacefollowedbyanoxidefilm penetrationbytheadsorbedchlorides,andalaterchlorideassisteddissolution whichoccursatthemetal/oxideinterface(NatishanandMcCafferty,1989and laterconfirmedbyYuetal.,2000).Afterinitiation,pitspropagatefollowinga seriesofeventswhichleadtochangesininternalpitchemistryandtothegrowth ofpitsasmentionedabove.

Yetanotherapproach,thefilmbreakingmechanism,considersthatthe passivefilmisinacontinualstateofbreakdownandrepaircausedbylocalized

12 mechanicalstressesatweaksitesorflawsinthepassivefilm.Thismechanism impliesthatlocalbreakdowneventsarefollowedbyarapidhealingprocessof thepassivelayerinnonaggressiveenvironments.Inchloridecontaining solutions,thehealingprocessislesslikely.Accordingtothismechanism,local passivefilmbreakdownwillleadtopittingunderconditionsthatpromotepit growth(Sato,1971,RichardsonandWood,1970).

1.2.3 FieldStudiesontheDurabilityofAluminizedSteelType2

Oneofthemostcommonproblemsencounteredwhileresearchingfield corrosionfindingsisthatthereisverylittlestandardizationinthemethodology usedtotestandtoevaluatecorrosionofculvertpipes.Unfortunately,itis extremelydifficulttoadequatelydefinethenatureofthetestenvironments(e.g. episodicwetting,abrasion,flow)andtocomparecorrosionofculvertpipes.

Comparisonteststypicallyinvolvevisualinspectiontoassesspipedeterioration baseduponcriteriasetupbytheinvestigator.Ingeneral,visualinspectionslack consistencywheninspectionsarecarriedoutbymultipleinspectorswithdiffering biases.Despitethisambiguity,severalfieldstudieshavebeenconductedon aluminizedsteelType2exposedtonumerousenvironmentalconditions.The investigationsmorerelevanttothisdissertationarepresentedinthenext paragraphs.

AultandEllor(1996)inspectedaroundtwentyonecorrugatedaluminized steelType2culvertpipeslocatedinAlabama,Oregon,andMaine.Theirfield studiessuggestedthatintheabsenceofsignificantabrasion,analuminizedsteel

13 Type2pipecouldreachaservicelifeofuptoeighttimesthatofagalvanized steelpipepredictedbytherefinedCaliforniamethod(ifonlywatersidecorrosion isconsidered,thenthemultiplierfactorbecomes3.5).Similarresultswere reportedbyPotteretal.(1991),whosuggestedthattheservicelifeofaluminized steelType2is~6.2largerthanthatpredictedforgalvanizedsteel.Theactual servicelifemultiplierfactorvariesdependingonthespecificenvironment.Under extremeconditions,however,theauthorstatedthatthesematerialswould performinarelativelysimilarmanner(i.e.,lastalongtimeorfailrapidly).

TheCaliforniaHighwayDesignManual(Section85013,California

DepartmentofTransportation)indicatesthata18gagealuminizedsteelType2 pipewouldhaveaservicelifeequaltothatofa16gagegalvanizedsteelfora pHrangebetween5.5and8.5andaminimumresistivityof3,000cm.

However,inacidoralkalineenvironmentstheDesignManualassertsthat galvanizedandaluminizedwouldlikelyshownearlyequalperformanceas indicatedbyPotteretal.(1991).

Acomprehensiveevaluationofaluminizedandgalvanizedsteelculvert pipesconductedbyBednar(1998)showedthatcorrugatedaluminizedsteelType

2wouldbeconsiderablysuperiortogalvanizedsteelinenvironmentswith resistivitieshigherthan950cmandrelativelyhighfreeCO 2content.This scenariowouldyieldaminimum50yrservicelifeforaluminizedcoating, whereasgalvanizedcoatingwouldbelimitedtoupto20yrinservice.Inoverly severeenvironments(resistivities<600cm),thestudyshowedthataluminized steeltypicallydisplayedacceleratedpittingcorrosionandtheadvantageof

14 aluminizedovergalvanizedcoatingbecameminimal.Alaterfieldstudyby

BednarandAKSteel(Bednar,1998)ontheprojectedservicelifeofaluminized steelType2culvertpipesexposedtonearlyneutralpHsolutionswithlow chlorideconcentrationsshoweddeepestpitpenetrationsof~8milsand~12mils after30yrand42yrinservice,respectively,indicativeoflow/moderatecorrosion rateswithpitgrowthof~6.7to~7.2m/yr,foraminimumprojectedservicelifein excessof75yrfora16gagemetalpipe.

TheaboveobservationsofsuperiorperformancebyaluminizedsteelType

2overgalvanizedsteelhavebeenchallengedbysomerecentfieldinspectionsin

Florida.AnongoingFDOTinvestigationconductedon~3yroldspiralrib aluminizedsteelType2culvertpipesintheCityofSaintCloud,revealed extensivecorrosiondamageofaluminizedsteeleveninmildenvironmentswith nearlyneutralpHandresistivities>2,000cm.Projectednominalservicelife, determinedpertheFDOTmethod(CerlanekandPowers,1993)for16gage aluminizedsteelType2,yieldedservicelivesbetween60and115yr.Likewise, theAKSteelmethodyieldedaservicelifeinexcessof50yr.Clearly,the extensivedamageobservedearlyonwasnotanticipatedbyeitherforecasting procedure.Thecorrosiondamageindicatesthatthefastestcorrosionratesmay havelocallyexceeded510m/yr,valuesignificantlyhigherthanthoseobserved forplainsteelinsimilarenvironments(~25.4m/yr).Firmconclusionsofthis ongoinginvestigationhavenotbeenachievedyetbutitisclearthatan unexpectedmodeofdeteriorationisatplay,forinstancethrough microbiologicallyinducedcorrosion.

15 Gartland(1987)studiedthecorrosionbehaviorofflamesprayed aluminumcoatedsteelimmersedinnaturalseawaterat9˚Cforupto210days.

Theonlydifferencebetweentheflamesprayedandthehotdippedaluminized steelsisinthecoatingthickness(~100mfortheflamesprayedprocedure, comparedtoonlyabouthalfasmuchforhotdipping).Opencircuitpotentials, potentiodynamicpolarization,andlinearpolarizationtestsinthecathodic directionwereconductedatdifferentexposuretimes.Corrosionrates, determinedattheopencircuitpotentialsbyextrapolationoftheanodicand cathodicpolarizationcurvesandbylinearpolarization,werefoundtobe~4.9to

~8.2m/yrattheendofexposure.Itiscautionedhoweverthatthismoderate corrosionrate,ifsustained,wouldmeanpenetrationofthealuminizedlayerafter adecade.

Themajorityofthefieldstudiesreviewedrevealedasuperiorperformance ofaluminizedsteelType2overgalvanizedsteelfor4

>~2,000cm.However,theunexpectedextensivecorrosiondamageof aluminizedsteeldetectedinsomeregionsofcentralFloridageneratedserious concernsaswhatenvironmentalfactorsmayhavebeeninvolvedinthecorrosion mechanism.Asaresult,laboratoryexperimentationisneededtoelucidateall possiblemodesofmetaldeterioration,andtostudythesynergisticinfluenceof themajorenvironmentalvariablesonthealuminizedsteelType2durability.

16 1.2.4 GalvanicCorrosionofAluminizedSteelType2

Extensiveresearchhasbeencarriedouttostudythegalvaniccorrosion performanceofaluminizedsteelType2invariousatmosphericenvironmentsas wellasinhighchlorideconcentrationsolutions.Forinstance, Legaultand

Pearson(1978)evaluatedtheatmosphericcorrosionbehaviorofaluminizedsteel

Type2testpanelswithuncoatedcutedges(exposingthebasesteel)in industrialandmarineenvironments.Intheirfiveyearinvestigationthecorrosion rates,determinedbymetalweightloss( W=kt nwherekandnareconstants andtistime),weresmall(~0.2m/yr)andmoderate(~0.45m/yr)inindustrial andmarineenvironments,respectively.Visualinspectionofthetestpanels showedthatthealuminizedcoatingwereinexcellentconditionexceptforthe panelsexposedtomarineenvironmentswhichshowedsmallperforationsofthe aluminizedcoatingwithformationofuniformwhitecorrosionproduct.

Interestingly,thecutedgeswerefreeofcorrosioninmarineenvironmentsand depictedrustformationonlyinindustrialenvironmentsindicativeofinsufficient galvanicprotectiontotheexposedsteel.

SimilarapproachwasemployedbyTownsendandZoccola(1979)and laterbyTownsendandBorzillo(1987)whotestedaluminizedsteelType2panels withcutedgesexposedtoseveremarine,moderatemarine,rural,andindustrial environments.After13yrofexposure,aluminizedsteelperformedwellinalltests environmentsexceptfortheruralatmosphereinwhichruststainingalongthecut edgeswasobserved.Forthemarineenvironmentscorrosionrates,determined byweightlossmeasurements,decreasedwithtimeapproachingaterminal

17 corrosionrateof~0.18m/yr.Incontrast,anincreasingcorrosionratetrendwas notedinruralandindustrialatmosphereswithalsosmallterminalcorrosionrates intheorderof~0.25and~0.16m/yr,respectively.Themainfindingoftheir workwasthataluminizedcoatinghadingeneralgoodphysicalbarrierproperties.

However,ifthealuminizedlayerispartiallydisrupted,itssacrificialprotectionto theexposedunderlyingsteelwasnotsufficient(asvisuallynotedbythegrowth ofrustprojectionsattheporesandcutedgesofthespecimens)inall environmentstestedexceptforthemarineenvironment.Theauthorsstatedthat inaggressiveenvironments,thealuminizedcoatingisanodictotheexposed steelwherechlorideionsimpairthepassivityofaluminum.However,inindustrial andruralatmospheresthealuminizedcoatingpassivatedsothatlittletonone galvanicprotectiontotheunderlyingsteelwasnoted.

Creusetal.(2000)investigatedthecorrosionbehaviorofaluminum coating(~10mthick)depositedona3cm 24135steelbasebyphysicalvapor deposition.Thecoatedsteelswereimmersedina3%NaClsolution,aerated, andstirredwitharotatingworkingelectrodeat500rpm.Opencircuitpotentials

(E OC )vssaturatedcalomelelectrode(SCE)andelectrochemicalimpedance spectroscopy(EIS)overafrequencyrangefrom4mHzto64kHzwitha10mV amplitudearoundthecorrosionpotentialweremonitored.EOC stabilizedaround

~705mV SCE shortlyafterimmersionreaching~440mV SCE at75hrofexposure.

Impedancediagramsafter1hrofimmersionshowedtwodistinctivecapacitive loopsathighandintermediatefrequencyranges,andaninductiveloopatlow frequencies.Theauthorsattributedthehighfrequencylooptothechargetransfer

18 resistanceassociatedwiththecorrosionrateoftheouteraluminizedlayer.The chargetransferresistancewasestimatedtobe~2kcm 2,whichissignificantly lowerthanthatforpurealuminum.Accordingtotheauthors,thisdifferencein resistancevaluesresultsofanenhancedgalvanicinteractionbetweenthesteel substrateandaluminumthroughcoatingdefects.Basedonthechargetransfer resistancevaluereportedandassumingTafelslopesof160mV/dec,anominal aluminumcorrosionratewassignificantlyhigher(~185m/yr)comparedtothe resultsreportedbyGartland(1987).Additionaltestsconductedbytheauthorsto determinethegalvanicbehaviorofthealuminum/4135steelsystemof3cm 2 surfacearea,forananodetocathodearearatioofunity,exposedto3%NaCl solutionshowedagalvaniccurrentof~300A/cm 2(aluminumbeinganodicto steel)attheEOC of~712mV SCE .Theauthorsstatedthatthealuminumcorrosion ratewasbasicallycontrolledbygalvaniccouplingtosteel.

ShawandMoran(1985)studiedthecorrosionbehaviorofthermally sprayedaluminumcoatingspecimens(714cm 2surfaceareawith~100mthick coating),withandwithoutlinearscribemarksexposedtoseawaterandmarine atmosphereat25°Cfor~6months.Visualinspectionofthespecimenswithout scribemarksimmersedinseawatershowedsmallpitswithnobasemetal corrosion.Ontheotherhand,specimensexposedtomarineatmosphere exhibitedaslightbuildupofcorrosionproductsatthescribemarksbutnobase metalcorrosionwasfoundelsewhereonthespecimensurface.Additional laboratorytestswereconductedonspecimenswithoutscribemarksimmersedin syntheticseawater.Corrosionpotentialtestsmonitoredfor30daysstabilizedat

19 ~800mV SCE after10days.Duringtheentireexposureperiod,nopitswere noted.Anodicpolarizationteststakenafter10daysofexposureshowedthatthe aluminumcoatingwasinpassivestateintheregionfrom800mV SCE to550 mV SCE withappearanceoffewwelldefinedpitsatpotentialsnoblerthan550 mV SCE .Theauthorsconcludedthataluminumcoatingsonsteelexhibitweak cathodicprotectioninmarineenvironments,contradictingfindingsfrom

TownsendandZoccola(1979)andCreusetal.(2000).

JohnssonandNordhag(1984)carriedoutaninvestigationtocomparethe sacrificialcorrosionperformanceofseveralmetalliccoatingonsteelexposedto atmosphericenvironmentsandseawaterforfouryears.Corrosionratesof uncoatedcutedgesaluminizedsteelspecimenswithandwithoutscribemarks, exposingunderlyingsteel,weredeterminedbyweightlossmeasurement.The atmospherictestsshowedthataluminizedsteelwasattackedmainlybypitting evenafteroneyearofexposure,especiallyinthemarineatmosphere.The numberofpits,however,doesnotseemtoincreasewithtime.Comparingthe corrosionperformanceofthedifferentmetalliccoatings,aluminizedsteelwithout scribemarkshadthebestperformanceexceptinmarineenvironmentsinwhich galvanizedsteeloutperformedaluminizedsteel.Thecorrosionratesvariedfrom alow0.2m/yr(urbanatmosphereconsideredbytheauthorsamild environment)toamodest1.5m/yr(marineatmosphere).Comparabletests conductedonthescribedspecimensdemonstratedthepoorgalvanicprotection ofthealuminizedcoatingtotheexposedsteelinallenvironmentsandseawater,

20 displayingheavyredrustformationalongthecutedgesandatthescribemark.

Thisfindingisinagreementwithobservationsby ShawandMoran(1985).

Mostoftheexperimentalinvestigationsonthecorrosionbehaviorof aluminizedsteelarerelatedtovisualcorrosionassessmentandgravimetric techniques.Onlylimiteddataweregatheredfortheevaluationofcorrosionof aluminizedsteelusingelectrochemicaltechniques,especiallyEIS,whichcan provideapowerfulmeanstoelucidatethecorrosionmechanismsandcorrosion ratesofaluminizedsteelwithandwithoutcoatingbreaks.Thereby,laboratory experimentsusingthisevaluationapproachareneeded.

Furthermore,themajorityofthestudiesongalvaniccorrosioninvolving aluminizedsteelwithexposedunderlyingsteelwereconductedbyatmospheric exposureorbyimmersioninhighlyaggressivesolutions.Limitedinformation existsonthegalvanicbehaviorofaluminizedsteelwithcoatingbreaksexposed tofreshwatersofvaryingscalingtendencieswithmoderatechloridecontents, wheregalvanicprotectionmaynottakeplaceatall.Studieshavedemonstrated discrepanciesinthegalvanicbehaviorofaluminizedsteelwhenexposedto seawater.Workisneededtoclarifythisissue.Implementationofacomputer modelofcurrentandpotentialdistributionintheexposedsteel/surrounding coatedsurfacewillservetoexaminetheeffectivenessofgalvanicprotectionof theexposedsteelundervariousenvironmentalandgeometricregimes.

21 1.3 ObjectivesofthisInvestigation

Inviewoftheunresolvedissuespresentedabove,thisdissertationwas focusedonthestudyofthecorrosionbehaviorofaluminizedsteelType2with andwithoutcoatingbreaksexposedtosolutionsofvaryingscalingtendencies.

Theobjectivesofthisdissertationincludedthefollowing:

1. ExaminethecorrosionbehaviorofaluminizedsteelType2ofasreceived

surfaceconditioninwatersofvaryingscalingtendenciescommonlyfoundin

Floridaenvironments.Ofinterestistodetermineifthealuminizedcoatingis

capableofretainingpassivityforextendedperiodstosupportlongservice

livesofthismaterial.

2. ClarifyimportantissuesonthecathodicefficiencyofaluminizedsteelType

2ofasreceivedandstripped/agedsurfaceconditionsinwatersofpositive

scalingtendency.Thestrippedsurfaceconditionintendstomimiclongterm

corrosionexposurewhereafractionoftheexternalaluminumrichlayeris

consumed.Ofprimaryinterestistoevaluatethelocusandstrengthofthe

cathodicreactionduringmetalpassivestateforthesetwosurface

conditions.

3. ExaminethecorrosionbehaviorofaluminizedsteelType2withpartially

disruptedaluminizedcoating,exposingtheunderlyingsteelsubstrate.Of

interestistodeterminewhetherthesurroundingaluminizedcoatingwill

providesufficientgalvanicprotectiontothebasesteelforvariouscoating

breaksizesandsolutionaggressivity.

22 4. Developaquantitative dc computationalmodeltocalculatestaticcurrent

andpotentialdistributionsalongtheblemishedaluminizedsurfacefor

differentsolutionaggressivity.Thelocalanodicandcathodickineticsatthe

metalsurfaceobtainedbythe dc modelareusedasinputsofan ac

computationalmodelthataccountsforcomplexpolarizationconditionsand

corrosionmacrocellsasafunctionofkeyenvironmentalfactors.Theoutput

ofthe ac modelattemptstoprovideusefulinformationinregardstothe

interpretationoftheimpedanceresponsepossiblycomplicatedbyuneven

ac currentdistributionintheblemishedsystem.

TheresultsfromthisdissertationwillsupportthemainFDOTprojectgoal, whichistodevelopadurabilityforecastingmethodbasedonlaboratory determinedcorrosionratesversuskeyenvironmentalvariables.Itisanticipated thatthedurabilityforecastingmethodevaluatedwilltakeintoaccounttheeffect ofsubstantiallocalizedaluminizedcoatingdamage.Suchconsiderationthus needsassessingtheextentofgalvanicprotectionavailableundervarious environmentalconditions.Determinationofperformanceunderthose circumstancesiscriticallyneededforimprovedforecastanalysis.

1.4 Approach

ThedissertationprimarilyfocusedontheobjectivesspecifiedinSection

1.3.Muchofthedissertationworkwasfocusedonthefirstandthirdobjectives.

Thefirstobjectivewasaddressedbyconductinglongtermopencircuitpotential

23 andimpedancemeasurementsontheasreceivedaluminizedsteelType2 specimensexposedtosolutionswithlowalkalinityandhardness(solutionC), highalkalinityandlowhardness(solutionNP),highalkalinityandhardness

(solutionP),andsubstituteoceanwater(solutionSW).ThesolutionsPandSW wereexpectedtohavepositiveLangelierindexvaluessothataprecipitateof

CaCO 3onthespecimensurfacewasanticipated.AllsolutionsbutsolutionSW

(~20,000ppm)hadmoderatechlorideconcentration(~370ppm).

Toexaminetheeffectofaluminizedcoatingbreaks(exposingthe underlyingsteel)onthecorrosionperformanceofaluminizedsteelType2,two coatingbreaksizes~3cm 2and~0.03cm 2nominalareamachinedinthecenter ofeachspecimenwereused.Onthesespecimens,opencircuitpotentialand impedancemeasurementswereconductedatselectedexposuretime.An experimentalsetupusedtomonitorgalvaniccurrentsaswellasindividual corrosionperformanceofthealuminizedcoating/steelcomponentsexposedto solutionsPandNPwasemployed.Themacroscopicdistributionofcorrosiondue totheformationofcorrosionmacrocellsbetweenthealuminizedsurfaceandthe underlyingsteelwasexpectedtoplayanimportantroleindeterminingthe degreeofcorrosionseverity.Toexaminetheeffectivenessofgalvanicprotection totheexposedsteelundervariousenvironmental,a dc computationalmodelto determinethecurrentandpotentialdistributionsneededtobeimplemented.The dc modelcomputationresultsalsoservedasinputsofan ac computational modelusedtointerprettheimpedanceresponseinsystemswithnonuniform ac currentdistribution.

24 Theissuesconcerningthecathodicbehaviorofthealuminizedsteelfor twosurfacefinishconditions(asreceivedandstripped)werestudiedby performingcyclicalpolarizationtestswithmultiplepolarizationscanratesranging from0.05mV/secto1mV/sec.Asimplifiedmodelwasusedtointerpretthe mechanismassociatedwiththecathodicperformanceofaluminizedsteelType2 underthosecircumstances.

1.5 SignificanceofResearch

Becauseprematurereplacementofburiedmetalliccomponentsdamaged bycorrosioniscostlynotonlybecauseofthepriceofthenewunit,butalso becauseoftheassociatedroaddemolitionandserviceoutage,itismuchtothe benefittohaveinplacereliablemeansofpredictingthecorrosionratesofmetals insoilandwaterssothatmaterialsselectionscommensuratewiththedesired designservicelifecanbemade.

Asdiscussedabove,severalservicelifeforecastingmethodshavebeen proposed.MostofthepredictivemethodsusepHandresistivityofthemediumto predictservicelifeofametallicstructure.Acommonagreementisthatlow valuesofpH(withinacertainrange)andresistivityforecastashortservicelife.

However,surfacewatermayhavearelativelylowpHandstillnotbevery aggressive,becauseotherdissolvedspeciesmayprecipitateaprotectivescale onthemetalsurface.Conversely,highpHbyitselfwithinthespecifiedrange maynotguaranteeextendedservicelifeifthewaterdoesnotpromotethe formationofaprotectivescale.Furthermore,allavailablemethodstodatedonot

25 takeintoconsiderationtheeffectofsubstantiallocalizedmetalcoatingdamage thatcouldcomplicateevenmoretheservicelifeforecast.Thisinvestigationgives afirstinsighttothisproblemtobetterforecastaluminizedsteelType2metalpipe durabilitybyperforminglaboratoryexperiments.

1.6 Overview

Thisdissertationisorganizedasfollows:

Chapter1presentsageneralliteraturereviewandanalyzestheunresolved issuesonthecorrosion/durabilityofaluminizedsteelType2.Also,thisChapter showstheresearchobjectives,investigationapproach,andthesignificantofthis research.InChapter2,theelectrochemicalbehaviorofasreceivedaluminized steelType2exposedtosolutionsofvaryingscalingtendenciesisaddressed.

Effectsofwateralkalinity,hardness,andchloridecontentonthemetalcorrosion ratesarealsocorrelated.Chapter3presentssomeimportantissuesregarding thecathodicbehaviorofthealuminizedsteelwithtwosurfaceconditions:as receivedandsurfacestripped.Chapter4describestheeffectsofaluminized coatingbreaksonthecorrosionperformanceofaluminizedsteelType2by conductingopencircuitpotentialandimpedancemeasurements.Comparison withtheasreceivedaluminizedsurfaceconditionisalsopresented.Chapter5 presentsthetheory,implementation,andresultsofthe dc and ac computational modelsforthestudyoftheeffectivenessofthegalvanicactionoftheexposed steel/aluminizedcoatingsystem.Chapter6summarizesconclusionsdrawnfrom

26 theprecedingchapters.AsetofAppendicesisincludedattheendofthe dissertation.

27

Figure1.1:RefinedCaliforniamethodchartforestimatingyearstoperforationof 18gagegalvanizedculvertpipe(CaliforniaTest643,1999)1.

1Tocomputetheservicelife,thesmallestpHandminimumresistivityvaluesofeither thesoilsideorthewatersideareentered.Multipliersaregiventoadjustservicelife predictionformetalgagesdifferentthan18. 28

Figure1.2:TheAISImethodchartforestimatingyearstoperforationof galvanizedsteelpipesof18gageculvertpipe.Computingservicelifeisthe sameasintherefinedCaliforniamethod(HandbookofSteelDrainage& HighwayConstructionProducts,AmericanIronandSteelInstitute,1994).

Figure1.3:TheFDOTchartforestimationyearstoperforationof16gage aluminizedsteelType2culvertpipes(solidlines)(CerlanekandPowers,1993). DashedlinescorrespondtoservicelifeestimationusingtherefinedCalifornia methodforgalvanizedsteel. 29

Figure1.4:TheAKSteelmethodchartforestimatingservicelifeof14gage galvanizedandaluminizedsteelType2culvertpipes(Bednar,1989).

Figure1.5:Schematicofthetypicalmanufacturingprocessofaluminizedsteel Type2(source:www.aksteel.com).

30

Chapter2

CorrosionofAsRolledAluminizedSteelType2inScaleFormingWaters2

2.1 Introduction

AsdiscussedinChapter1,aluminizedsteelType2isproducedasasteel sheethotdipcoatedonbothsideswithcommerciallypurealuminum,which providescorrosionprotectionthroughlowcorrosionrateofthealuminumwhen thealuminumisinpassivecondition,andalsomayconfergalvanicprotectionto theexposedunderlyingsteelundercertaincircumstances(Kimoto,1999).For thatreason,aluminizedsteelType2isincreasinglyusedformetallicdrainage componentsincontactwithnaturalwaters.However,corrosionisanimportant durabilitylimitationfactorinthesecomponentswhichareoftendesignedforvery longservicelife(e.g.75yr)(CerlanekandPowers,1993).Asaresult, mechanisticknowledgeofthecorrosionprocessesisneededtobetter forecastingdurabilityincriticalhighwayapplications.Inparticular,ithasbeen proposed(MorrisandBednar,1998,andBednar,1989)thatcalciumcarbonate scalesformedfromnaturalwatersareprotectivetoaluminizedsteel.

AcommonindicatorofscalingtendencyistheLangelierSaturationIndex,

LSI=pHpH s,wherepH sisthepHthatwouldresultinCaCO 3precipitation

2ThisChapterisaversionofthemanuscriptsubmittedforpublicationintheCorrosion Journal(2006)underrevision. 31 (SnoeyinkandJenkins,1980).PositivevaluesofLSIimplyatendencyforCaCO 3 precipitation.However,theLSIparameterdoesnotconsiderthereserveof speciesinthesolutionresponsibleforagivenpH.Basedonextensivefielddata collection,Bednar(1989)proposedthatthecorrosionperformanceofaluminized steelType2inaeratedmediamaybebetterpredictedbythecombinationofan indexindicatingcarbonatescalingtendency(scalingindex(SI)=totalAlkalinity

(TA)plustotalHardness(TH)minusfreeCO 2(FC))andtheconductivityσofthe solutionincontactwiththemetal.However,thereisconcernthatthealuminum richlayerofthealuminizedsteelcouldbesusceptibletodepassivationifthe carbonatescalepromotesalkalineconditions.Forexample,PorterandHadden

(1953)statedthatcorrosionofpurealuminumwasmostsevereinhighscaling tendencynaturalwaters.

ThisconcernisaddressedinthepresentChapter,whereexperimentsto examinethecorrosionbehaviorofaluminizedsteelType2insyntheticwatersof varyingscalingtendenciesattheroomtemperaturearereported.Tofocusonthe stabilityofthealuminumrichcoatinglayer,thisinvestigationusesaluminized steelType2intheasproducedconditionwithoutanyfurtherformingor mechanicaldistress.

2.2 ExperimentalProcedure

AsreceivedaluminizedsteelType2testedcamefromaflatsheetstock manufacturedperASTMA929,fromlowcarbonsteel(Table2.1)coilsrolledto

16gage(~1.59mmthick)andhotdippedinabathofcommerciallypure

32 aluminum.Themicrostructure(Figure2.1)hadanearlypearlitefreeferrite substratewithregulargrains.Thealuminizedcoatinglayerresultingfromthehot dipprocessincludedapartlycolumnarinnerlayer~15mthick(Figure2.2),of approximateintermetalliccompositionFe 2Al 5(Lietal.,2003)asdeterminedby scanningelectronmicroscopy(SEM)withenergydispersivexrayanalysis

(EDS),andanouterlayer~2530mthick.Thecompositionsofthegrayouter layermatrixandthesmalllighterfeatureswerepredominantlyaluminumwith

~2.4wt%Feand611wt%Fe,respectively.Thesmalllightfeaturesresemble

Ferichprecipitatesidentifiedelsewhere(ASMMetalsHandbook,1972).

Circulartestspecimensof95cm 2nominalsurfaceareawerecutoutfrom theasreceivedstock,cleanedwithethanolandacetone,andstoredina desiccatorpriortoimmersion.Specimenexposuretestbegantypicallywithin24 hrafterstorage.Threeelectrodetestcellconfiguration(Figures2.3and2.4)was used,exposinghorizontallyoneofthespecimenfaces.Ametalmetaloxide activatedtitaniummeshplacedparallel~6cmfromthespecimensurfacewas usedasacounterelectrode,whilealowimpedanceactivatedtitaniumpseudo referenceelectrode0.3cmdiameterand5cmlong(Castroetal.,1996)was placed~1cmfromthespecimensurfaceandperiodicallycalibratedagainsta saturatedcalomelreferenceelectrode(SCE).Allpotentialsreportedherearein theSCEscaleunlessotherwisestated.Electriccontacttothespecimenwas madethroughacopperwiresolderedtoacoppersheetincontactwiththe bottomsurfaceofthespecimennotexposedtotestsolution.Eachtestcellwas filledwith500mLofsolutionandthecellswereneverreplenishedduringthe

33 entirelengthoftheexperiment.Therelativelysmallelectrolytevolume/specimen arearatiowasintendedtoberepresentativeofworstcaseculvertpipeconditions withstagnantwateronapipeinvert,orofoccludedconditionsforporewateron thesoilsideofapipe.

Fourtestsolutionswereused,simulatingconditionstypicallyencountered inFloridaenvironments.Thetestsolutionscorrespondedtoacarbonate precipitatingcondition(solutionP),amildlyalkalinebutnonprecipitating condition(solutionNP),aneutralpHofnoncarbonateprecipitatingconditionand negligiblealkalinity(solutionC),andasubstituteoceanwater(solutionSW) preparedaccordingtoASTMD114190standardprocedure.Table2.2showsthe compositionsofthetestsolutions,allmadefromreagentchemicalsandde carbonateddeionizedwaterofresistivity>10 6cm.CombinationsofNaOHand

NaCl(C),NaHCO 3,NaCl,andHCl(NP),NaHCO 3,NaCl,HCl,andCa(OH) 2(P), andchemicalcompoundscommonlyfoundinoceanwater(SW)wereused.The ionicconstituentcompositionofthesimulatedoceansolution,reportedbythe manufacturer,isshowninTable2.3.TomakeupfordepletionofO 2,thetest solutionswereaeratedfor30secatarateof~0.03cm 3/sectwiceadayusing

CO 2freeair(forsolutionC)andambientair(forsolutionsNP,P,andSW)and isolatedfromtheexternalairtherestofthetime.ValuesofFCwerecalculated basedonthetotalalkalinityandpHofthesolution(SnoeyinkandJenkins,1980):

TA ⋅10−pH FC = (2.1) 10− .6 35

34 TestsolutionsCandNPhadLSI=5.9and0.6,respectively.Test solutionsPandSWhadLSI=+1.5and+0.4,respectively.Indeed,solutionP precipitatedCaCO 3toyielda~0.5mmthickpowderylayerovertheentire specimensurfaceshortlyafterinitiationofthetestexposure.Toexamine possibleeffectsofthickprecipitateformationinsolutionPtests,anadditional10 gramsCaCO 3reagentgradepowderwaspouredintotwoofthethreetestcells after312hrandagainafter480hrtoform~5mmand~9mmthicklayers, respectively.IntestsolutionSW,averythinlayerofprecipitatedeposited uniformlyonthemetalsurface.Thecompositionofthatlayerwasexpectedtobe mainlyCaCO 3sinceCaCO 3hasalowersolubilityproductthanMg(OH) 2 andis supersaturatedinseawater(Manteletal.,1992).Typically,Mg(OH) 2is undersaturatedatnearlyneutralpHprecipitatinginconsiderableamountsat pH>9.3(Barchicheetal.,2003).ThedepositsinbothPandSWsolutionswere washedoffreadilyduringcleaning.

Theimmersiontestswereconductedforupto~3,100hrat22±2°Cin duplicateforsolutionsC,NP,andSWandintriplicateforsolutionP.SolutionpH andelectricalconductivity,andopencircuitpotential(EOC )foreachspecimen weremonitoredatselectedtimes.ElectrochemicalImpedanceSpectroscopy

(EIS)measurementswereobtainedattheEOC withaGamry®PCI4300 potentiostatinthefrequencyrangefrom100kHzto1mHzusingasinusoidal signalof10mV RMS amplitude.Attheendoftheimmersiontest,thespecimens wereremoved,cleanedbywashingwithwaterandethanol,andvisually examined.AdditionalsetsofduplicatespecimensplacedinsolutionsPandNP

35 wereusedforMottSchottky(MS)tests(DeGryseetal.,1975)determining nominalcapacitancepotentialbehaviorwithaSolartron1260/1287 potentiostat/electrochemicalinterfaceinthepotentialrangefrom0to300mVvs.

EOC atascanrateof10mV/sec,afixedtestfrequencyof10Hz,anda10mV RMS amplitude.Nominalcapacitanceevaluationwasrefinedbycorrectionforthe effectofthepresenceofachargetransferresistanceasshownlater.

2.3 Results

Noundergasketcrevicecorrosiondevelopedinanyofthespecimensfor whichresultsarereported.TheresultsreportedinthisChapterarethoseofthe specimens#1ineachtestsolutionunlessotherwiseindicated.Theresultsofthe replicatespecimens(documentedinAppendixAifnotpresentedinthisChapter) wassimilartothatoftheexampleunlessindicatedotherwise.Inadditiontothe informationprovidednext,thereaderisreferredtoTable4.2inChapter4which summarizesthevisualassessmentandEOC evolutiontrends.

2.3.1 EOC TrendsandDirectObservationsofCorrosion

Figures2.5to2.8exemplifytheEOC evolutionofreplicatespecimens.

Immediatelyafterimmersion,valuesofE OC were~630mV,~650mV,~800 mV,and~750mVforthesolutionsC,NP,P,SW,respectively.

After~180hrofexposure,theEOC insolutionC(Figure2.5)startedto dropabruptlytoreach~920~950mV.After~310hr(andafter~115hrfor specimen#2),stableisolatedpits(afewperspecimen)becamevisibletothe

36 nakedeyewithtypicaldiametersof~<0.1mmaswellasanuniformdarkgrayish layerthatcoveredtheentiresurface.SEMEDSanalysisofadriedportionofthat layerinthespecimen#1showedresultsconsistentwiththepresenceof aluminumhydroxide.Theappearanceofthestrongsurfacediscolorationwas associatedwithamomentaryincreaseinsolutionpHasexplainedlater.

Afterwards,theEOC forbothspecimensslowlyevolvedtowardaterminalvalueof

~830mV.

InsolutionNP(Figure2.6),theE OC decayedto~910mVafter~500hrof exposureandremainednearlyconstantafterwards.Theappearanceofmoderate surfacediscolorationinsolutionNPdidnotstartconcurrentwiththebeginningof theEOC dropbutinsteadwasnotedafter~2,250hrfor#1and~1,200hrfor#2in agreementwithamoderatesolutionpHincreaseasshownlater.Postexposure optical25Xexaminationrevealedfewsmallpits.

InsolutionP(Figure2.7),thefirstadditionofexcessCaCO 3tospecimens

#1and#2causedshorttermnegativeandthenpositiveEOC excursionsby~80 mVfollowedbyaslowrecoverytoaterminalE OC ~770mV,littleaffectedbythe nextCaCO 3 addition.Thespecimen#3(withnoextraCaCO 3addition)showed

EOC values~50mVmorenegativethanthoseofthereplicatespecimensfor exposuretimesrangingfrom190hrto1,400hrreaching~800mVafter2,250hr ofexposure.Inallspecimens,thealuminizedsurfaceremainedbrightthroughout thetest.Postexposureoptical25Xexaminationrevealednopitformation.

InsolutionSW(Figure2.8),E OC ofthespecimen#1startedtodrop steeplyimmediatelyafterexposurereaching~900mVafter~165hr.The

37 duplicatespecimenshowednobleE OC valuesfor~265hrfollowedbyaslowdrop to~840mVafter~865hr.Afterwards,theE OC remainednearlyconstantforboth specimensincreasingto~805mVfor#1and~835mVfor#2after~1,500hrof exposure.Thealuminizedsurfacestayedbrightforupto~525hrfor#1and~585 hrfor#2withsmallisolatedpits~<0.1mmdiameter(afewperspecimen)visible tothenakedeye.Then,lightuniformsurfacediscolorationwasnotedonboth specimensnotconcurrentwiththestartofE OC drop.

Whenpresent,thepitdepthsappearedtobelimitedonlytotheouter aluminizedcoatinglayersincenoreddishdepositswerenotedatthepitmouths.

Inaddition,metallographicexamination(detailedinChapter4)showedthatinall cases,thedamageassociatedwithuniformaluminizedsurfacediscoloration, duringthetimeframeinvestigated,appearedtobelimitedonlytotheouter coatinglayer.

2.3.2 SolutionComposition

Figure2.9showsthatimmediatelyafterimmersion,thebulkpHofalltest solutionscloselyapproachedthelowestvaluesreportedinTable2.2.However, afterequilibriumwiththesurroundingairwasreached,thebulkpHofthe solutionsNP,P,andSWwasexpectedtonaturallyevolvetowardalkalinevalues despitethegivenbufferingcapacityofthosesolutions.InsolutionsPandSW, thebulkpHremainedquitestablefortheentireexposureincreasingtoonly~7.8 and~7.9,respectively.InsolutionNP,however,thebulkpHincreasedto~8.5 after24hrandreached~8.7neartheendofthetest.InsolutionC,thebulkpH

38 was~7.7after3,000hrattainingamaximumof~9.0at~310hr.ThebriefpH increaseandlaterdecreasewasnotanticipatedandthecauseofthistrend remainsunclearatpresent.

Totalhardnessandtotalalkalinity,determinedbytitrationfollowing proceduresindicatedintheStandardMethodsfortheExaminationofWaterand

Wastewater(1992),aswellasthesolutionconductivityarereportedinTable2.2.

TheFe +2 contentinallfoursolutions,measuredbyAtomicAbsorption

Spectroscopyafter~2,000hrofimmersion,was<0.01ppm.

2.3.3 ImpedanceBehavior

Aftersolutionresistancesubtraction,theimpedanceresponsesfor solutionsP,NP,andSWatthehighfrequencyendoftheimpedancediagram revealedcapacitivebehaviorwithfrequencydispersionthatcouldbereasonably approximatedbymeansofaConstantPhaseAngleElement(CPE)3at frequenciesaboveacompromisecutoffof~100Hz.Dataforhighertest frequenciesshowedmorepronounceddispersion(possiblyreflectingsurface roughness,unevenmacroscopiccurrentdistribution(DeLevie,1967)orspurious wiringeffects)andwerenotusedforquantitativeimpedanceevaluationforthese solutions(Figure2.10).

TheimpedanceresultsforsolutionNP(Figure2.11)showanimpedance diagramwherethe1mHzimpedancemodulusinitiallyincreasedwithtime,

3 n ACPEhasanimpedanceZ CPE =1/Y(jω) whereω=2πf,Yistheadmittanceparameter ofdimensions 1cm 2sec n(ifareanormalized),andn(dimensionless)isthedispersion coefficient(HsuandMansfeld,2001,Lasiaetal,1999). 39 consistentwithgenerallypassivebehaviorandabsenceofvisualevidenceof activealuminizedcorrosion.The1mHzimpedance modulusdecreasedlaterto valuessmallerthanatthebeginning,buteventhenitsmagnitudewaslarge

(~380k cm 2)after~3,000hrofexposure.Thedecreaseintheimpedance moduluscoincidedwiththeappearanceofmoderatesurfacediscoloration.

InsolutionP(Figure2.12),the1mHzimpedancemagnitudeofthe specimen#1(and#2aswell)waslarge(>6,000kcm 2)andshowedan increasingtrendwithtime.However,uponeachCaCO3 additionthe1mHz impedancemodulusshowedapronouncedmomentarydecreaseto~1,450k cm 2andaslowrecoverylaterontoattain~10,000kcm 2after~3,000hr.For thespecimen#3insolutionP(Figure2.13),the1mHzimpedancemagnitude wasincreasinglylargeaswellreaching~10,000kcm 2after~3,000hr, consistentwithgenerallypassivebehaviorandabsenceofvisualevidenceof activealuminizedcorrosionthroughouttheexposureinallspecimens.Forthe frequencyrangeanalyzed,theimpedancediagramswereusuallydescribableby twooverlappingloops,bothapproachingidealcapacitivebehavior.TheMS behaviorispresentedinSection2.4.2.1keyedtotheanalysisoftheimpedance response.

TheimpedanceresultsforsolutionSW(Figure2.14)showanimpedance diagramwherethe1mHzimpedancemodulusinitiallyincreasedwithtime attaining~365kcm 2at~504hrofexposurefollowedbyadecreasingtrendto

~270kcm 2,consistentwiththestartoflightsurfacediscoloration.Afterwards, the1mHzimpedancemodulistartedtoincreaseagaintoattainvalues

40 comparabletothoserecordedatthebeginning.Theimpedancediagramscanbe describablebytwodistinctiveloops,bothapproachingidealcapacitivebehavior.

Aswillbeshownbelow,theCsystemhadalargeFaradaicadmittance componentthatwasstronglymanifestedalreadyatthehighesttestfrequencies.

Thus,forsolutionCthecompleteimpedancespectrawereusedfortheanalysis withtheunderstandingthatusingaCPEforsimulationpurposeswouldinvolvea coarserapproximationthanintheNP,P,andSWsystems.Theimpedance responseatthelowfrequencyend(Figure2.15)wasinitiallymuchsmallerthan intheNP,P,andSWsolutions,andforashortinitialperiodtherewasalsoalow frequency inductiveloop.Aftersomeexposuretimethe1mHzimpedance modulusdecreasedevenfurther(to~68kcm 2),coincidingwiththeappearance ofstrongsurfacediscoloration,buttherewasalongtermrecoverytrendtoward larger1mHzimpedance moduli.Thediagramswereusuallydescribablebytwo overlappingloops.Partlyasaresultofusingtheentirefrequencyspectrum,the highfrequencyloopdeviatedfromidealcapacitivebehaviormorethaninthe casesofNP,P,andSWsolutions.

2.4 Discussion

2.4.1 DirectEvidenceofCorrosionPerformance

Thedetaileddirectevidenceofcorrosioninthevarioussystemspresented intheprevioussectionmaybesummarizedasfollows.Visualexaminationofthe specimensurfacesindicatednocorrosiondistressinsolutionP(whichincluded highcarbonateprecipitatingtendencyandmoderatechloridecontent)throughout

41 theentiretestexposure,suggestinggoodcorrosionperformanceinthese environments.TheadditionofextrapowderedCaCO 3tosolutionPdidnot appeartohavehadharmfulconsequencesdespitemomentaryelectrochemical disturbancesasexplainedbelow.Therewasmoderatesurfacediscolorationwith formationoffewsmallisolatedpitsinsolutionNP(whichincludedhightotal alkalinitywithoutcarbonateprecipitatingtendencyandmoderatechloride content).

Afewsmallisolatedpitsfollowedbystrongaluminizedsurface discolorationwerenotedearlyoninsolutionC,whichhadlowalkalinity, negligibleCaCO 3precipitatingtendency,andmoderatechloridecontent.Afew smallisolatedpitsbutonlylightdiscolorationappearedalsoearlyoninthe exposuretosolutionSW,thathadmoderatealkalinity,highprecipitating tendency,andhighchloridecontent/verylowresistivity.

Thecorrosiondistressandpitpenetrationinallsolutionswasnotfoundto extendbeyondtheouteraluminizedlayerforthetimeframeexamined.A comprehensivesummaryofdirectevidenceofcorrosionperformanceconcerning theseandsubsequentexperimentsisprovidedlaterinTable4.2,Chapter4.

2.4.2 CorrosionMechanismsandAnalysisoftheImpedanceResponse

InChapter1,ageneralintroductiontocorrosionphenomenainaluminum waspresented.Intherestofthisdissertation,theterminologyusedtorefertothe variouscorrosionfeaturesandeventswillbeusedmorespecificallyasinthe following.

42 TheterminclusionswillindicatetheFerichintermetallicprecipitate particlespresentintheouteraluminizedsurfacelayer.Theinclusionshavebeen identifiedaspreferentialsitesforbothcathodicreactionsandeffectivepit initiation(Nisancioglu,1990,Johnson,1971).

Acidicoxidationofaluminumwillbereferredtoasaprocesswhere aluminumdissolvesintoanacidicelectrolyteaccordingtothereaction

Al→Al +3 +3e whereAl +3 ionsaresoluble.Alkalineoxidationofaluminumrefersto aprocessofcorrosionofaluminuminanalkalineenvironment,postulatingthata filmisalwayspresentonthealuminumsurface(Pyunetal,1999).Asindicatedin

Chapter1,sucheventmaytakeplacewhenthesolutionpHnearthemetal surfacenormallyexceeds~8.5(Pourbaix,1974).Insuchacase,theinitially protectivealuminumpassivefilmcoveringmostofthealuminizedsurfaceis(in theformofamorphousAl(OH) 3oracomparableintermediatecompoundaspart ofthefilm)becomesunstableandisexpectedtobereadilychemicallyattacked atthefilmsolutioninterfacebyOH ionswithformationofsolublealuminateions

Al(OH)4 (Docheetal,1999).Theresultingenhanceddissolutionofaluminum ensuesthroughenhancedtransportoftherelevantspeciesthroughamuch thinnedormoredefectivepassivefilm(Kolicsetal,2001,Sullivanetal,2000).

Underthoseconditionsinthehighlyalkalinelimit,alikelysequenceofaluminum dissolutionproposedbyMacDonaldetal(1988)andlaterbyChuetal(1991)is asfollows:

43 − AlSS + OH → Al(OH)ads + e (2.2A) − Al(OH)ads + OH → Al(OH)2ads + e (2.2B) − Al(OH)2ads + OH → Al(OH)3ads + e (2.2C) − − Al(OH)3ads + OH → Al(OH)4 (2.2D) whereAl SS representsaluminumsitesatthemetalfilminterface,thesubsequent stepsindicatemetastablefilmformation,andthelaststepisthechemical dissolutionatthefilmelectrolyteinterface.Itisnotedthatsincealkaline conditionstendtodeveloparoundcathodicsites,alkalineoxidationofaluminum canbeenhancedaroundinclusions,especiallyifthesolutionisnotbuffered.

Suchenhanceddissolutionhasbeenextensivelydocumentedintheliterature

(SzklarskaSmialowska,1999,SuterandAlkire,2001).

Apitwillbereferredtoasanoccludedacidiczonewhereacidicoxidation ofaluminumtakesplace(SasakiandIsaacs,2004,WiersmaandHerbert,1991,

NguyenandFoley,1979).AsmentionedinChapter1,severalmechanismshave beenproposedtodescribepittingcorrosionofaluminuminchloridesolutions

(McCafferty,2003,Foley,1986,McCafferty,1995).Thereiscommonagreement thatchlorideionsmigratetotheinteriorofthepitcavityonceapitinitiationevent tookplace.Tomaintainchargeneutralityinsidethecavity,H +ionsalso accumulateinthecavity,whichinturn,decreasethepHtheretovaluesbelow thepassivityrangeofaluminum,resultinginaselfsustainingpit(Seriand

Furumata,2002,Frankel,1998,VerhoffandAlkire,2000).Thepitgeometry needstobesuchtomaintainactiveregimeinsidebyefficientlyseparatingthe environmentinsidefromthatoutside,and/ortoprovidingenoughohmicpotential

44 dropbetweentheoutsideandinsideregions(Pickering,2003).Insidethepit cavityacidicoxidationofaluminumtakesplace.

Thecorrosionmechanismsproposedbelowwillbeevaluatedbyandused intheinterpretationoftheresultsfromtheEISexperiments.Overthepast decades,theEIStechniquehasbeenincreasinglyusedtoelucidatecorrosion mechanisticissuesofaluminumexposedtovariousenvironments(Mansfeldet al,1990andShaoetal,2003).Fromthenumerousinvestigationsreviewedfor thisdissertation,itcanbeconcludedthatthereislittleconsensusonthe explanationofthedominantcorrosionmechanismsandthemodelsusedto simulatetheimpedancedataofaluminumalloys(DeWittandLenderink,1996,

Aballeetal,2001,EmregulandAbbasAksut,2000,SherifandPark,2005,

SasakiandIsaacs,1990).Itisthusnotedthatthemechanismsandthe associatedanalogequivalentcircuitchosentorepresenttheimpedance responseforthepresentcasemaynotbeunique,andthatalternative mechanismsandanalogequivalentcircuitsmayexplainequallywellthe observedimpedancebehavior.Indeed,othercorrosionmechanismsandtheir correspondinganalogequivalentcircuitswereexploredaswell,buttheones presentedherewerechosenmainlyforoverallsimplicityandhavingprovideda reasonableaccountoftheobservedimpedancespectra.Theapproachused hereissummarizedbytheanalogequivalentcircuitshowninFigure2.16,which servesallthecasesconsideredbutwiththemeaningofsomeoftheindividual componentsdependingonthecaseasdetailedinthenextsections.

45 Itisnotedthatallthecorrosionmechanismsconsideredinthisdissertation involveabioticsystems,buttheabsenceofmicrobiologicallyinducedcorrosion

(MIC)hasnotbeenruledout,otherthanbythelackofindicationsofany conspicuousbiofilminthesurfacesofthetestspecimens.Futureinvestigations shouldseektoascertaintherole,ifany,thatMICphenomenacanplayinthe deteriorationofaluminizedsteelintheenvironmentsofinterest.

2.4.2.1SolutionPandSolutionNPbeforeSurfaceDiscoloration

ThefollowinganalysisappliestosolutionPovertheentireexposuretime andsolutionNPfortheregimebeforetheappearanceofmoderatealuminized surfacediscoloration.Inthosecases,theinitialsystemE OC wasquitenegative reflectingthecoupledpotentialoftheinclusionswiththeslowpassivedissolution ofthelargerareaaluminumsolidsolutionphasesurroundingtheinclusions.As timeprogresses,amorematurepassivefilmisexpectedtoexperienceslower dissolutionwithpotentialsdriftingtomoderatelynoblervaluesasobserved.

Theimpedanceresponseforthepresentpassivesystemsisinterpreted withtheaidoftheanalogequivalentcircuitshowninFigure2.16.TheresistorRS representstheohmicsolutionresistance4.Theworkingassumptionismadethat theimpedanceresponseofthepassivefilm(whichoccupiesmostofthe specimensurface),whencombinedwiththeHelmholtzlayercapacitanceC H,is predominantlycapacitiveandmayberepresentedbytheconstantphaseangle elementCPE F intheupperbranchofthecircuit.Thefilmsurfaceistakentobe

4AllcomponentsinFigure2.16areexpressedassurfacenormalizedelementsby dividing/multiplyingasappropriatebythenominalspecimenarea(95cm 2). 46 thelocusofaslow,nearlyuniformanodicdissolutionreactionasstatedabove, whichisalsoonlymildlypotentialdependentsoitsadmittanceisneglected.As mentionedearlier,thematchingcathodicreactionatE OC isexpectedtooccur primarilyattheinclusions(Nisancioglu,1990,Johnson,1971)representedbythe lowerbranchofthecircuit.Thebufferingcapacityofthesesolutionsisexpected toneutralizetheOH ionsformedbythecathodicreactionsothatincreaseinthe localpHisminimizedatleastatthebeginningoftheexposure.Toaccountfor theobservationofalowfrequencyloopintheimpedancediagrams,thecathodic reactionisproposedtoproceedincoupledstepsofthetypewheresurface coveragebyanintermediateadsorbatealterstherateofthenextstep(Bessone etal.,1992,deWitandLenderink,1996,ArmstrongandEdmondson,1973,

EpelboinandKeddam,1970).Theresultingresponseispseudocapacitive,

(approximatedbytheelementCPE AL2)withahighfrequencylimitresistance

RAL1,andalowfrequencylimitresistanceR AL1+R AL2(Armstrongand

Edmondson,1973).Consequently,thepseudocapacitiveelementCPE AL2 is placedacrosstheresistanceRAL2 asshown.Adetailedexplanationforthe proposedmodelingoftheimpedancebehaviorforthismechanismisshownin

AppendixC.

TheanalogequivalentcircuitinFigure2.16withEISparametersreported inTables2.4and2.5yieldedgoodbestfitsimulationsoftheimpedance responsesofbothsolutions,shownbythesolidlinesinFigures2.11through

2.15.AlthoughCPEswereusedinthecircuit,thebestfitvaluesofn Fandn AL2 for bothsolutionswereclosetounity,indicatinglittledeviationfromidealcapacitive

47 behavior.Sometimesbestfitvaluesofn Fandn AL2 slightly>1wereobtainedfor oneoftheCPEs.Inthosecases,therewaslittlesensitivityofthefittothechoice ofwhichelementapproachedidealbehaviormoreclosely.Forthosecasesa valuen AL2=1wasimposedandn F wasallowedtovaryresultinginnFvalues

>0.93(subscriptsarekeyedtotheelementdesignationsinFigure2.16).

Figures2.17and2.18showexamplesofthetimedependenceofthe admittanceparametersandresistivecomponentsthuscalculated(theFigures containalsotheresultsfortheNPsystemafteraluminizedsurfacediscoloration andfortheothersolutionsaswell,tobediscussedlater).

Throughoutthetest,thevaluesforR AL2 andR AL1forsolutionPwerelarge

(~2.510 6cm 2and~1.510 7cm 2,respectively),andtrackedroughlytogether asexposuretimeprogressed,inkeepingwiththeaboveassumptionofcoupled stepsoftheassociatedcathodicreaction.Similartrendswerenotedforsolution

6 2 NPwithlargevaluesofR AL2andR AL1,bothreaching~310 cm beforethe startofaluminizedsurfacediscoloration.

TheY AL2 valuesinbothsolutionsweremuchlargerandvariablewithtime thanY F, consistentwiththeassumedoriginforCPE AL2otherthanfilm

5 nAL2 2 capacitance.InsolutionP,Y AL2 valueswereinitially~410 sec /cm followed byastrongmomentaryincreaseto~1.310 4sec nAL2/cm 2onlynoticeableupon thefirstadditionofextrapowderedCaCO 3tospecimens#1and#2andalater

5 nAL2 2 decreasetoaterminalvalueof~2.210 sec /cm .Y AL2 wasnearlyconstant

(~3.310 5sec nAL2/cm 2)forspecimen#3inP,whichhadnoadditionofpowdered

CaCO 3.TheY AL2 valuesfortheduplicatespecimensinsolutionNPwereinitially

48 ~4.610 5sec nAL2/cm 2decreasingto~1.410 5sec nAL2/cm 2recordedbeforethe startoftheappearanceofaluminizedsurfacediscoloration.

TheassociationofCPE Fwiththepassivefilmcapacitanceisfurther supportedbythefollowingconsiderations.TheY Fvaluesweresimilarinboth solutions(~3.410 6to~110 5sec nF/cm 2)andchangedrelativelylittlewith exposuretime.Inthefollowing,thechargestoragefunctionassociatedwith

CPE FwillbequantifiedbyanominalcapacitanceC Fthathasthesameimaginary impedancecomponentasCPE Fatasuitablefrequencyf N.Foreaseof comparisonwiththeMSresults,f Nwaschosentobe10Hz.Infact,the sensitivityofC Ftothechoiceoff Nwasexpectedtobesmallsincen Fapproached unity.Thus,

Y ⋅ (2π ⋅ f )nF −1 C = F N F  π  (2.3) sinnF ⋅   2  2 whichyieldedC Fvaluesfrom~2.6to~7.9F/cm ,numericallyclosetoY Fsince nF~1.Thesevaluesarecomparabletothosereportedintheliteratureforpassive aluminum(Pyun,1999,BockrisandKang,1997).Ifthepassivefilmbehavedas anidealcapacitorofthicknessLanddielectricconstantε,itsareanormalized capacitanceC iwouldbegivenby:

ε ⋅ ε C = 0 (2.4) i L whereε 0 isthepermittivityofvacuum.AssumingL~5nmandε~9(typicalof thicknessofnaturallygrownpassivefilmsonaluminum(Bessoneetal.,1983, andDiggle,1972)andofsolidorhydratedaluminumoxides,respectively)yields

49 2 Ci~1.60F/cm .ThatvalueismuchlessthantypicalvaluesofC H(Bockrisand

Kang,1997)sothecombinedseriesinterfacialcapacitanceisstill~C i,which approximateswellthelowendoftheC Fvaluerangeobtainedabove.The approximationcouldbeevenbetterifitincludednaturalsurfaceroughnesswhich wouldincreasetheeffectivevalueofC iabovethatoftheideallyflatsurface assumedforEq.2.4.Similargeneralbehavioronpassivealuminumhasbeen observedoften(LeeandPyun,1999)andsupportstheinterpretationthatthe highfrequencyloopinthespectracorrespondstothepassivefilm.

Capacitivebehaviorinasemiconductingpassivefilmoftenreflectsthe presenceofaspacechargezonethatmayextendthroughtheentirefilm thicknessL(theentirefilmthicknessthenactingeffectivelyasadielectric),or haveadepthd SC

2.4butreplacingLwithd SC whichvarieswithpotentialE.Forexample,ifthefilm isanntypesemiconductorasgenerallyobservedinaluminum(Bockrisand

Kang,1997andFernandesetal,2004)andthepolarizationconditionsare

1 1 0.5 adequate,thend SC ~(2εε 0q (EEfb )N d ) ,whereqistheelectroncharge,N d isthenetdensityofelectrondonordefects(assumedtobeconstantfor simplicity),andE fb istheflatbandpotential(Morrison,1980).

50 AssumingC F(E)<

− kC (E) CF ()E ~ (2.5) 2π ⋅ fN ⋅ Z"()10Hz whereZ"(10Hz)istheimaginarycomponentoftheimpedanceandk C(E)isa correctionfactorclosetounity.Thefactork C(E)correctedfortheobscuringeffect ofR AL1,whichatthelowestpotentials(withR AL1small)couldcausethevalueof

Z"(10Hz)tobesignificantlysmallerthanwhatwouldhaveresultedfromthe capacitiveelementalone5.

Figure2.19showstheMSresultsinduplicateinsolutionsNPandPfor

~330hrofexposureobtainedpertheaboveprocedure.Atthetimeofthetests, noapparentcorrosionwasobservedinanyofthespecimens.Theresultsshow nearlyconstantcapacitancewithpotential(from~3.4to~5.9F/cm 2),whichis thereforeconsistentofaspacechargezonespanningtheentirefilmthickness.

2.4.2.2SolutionsC,SW,andSolutionNPafterSurfaceDiscoloration

Theinformationcollectedinthisinvestigationdoesnotpermittoclearly identifythecorrosionmechanismsassociatedwiththeactivationofthe aluminizedsurfacemanifestedbyuniformdiscolorationandtheappearanceof

5 Toobtaink C(E),impedancemeasurementsspanningtherange100Hz1Hzwere conductedatafewselectedpotentialsoverthesamepotentialrangeastheMStests. ThosemeasurementsyieldedateachselectedpotentialvaluesofY Fandn Fwhichwere usedtocalculateaccuratevaluesofC F(E)usingEq.2.3.Thereforeattheselected potentialsk C(E)=CF(E)2πfNZ"(10Hz).Valuesofk C(E)atintermediatepotentialswere thenassignedbypolynomialinterpolation. 51 fewsmallmacroscopicpits.Thus,additionalexperimentswillbeneededinthe futuretoelucidatesuchmechanisms.

However,itcanbespeculatedthatthecasesofdevelopmentof aluminizedsurfacediscoloration(moderateinNPlateroninthetestandstrong inCearlyon)maybeattributedtomacroscopicallyuniformalkalineoxidationon thealuminizedsurface.HighpHconditionsdevelopedspontaneouslyinthebulk ofsolutionsC(earlyintheexposure)andinsolutionNP(lateron).ThepH increaseinCwasnotexpectedanditremainsunsolvedatpresent.ThepH increaseinNPwasaspredictedbythesolutionchemistryevolutiontoward equilibriumwiththesurroundingairinthepseudoclosedtestcells.Those conditionscoincidedwithaluminizedsurfacediscoloration,andwithmarked changesinthespecimencorrosionrates(asshownlater),indicativeofactivation

ofthealuminizedsurface.Thus,dissolution(withformationofsolubleAl(OH) 4 ionsperEq.2.2D)ofthealuminumoxidefilmduetoalkalineconditionsappears tobethemaincorrosionprocessinthesecases.Itislikelythat,especiallyinthe caseofsolutionCwhichisunbuffered,alkalineoxidationwasmoreintense aroundtherimoftheinclusionsduetotheincreaseinpHtherefromlocalO 2 reduction.Thus,whilemacroscopicallyuniform,thecorrosionmayhavebeen morelocalizedatthemicroscopic,inclusionscalelevel.Astimeprogressed,the

Al(OH) 4 concentrationnearthemetalsurfacemayhavereachedacriticalvalue soprecipitationofaluminumcorrosionproductsintheformofhydratedAl(OH) 3,

bythereactionAl(OH) 4 →Al(OH) 3+OH ,isexpectedtooccur(Nisanciogluand

Holtan,1979).Thateventwouldexplaintheobservedcorrosiondepositsand

52 consequentdiscolorationoftheentirealuminizedsurfaceinthesolutionsCand

NP.Inthosesolutionstheobservedfewmacropitsaredeemedtoberelatively inconsequentialbecauseoftheirsmallnumberanddimensions.Theresulting largecombinedassociatedohmicresistanceofthemacropitswouldresultona totalmacropitanodiccurrentthatwouldbeonlyasmallfractionofthetotal(Oltra andKeddam,1988).Itisemphasizedthattheabovescenarioisspeculativeand that,intheabsenceofadditionalexperimentaldata,othercorrosionmodalities cannotbecompletelyruledout.Inparticular,therecouldbesignificantmicropit activitywithinternalacidiccorrosion,attheinclusionscalelevel.Suchcondition isexploredfurtherinChapter4,whereinstancesofdiscolorationofthe aluminizedsurfaceintheabsenceofanincreaseinpHofthebulksolutionare addressedforsomeofthetestsolutions.

ThesituationnotedforNPandCwasreversedinthecaseofsolutionSW wheresurfacediscolorationwaslightbutthepresenceofafewmacropits,likely nucleatedaroundinclusions,wasnotable.Thisconditioncanbeexplainedbythe strongaluminumpittingtendencyinhighlyconcentratedchloridesolutionsasin thesolutionSW(~20,000ppmchlorideconcentrationasopposedtoonly~370 ppmintheothermediausedinthiswork).Acommonindicatorofthepitting tendencyofaparticularmetalinagivensolutionisthepittingpotentialE pit at whichpitscanbeinitiatedandsustained.Asageneralrule,thelowerthevalue ofE pit ,theeasieristhedevelopmentofpitsaslessoxidizingpowerisrequired fromtheelectrolyte.Forpurealuminum,E pit isafunctionofchloride

53 concentrationasoriginallydeterminedbyKaesche(1962)andreproducedby

BohniandUhlig(1969)oftheform:

− Epit (VvsSCE) = −0.124 ⋅log(Cl )− 0.745 (2.6) ForsolutionSW,theinitialrelativelypositiveE OC wasdictatedbytheactive corrosionoftheinclusionsinthehighchlorideenvironmentandhadavaluein theorderofE pit forpurealuminum(~750mVfor20,000ppm)sopitinitiation waspromoted.Indeed,foraluminumalloysasinthecaseoftheouteraluminized layer,thepresenceofinclusionsmaylowerthevalueofE pit relativetopure aluminum(FuruyaandSoga,1990)furtherfacilitatinginitiationofpitsunderthe initialexposureconditions.Inunbufferedsolutionsinclusionsmayadditionally facilitatepittingbylocalalkalinizationandsubsequentcorrosionofthealuminum creatingagroovearoundtheperimeteroftheinclusion(Nisanciogluetal,1981,

Ryndersetal,1994,VandeVenandKoelmans,1976).Thismechanismmaynot havebeendominantinthestronglybufferedSWsolution.Uponpitformation,

EOC dropsduetoenhancedelectronreleasebyaluminumcorrosionwithinthe activepitsandtosomeextentbyaluminumalkalineoxidation(again,limitedin thisbufferedsolution).Thepotentialdropproceededuntilthecurrentforoxygen reductionatinclusionsplushydrogenevolutioninsidepitsmatchedtheoverall rateofaluminumoxidation(oxidationoftheinclusionsconsideredtobenegligible atthemorenegativepotential).Uponthepotentialdropsomepitsmayhave becomeinactive,eventuallyleadingtoaterminaldensityofpitsperunitareathat wassustainedoverlongperiods.

54 Thus,intheSWmediumanodicactiononthealuminizedsurfacewas likelylimitedtotheactivepitsandtheobservedlightdiscolorationindicatedonly secondaryglobaldistressintheformofvestigialalkalineoxidation.Intheother solutions,havingonly~370ppmchlorideconcentration,thevalueofE pit forpure aluminumis~650mV.Whilethatvaluewasreachedinsomecasesearlyon

(possiblyaccountingfortheobservationofsomepitsinthosecases),thelong termE OC valuesforNPandCweremuchlower(900mVand830mV)sopit growthwaslesslikelytobesustained.InsolutionP,thelongtermE OC valuewas

~760mV,butearlypotentialsweresignificantlymorenegativesoinitiationwas likelyinhibitedthroughoutconsistentwiththelackofobservationofmacroscopic pitsinthatsolution.

TheimpedanceresponsesforsolutionsC,SW,andNP(afterthestartof activealuminizedcorrosion)werealsosimulatedusingtheanalogequivalent circuitinFigure2.16withR SandCPE Fhavingessentiallythesamemeaningas before.However,theproposedmeaningofthecomponentsofthecircuitofthe lowerbranchisquitedifferenttothatpresentedforpassivealuminizedsteelas explainednext.Pertheabovediscussion,itistentativelyproposedthatthe macroscopicallyuniformcorrosionmanifestedbydiscolorationislocalizedto micrositesattheinclusionscalelevel.Corrosionisproposedtoproceed simultaneouslyalsoatmacroactivesitesinthescaleoftheobservedmacropits.

Whileitisrecognizedthatalternativescenariosarealsoplausible,these assumptionsresultedinreasonableapproximationsoftheoverallimpedance behavior,andwillbeconsideredasafirststepinunderstandingacomplex

55 system,pendingfuturedevelopmentofexperimentalevidence.Perthe assumptions,thelocalelectrolyticcurrentdistributionaroundeachmicroand macroactivesitecanbeassociatedwithalocalohmicresistancecomponent,

1 RSL =σ /4r PS ,wherer PS istheradiusoftheactivezone(OltraandKeddam,

1988).AthighenoughfrequenciesR SL will,ateachactivesite,besignificantly largerthanthemodulusofthecapacitiveimpedanceofthesite.Atthosehigh frequencies,theresistiveeffectsfromallthesitescanbeapproximatedbya simpleparallelcombinationgivenby:

1 1 1 RAL1*=σ (4AAL ) [rPSNPS+rPLNPL] (2.7) whereA AL isthenominalaluminizedarea,N PS isthenumberofmicrosites

2 (assumedforsimplicitytobeallofradiusr PS )percm ,andN PL isthenumberof

2 pits(assumedalltohaveradiusr PL )percm .Therelativecontributionofmacro andmicrositescannotbeuniquelyascertainedfromtheimpedanceresponse alone.However,thefitvaluesoftheimpedanceresponseforR AL1 ,reportedin

Tables2.5through2.7forsolutionsC,NP,andSW,areinreasonable agreementwiththevaluesofR AL1 *calculatedfortheσvaluesshowninTable

2.2,r PS ~2mtypicaloftheFerichparticlesize,r PL ~100mfortypicalmacropit

2 3 2 radius,N PL <5/cm ,andassumingN PS ~10 /cm .Withinthecontextofthemodel assumptions,suchvalueofN PS suggeststhatonlyafractionofallpossiblesites wereactive,asituationnotunusualincasesoflocalizedcorrosion(Seriand

Masuko,1985).

Athighenoughfrequencies,theimpedanceisdominatedbytheparallel combinationofR AL1 andthefilmcapacitancerepresentedbyCPE Fasdiscussed

56 earlier.EachactivesiteisassumedtohaveaFaradaicpolarizationresistance andaninterfacialcapacitancewithsomedegreeofnonideality.Assumingthat thiscombinationhasarelativelylargetimeconstantrelativetothatofthe resistivefilmcapacitanceconsideredbefore,thecombinedbehaviorcanbe representedbythediscreteparallelcombinationofallthepolarization resistancesR AL2 andthecorrespondinginterfacialcapacitancesCPEAL2 .

TheequivalentcircuitfitcalculationsforsolutionCyieldedsmallvalues

2 (~0.89to~3.2kcm )forR AL1 .Accordingly,R AL2 wasintheorderofthe lf impedancemodulus(~68kcm 2earlyon,~495kcm 2neartheendofthe test).BothcapacitiveelementsY FandY AL2 hadsignificantfrequencydispersion: nF~0.57to0.63(consistentwiththehighlydistortedappearanceofthehigh frequencyloopsinFigure2.15)andn AL2 ~0.69to0.80.ThevaluesofY Fwereon theorderof~4.610 6to~2.910 7sec nF/cm 2attheendofthetestand, consideringtheuncertaintyinherenttothehighfrequencydispersion,theC F valueswereconsistentwiththevaluesobtainedintheothersolutions.Even thoughthereisconsiderabledeviationfromideallycapacitivebehavior,the

5 5 nAL2 2 valuesobtainedforY AL2(~6.910 earlyonto~1.710 sec /cm )were comparabletothoseobtainedforsolutionsPandNP.

TheequivalentcircuitfitcalculationsforsolutionSWyieldedvaluesfor

2 2 RAL2rangingfrom~173kcm earlyonto~143kcm neartheendofthe

2 2 test),andR AL1valuesfrom~160kcm atthebeginningto~255kcm atthe endofexposure.ThecapacitiveelementsYFandY AL2 hadlittlefrequency dispersion(nF~0.91andn AL2~0.98)asshowninFigure2.14.ThevaluesforY F

57 rangedfrom~1.410 5to~1.710 5sec nF/cm2bytheendofthetest.Thenominal capacitanceC FcalculatedperEq.2.2forafrequencyf N=10Hzwas~10.5

F/cm 2fairlyinvariantwithtimecomparabletothoseobtainedforthePsystem.

Fortheperiodofaluminizedsurfacediscoloration,thevaluesofR AL2 and

5 2 RAL1 forsolutionNPdecreasedto~210 cm neartheendofexposure.Both

5 capacitiveelementsY FandY AL2 increasedafteraluminizeddiscolorationto~10 sec nF/cm2~10 4sec nAL2 /cm2,respectively,withlittlefrequencydispersion

(nF~0.94andnAL2~1.00).

2.4.3 ComputationoftheNominalCorrosionCurrentDensity

Thefollowingnominalcorrosioncurrentdensityi corrAL estimatesare consistentwiththeproposedcorrosionmechanismsandtheassociatedanalog equivalentcircuitpresentedearlier.Figure2.21illustratesthei corrAL evolutionasa functionofexposuretime.Comparableresultswererecordedfortheduplicate specimensshowninAppendixA.

ForspecimensinsolutionPovertheentiretestexposureandforthe specimensinsolutionNPfortheperiodbeforetheappearanceofuniform discoloration,aworkingassumptionismadethatthehighfrequencylimit resistance(R AL1)isapproximatelythesameasthatofacathodicreactionunder purelyactivationcontrol,havingaTafelslopevalueβ C2 ~200mV.Thevalueof

βC2 isrepresentativetothosereportedforlikelycoupledcathodicreactionson aluminum(ArmstrongandBraham,1996)andalsocomparabletothoseobtained fromcyclicalpolarizationtestsshowninChapter3forunblemishedaluminized

58 steelexposedtosolutionP.Sincetherateoftheanodicreactionwasconsidered tobenearlypotentialindependent,andhenceitsadmittancenegligible,the nominalcorrosioncurrentdensityi corrAL canthenbeobtainedfromtheStern

Gearyrelationshipappliedtothecathodicreactiononly(SternandGeary,1957):

1 icorrAL ~β C2 (2.3RAL1) (2.8) Toestimatei corrAL forsolutionsCandSW,andforsolutionNPafterthe startofaluminizedactivecorrosion,thesameworkingassumptionsweremade asbeforebutusingonlythevalueofR AL2 andconsideringforsimplicitythatboth anodicandcathodicreactionpolarizabilityhavethesameanodicandcathodic

Tafelslopesβ C2 =β a2 andequalto200mVasstatedpreviously.Thus,thei corrAL underthoseconditionsis(LorenzandMansfeld,1981):

1 icorrAL ~0.5βC2 (2.3RAL2) (2.9) 2 Thevaluesofi corrAL wereextremelysmallforsolutionP(~0.03A/cm earlyonto

~0.008A/cm 2bytheendofexposure).However,thefirstadditionofexcess

CaCO 3tospecimens#1and#2causedamomentaryi corrAL increaseto~0.1

2 A/cm notobservableafterthenextCaCO 3addition.Similarly,i corrAL valuesfor thespecimen#3inP(noextraCaCO 3added)wereextremelysmall~0.06early

2 onto~0.001A/cm bytheendofthetest.Thevaluesofi corrAL oftheduplicate specimensinsolutionNPbeforethestartofaluminizeddiscolorationwere~0.15

A/cm 2forbothatthebeginning,decreasingto~0.03A/cm 2after~1,400hr.

Thei corrAL valuesforsolutionPandforsolutionNPfortheperiodbeforetheonset ofaluminizeddiscolorationwereconsistentwithvisualobservationofcorrosion free aluminizedsteelsurface.

59 ForsolutionNPfortheperiodaftertheonsetofactivealuminized corrosion,thei corrAL oftheduplicatespecimensshowedanincreasingtrendto

2 reachbytheendofthetestamodesti corrAL of~0.2A/cm ,inagreementwith moderateuniformaluminizeddiscoloration.ForsolutionC,theduplicate

2 2 specimenshadi corrAL valuesrangingfrom~1.05A/cm earlyonto~0.13A/cm after~3,000hr.Asexpected,thehighestcorrosioncurrentdensitycoincidedwith theappearanceofuniformstrongsurfacediscoloration.Thesmalleri corrAL values inCrecordedlateronareinagreementwiththedecreaseofthesolutionpH backtotherangeofaluminumpassivity.Thei corrAL valuesfortheduplicate specimensinsolutionSWwerenearlyconstantwithtimereaching~0.3A/cm 2 attheendofexposure,inreasonableagreementwiththeresultsreportedby

JohnssonandNordhag(1984)foraluminizedsteelType2exposedtonatural seawateratroomtemperature .

Itisimportanttonotethattheaboveestimatesreflecttheapplicationofa tentativeinterpretationoftheimpedanceresponse,andthatalternativescenarios shouldbeexaminedinfutureresearch.Effortsshouldbeaimedinparticularat ascertainingtowhichextentthemacroscopicallyuniformcorrosionmaybe localizedattheinclusionscalelevel.

2.5 ImplicationoftheResults

Thefollowingtentativedurabilityprojectionsforagenericfieldapplication consideratotalaluminizedcoatingthicknessof45m(30mouterand15m innerlayers)coveringuniformlyabasesteel1,500mthickapproximatinga

60 gage16sheetstock,andfocusonthecorrosionperformanceofthealuminized coatinglayerscoatedonbothsidesofthebasesteelaswellasthebasesteel itself.Itisstronglyemphasizedthattheseprojectionsarenominalinnaturesince testtimesinthepresentexperimentswereonlyasmallfractionofthetypical actualservicelivesinvolvedinfieldapplications.

RecentfieldinspectionsinFloridahaveshownthattheinneraluminized coatinglayer,ofnearlyinvariantthicknessbutwithseveralsmallbreaks especiallyattheribbendsinaspiralribaluminizedsteelType2culvert component,appearstoprovidelittlecorrosionprotectiontotheunderlyingsteel.

Eveninaluminizedsteelwithoutbendslikethoseusedhere,breaksnotrelated tocorrosionintheinnerlayerwereclearlynoted.Basedonthisobservation,no durabilitycreditwasassignedtotheinnercoatinglayerinthisinvestigation.

Hence,theprojectedservicelifeSLisdefinedasthenumberofyearsto penetrationthroughthebasesteelandtheouteraluminizedlayeronbothsides ofthebasesteel,consideringthatpenetrationoccursfrombothsidesofthe metalasitisusuallyobservedinfieldexposures.Forthepresentcalculations,it isalsoassumedthatsimilarenvironmentsexistoneachsideofapipesothe corrosionratesatbothsidesareequal.Thus,theprojectedSLisforsimplicity takentobeequaltothesumoftheSLoftheouterlayeroneitherpipesideplus theamountoftimeneededtopenetratehalfofthethicknessofthebasesteel.

Thevaluesofi corrAL asafunctionofexposuretimeobtainedinthe laboratoryexperimentsaresummarizedinTables2.4through2.7.Those discreteicorrAL valueswereusedtoestimateSLoftheouteraluminizedlayerinall

61 solutionsfortheexposureperiodfromt=0tot fwheret fisthetimefortheendof thetestandi corrAL (t i)isthetimeevolutioncorrosioncurrentdensityobtainedfrom theEISmeasurementswherei=1tonrepresentseachEISmeasurement.Thus,

SLfortheoutercoatinglayeriscomputedas:

−1  A n−1  SL = 30 ⋅ W ⋅ i ⋅ t − t + i ⋅ t + i ⋅ t − t = 30 ⋅CR −1  ∑ corrALi ()()i+1 i corrAL1 1 corrALn f n  AL (2.10) t f ⋅n ⋅F ⋅ρAL 1  +3 whereA Wisthealuminumatomicweight,n=3fortheAl/Al reaction,ρAL isthe aluminumdensity,andtheterminbracketscorrespondstothealuminum corrosionrateCR AL .

ForsolutionP,whichmaybetakenasrepresentativeofmediawithhigh carbonatescalingtendency,nearlyneutralpH,andmoderatechloridecontent, theextremelysmallCR AL (<0.24m/yr)recordedinthisinvestigationifsustained attheselevelswouldindicateafullconsumptionoftheouterlayerin>100yrof service,consistentwiththeprojectedSLcomputedfromcorrosionrateestimates offieldculvertpipesexposedtotropicalenvironmentsofcompositionsimilarto solutionP(Bednar,1989).AdditionsofextraCaCO 3emulatingsolutionswith highercarbonateprecipitatingtendenciescausedshorttermincreaseto~1

m/yr,buteventhistransientlargerratedidnotcausevisualcorrosiondamage totheouteraluminizedsteel.

Durabilityprojectionsbecomedistinctlymorepessimisticforsomeofthe otherconditionsinvestigated.Forinstance,forsolutionNPwhichmaybe representativeofmediawithhighalkalinitybutlowhardness,highpH,and moderatechloridecontent,CR AL wasmodest(~1.04m/yr).Ifthisrateis

62 maintained,itwouldmeanafulloutercoatinglossin~30yrofservice.Thehigh rateobservedforthissolutionmainlyascribedtothehighpHofthesolutionbulk abovethealuminumpassivityrangeisinagreementwiththeresultsobtained fromfieldstudiesconductedonaluminizedsteelType2exposedto environmentswithsolutionpH>9(PyskadloandEwing,1987).ForsolutionC, whichmaybetakentoberepresentativeofmediawithbothlowalkalinityand hardness,highpH,andmoderatechloridecontent,CR AL was~3.16m/yr,which wouldindicateafulloutercoatinglayerconsumptioninonly~10yr,consistent withthestrongaluminizedsurfacediscolorationobservedearlyoninthe exposure.

ForsolutionSWemulatingseawatercomposition,theCR AL wasmodest

(~3.25m/yr)indicatingafullouterlayerconsumptionin~9yrofservice.While subjecttoconsiderableuncertainty,thecorrosionratebecomesimportant consideringthatthecorrosionisstronglylocalized,withconsequentriskof aluminizedlayerpenetrationearlyinthelifeofacomponentexposedtosimilar media.ThisfindingisinagreementwiththeobservationsreportedbyPerkinset al(1982)andStavros(1984),whoassertedthatseverepittingcorrosionof aluminizedsteelexposedtoveryaggressiveenvironmentsisdeterminantwhen forecastingdurabilityinthistypeofmedium.

Afterfullconsumptionoftheouteraluminizedlayer,corrosionofthebase steelstartsandisexpectedtoproceedattheratesof~12A/cm 2inSWand~10

A/cm 2intheothermediaasreportedinChapter4.Thosevaluesarein agreementwithcorrosionratesreportedbyMcCafferty(1974),Ohetal(1999),

63 andSanderetal(1996).ThecorrespondingprojectedSLvaluesforthebase steelwouldbe~6yrforSWand~8yrfortheothermedia.

Table2.8summarizestheoverallSLestimates(SLoftheouterlayerplus thatofthebasesteel)obtainedinthisinvestigation.

AsmentionedinChapter1,avarietyofpredictivemethodshavebeen proposedforforecastingtheservicelifeofmetalliccomponents.Nevertheless, specialconsiderationisgiventothemostrelevantforecastingmethods,e.g.the

AKSteel,theCalifornia,theAISI,andtheFDOTmethods.ThecomputedSL estimatesusingthosemethods,reportedinTable2.8,weredeterminedbasedon thesolutioncompositionsshowninTable2.2fora16gagealuminizedsteel

Type2.ComparisonbetweentheSLprojectionsfromthepresentexperiments andthoseobtainedfromtheforecastingmethodsarepresentedinthenext paragraphs.

Forsolutionswithhighscalingtendencies,moderatechloridecontent,and nearlyneutralpH(solutionP),theSLestimatescomputedbytheFDOTandAISI forecastingmethodsweresomewhatconservative(andoverlyconservativein thecaseoftheAKSteelandCaliforniamethods)comparedtotheSLprojections obtainedhere.Forthesolutionwithhighalkalinity/lowhardness,moderate chloridecontent,andhighpH(solutionNP),SLestimatesobtainedfromthe

FDOTmethodwereingoodagreementwiththeresultsreportedinthis investigation.Ontheotherhand,theAISI,California,andAKSteelmethods yieldedeitherliberalorconservativeestimatescomparedwiththepresent findings.Forsolutionswithmoderatechloridecontent,lowbothalkalinityand

64 hardness,andhighpH(solutionC),SLprojectionswereincloseagreementwith thosedeterminedbytheAKSteel,California,andFDOTmethodsandoverly conservativecomparedtodurabilityprojectionsobtainedbytheAISImethod.In extremelyaggressivesolutionsoflowresistivity,highchloridecontent,andnearly neutralpH(solutionSW),theAISImethodyieldedcomparableestimatesof durabilityrelativetothepresentfindings,whereastheCaliforniamethod projectedshorterservicelives.Inhighlyaggressiveenvironments,nodurability creditisgivenbytheFDOTmethodandnoSLprojectionsaregivenbytheAK

Steelmethodforsolutionswithscalingindexesbeyond~800ppm.

Basedontheabove,forunblemishedaluminizedsteelthepresent findingswouldsupportretainingthepresentFDOTguidelinesregardlessof scalingtendencyforenvironmentswithmoderatelylowresistivitysuchasthose usedinthetests(e.g.~500 cmto~1,000 cm)andneutraltomildlyalkaline conditions(e.g.~7.5

65 Itisalsonotedthattheabovefindingsapplytoaluminizedsteelwithan initiallyunblemishedmetalliccoating.Inactualmetalformingandsubsequently fieldapplicationpractice,thealuminizedsteelcomponent(e.g.culvertpipes)is liabletosurfacedistressthatmayrangefromminortosevere,exposingacertain amountofbasesteel.Determinationofcorrosionperformanceinthose circumstancesisaddressedlaterinChapter4.

2.6 Conclusions

1. In>3,000hrtests,unblemishedaluminizedsteelType2showedextremely

lownominalcorrosionrates(<~0.008A/cm 2)bytheendofthetestperiod

inanenvironmentwithmoderatechloridecontentbutofhighcarbonate

precipitatingtendencies(thesolutionP),supportingpriorevidenceinfavor

ofacarbonatescaletendencycriteriontopredictcorrosivity.

2. Inahightotalalkalinity,butnonscaleformingmediumwithmoderate

chloridecontent(thesolutionNP),unblemishedaluminizedsteelType2

showedlow/moderatenominalcorrosionrates(<~0.10A/cm 2)formostof

thetestexposure.However,electrochemicalimpedancemeasurements

revealedhighernominalcorrosionrates(~0.22A/cm 2)bytheendof

exposureconcurrentwiththeappearanceofuniformdiscoloration,indicative

thatcorrosionmaybeofimportanceoverlongerperiodsuponevolutionof

solutionpHtohighervalues.

3. Exposuretomoderatechloridecontentbutintheabsenceoftotalalkalinity

andcarbonatescalingtendency(solutionC)ledtostronguniform

66 aluminizedsurfacediscolorationandtheappearanceoffewmacropitsearly

on,consistentwithearlydevelopmentofhighsolutionpHlikelyresponsible

forthesevereinitialcorrosion.Earlyon,nominalcorrosionratewaslarge

(~1A/cm 2)butitdecreaseto~0.15A/cm 2,consistentwithadecreasein

solutionpHtonearlyneutralvalues.

4. Exposuretohighchloridecontentandhighcarbonatescalingtendency

(solutionSW)ledtoearlyformationoffewsmallmacropitsaswellaslight

uniformdiscolorationofthealuminizedsurfacewithnearlyconstantnominal

corrosionratesof~0.3A/cm 2throughoutthetestexposure.

5. Macropitsandsurfacediscolorationappearedtobelimitedtotheouter

aluminizedcoatinglayeratleastforthetimeframeexaminedinall

solutions.Themacropitswereusuallysmallandinfrequentonthecorroding

aluminizedsurfacesotheyappearedtoplayasecondaryroleforthe

solutionsCandNPandaprimaryformofcorrosionforsolutionSW.The

macroscopicallyuniformnatureofthecorrosionmaybeamanifestationof

micropitsatthescaleofthefinelydistributedFerichinclusionspresentin

theouteraluminizedcoatinglayer.

6. Itistentativelyproposedthatthemechanismofactivationofthealuminized

surfaceinsolutionsNPandCmayinvolvealkalinedissolutionofaluminum

asaresultofahighpHofthesolutionbulk(earlyonforCandlaterinthe

testforNP),whichwouldcausealuminumdissolutionpossiblymore

localizedatthemicroscopic,inclusionscalelevel,andlaterprecipitationof

67 aluminumcorrosionproducts,coveringtheentirespecimensurface,

consistentwithvisualevidenceofuniformsurfacediscoloration.

7. ForsolutionPovertheentiretesttimeandsolutionNPbeforethe

appearanceofaluminizedsurfacediscoloration,impedanceresponsewas

describedassumingcoupledcathodicreactionsactingontheinclusions

wheresurfacecoveragebyanintermediateadsorbatealterstherateofthe

nextstepresultinginapseudocapacitivebehavior.

8. ForsolutionsCandSW,andsolutionNPaftertheappearanceof

aluminizedsurfacediscoloration,theimpedanceresponsewasassumedto

bedominatedathighfrequenciesbytheparallelcombinationofthelocal

ohmicresistanceofallmicroandmacroactivesitesandthealuminumoxide

filmcapacitance,andatlowfrequenciesbythediscreteparallelcombination

oftheFaradaicpolarizationresistanceandaninterfacialcapacitanceatall

activesites.

9. Tentativedurabilityprojectionsmadeforunblemished16gagealuminized

Type2flatsheetdurabilitywere>100yrfortheleastaggressive

environment(P),andbetween15and36yrfortheothermediabasedon

theassumptionsinthisinvestigation.Itisemphasizedthattheprojections

arenominalinnatureconsideringtheshorttesttimesofthepresent

experiments.Theresultsobtainedinthisinvestigationwereusedasafirst

stepinproposingrefinementsofpresentlyuseddurabilityguidelinesof

aluminizedsteelType2culvertpipebasedonenvironmentalcomposition.

68 10. ThepresentfindingswouldsupportretainingthepresentFDOTguidelines

fordurabilitypredictionsofunblemishedaluminizedsteelType2regardless

ofscalingtendencyforenvironmentswithmoderatelylowresistivitysuchas

thoseusedinthetests(e.g.~500 cmto~1,000 cm)andneutralto

mildlyalkalineconditions(e.g.~7.5

exploringtheuseofalternativeguidelinessuchastheAISImethodfor

environmentswithextremelyhighchloridecontents(e.g.resistivity<50

cm)andnearlyneutralpH.Eventualchangesinexistingguidelinesshould

considernotonlythespecificfindingsofthisinvestigationbutalsothe

entiretyoftheperformancerecordofaluminizedsteelpipe.

69 Table2.1:Chemicalcompositionofsteelsubstrate(%weight). C Mn P S Si Cu Al Cb Ni Cr Ti N Mo Fe 0.05 0.20 0.006 0.012 0.01 0.03 0.04 0.002 0.017 0.03 0.002 0.004 0.003 Bal. MilltestreportprovidedbyContechConstructionProductsInc.

Table2.2:Syntheticsolutioncompositionsandproperties. pH Ca +2 Cl σ Solution TA TH FC BI L (pH H) mg/L mg/L mho/cm ~7.4 C(control) 6 2 0 8 0 1,140 (~9.0) NP(non ~7.8 480 2 11 471 0372 1,850 precipitating) (~8.7) ~7.4 P(precipitating) 184 52 13 223 200 1,390 (~7.8) SW(precipitating ~7.3 210 8,280 12 8,480 † † 40,000 highchloride) (~7.9)

Legend:TA:totalalkalinityexpressedasmg/LCaCO3,TH:totalhardness expressedasmg/LCaCO 3,σ:solutionconductivity,pH L,pH H:lowestandhighest pHvalues,respectively. †SeeTable2.3fordetailedsimulatedoceanwatercomposition.

Table2.3:Chemicalcompositionofthesimulatedoceanwaterreportedbythe manufacturer. + 2 +2 +2 + +2 +3 Ionicspecies Cl Na SO 4 Mg Ca K HCO 3 Br Sr B Concentration/ppm 19,846 11,024 2,768 1,326 419 400 145 67.1 13.8 4.72

Table2.4:ValuesoftheequivalentcircuitcomponentsinFigure2.16estimated fromEISdatafitforthespecimen#1exposedtosolutionP. Time R R Y R Y i S AL1 F n AL2 AL2 n corrAL hr k snF/ F k snAL2 / AL2 Acm 2 48 17.8 27.0 3.19E04 0.94 27.0 3.83E03 1.00 0.034 216 17.7 55.5 3.49E04 0.94 37.6 3.83E03 1.00 0.016 312 18.3 79.6 3.51E04 0.94 47.8 3.24E03 1.00 0.011 336 17.1 10.1 4.00E04 0.94 7.6 1.25E02 1.00 0.091 480 19.5 18.4 4.11E04 0.94 16.5 7.75E03 1.00 0.050 504 20.2 10.7 4.28E04 0.94 9.9 9.78E03 1.00 0.085 624 20.7 17.2 4.36E04 0.94 15.9 6.31E03 1.00 0.053 1248 22.1 22.5 5.09E04 0.94 20.7 2.75E03 0.98 0.041 2376 20.9 74.8 5.41E04 0.93 32.5 1.84E03 1.00 0.012 3072 21.6 110.4 5.39E04 0.93 25.4 2.08E03 1.00 0.008 2 NominalspecimenareaAAL =95cm .

70 Table2.5:ValuesoftheequivalentcircuitcomponentsinFigure2.16estimated fromEISdatafitforthespecimen#1exposedtosolutionNP. Time R R Y R Y i S AL1 F n AL2 AL2 n corrAL hr k snF/ F k snAL2 / AL2 A/cm 2 24 14.8 6.6 3.69E04 0.95 9.6 4.42E03 1.00 0.14 144 15.3 13.9 4.20E04 0.95 17.5 2.44E03 1.00 0.07 360 14.9 8.7 4.85E04 0.94 13.6 2.86E03 0.99 0.10 624 15.0 20.4 4.98E04 0.94 30.5 1.14E03 0.95 0.04 864 14.9 24.4 5.06E04 0.94 27.9 1.31E03 0.99 0.04 1368 15.3 28.1 5.59E04 0.94 31.2 1.29E03 0.99 0.03 2376 14.7 7.9 7.03E04 0.94 6.6 2.74E03 1.00 0.07 3048 14.5 2.1 9.62E04 0.94 2.0 9.92E03 1.00 0.22 2 NominalspecimenareaAAL =95cm .

Table2.6:ValuesoftheequivalentcircuitcomponentsinFigure2.16estimated fromEISdatafitforthespecimen#1exposedtosolutionSW. Time R R Y R Y i S AL1 F n AL2 AL2 n corrAL hr k snF/ F k snAL2 / AL2 Acm 2 384 0.48 1.7 1.30E03 0.92 1.8 2.46E02 0.97 0.25 504 0.51 2.2 1.35E03 0.92 2.1 2.47E02 0.98 0.21 648 0.48 2.0 1.37E03 0.92 2.0 2.54E02 0.98 0.23 864 0.48 1.7 1.53E03 0.92 1.4 3.10E02 0.98 0.34 1200 0.49 1.7 1.64E03 0.91 1.3 3.07E02 0.97 0.35 1464 0.51 2.3 1.63E03 0.91 1.6 3.06E02 0.99 0.28 1680 0.50 1.9 1.67E03 0.91 1.3 3.01E02 0.98 0.35 1896 0.51 2.4 1.65E03 0.91 1.5 2.98E02 0.99 0.30 2424 0.49 2.4 1.64E03 0.91 1.5 2.73E02 0.97 0.30 2760 0.51 2.6 1.62E03 0.91 1.5 2.96E02 0.99 0.30 3096 0.51 2.7 1.63E03 0.91 1.5 3.03E02 0.99 0.30 2 NominalspecimenareaAAL =95cm .

Table2.7:ValuesoftheequivalentcircuitcomponentsinFigure2.16estimated fromEISdatafitforthespecimen#1exposedtosolutionC. Time R R Y R Y i S AL1 F n AL2 AL2 n corrAL hr k snF/ F k snAL2 / AL2 A/cm 2 24 19.5 150 4.36E04 0.93 4.9 1.94E03 0.93 0.09 360 17.6 9.4 9.59E05 0.57 0.7 6.59E03 0.69 0.63 504 18.6 12.1 6.57E05 0.60 1.3 4.29E03 0.72 0.34 648 18.4 13.5 5.24E05 0.62 1.8 3.43E03 0.74 0.26 864 19.0 15.9 4.24E05 0.63 2.4 2.70E03 0.76 0.19 960 18.1 15.6 4.00E05 0.64 2.2 2.65E03 0.76 0.21 1392 16.9 19.1 3.78E05 0.62 2.9 2.21E03 0.77 0.16 2400 17.5 28.9 2.89E05 0.63 4.1 1.81E03 0.79 0.11 3048 17.6 35.2 2.74E05 0.63 5.2 1.65E03 0.80 0.09 2 NominalspecimenareaAAL =95cm .

71 Table2.8:Comparisonofdurabilityestimates,inyr,obtainedbytheapplication ofselectedforecastingmethodsandthoseobtainedinthisChapter. Testsolution AKSteel California AISI FDOT ThisChapter P <20 29 57 56 >100(>100) NP <20 25 50 33 36(38) SW NA 7 15 NA 15(19) C <20 30 62 27 19(23) Numbersinparenthesiscorrespondtotheresultsfromduplicatespecimens.

Figure2.1:Crosssectionperpendiculartorollingdirectionofa16gage(~1.59 mm)thicknessflataluminizedsteelType2afteretchingwith2%Nitalsolution showingtheouterandinnercoatinglayersonbasesteel.Lightfeaturesinthe outercoatingareFerichinclusionsperSEMEDSanalysis.

72 1.E+07

1.E+06

1.E+05 Al

1.E+04

RelativeCounts 1.E+03 Mg Fe

1.E+02

C 1.E+01 0 20 40 60 80 100 Distancefromoutersurface, m

Figure2.2:SEMlinescanconductedonthecrosssectionofaluminizedsteel Type2(perpendiculartorollingdirection)showingthemainconstituentsinthe dualcoatinglayerandthebasesteel.

PVC Counterelectrode

Referenceelectrode

Gasket

Workingelectrode

Electricalconnection

Figure2.3:Schematicofthetestcellarrangement.

73

Figure2.4:Photographofthetestcell. 0.5 SolutionC(#1) SolutionC(#2) 0.6

0.7

/Vvs.SCE 0.8 OC E

0.9

1 0 500 1000 1500 2000 2500 3000 3500

Time/hr

Figure2.5:EOC evolutionofreplicatespecimensinsolutionC.Endofexposure correspondstothelastdatum.

74 0.5 SolutionNP(#1) SolutionNP(#2) 0.6

0.7

/Vvs.SCE 0.8 OC E

0.9

1 0 500 1000 1500 2000 2500 3000 3500

Time/hr

Figure2.6:EOC evolutionofreplicatespecimensinsolutionNP.Endofexposure correspondstothelastdatum.

0.5 SolutionP(#1) SolutionP(#2) 0.6 SolutionP(#3)

AdditionofextraCaCO 3to#1and#2 0.7

/Vvs.SCE 0.8 OC E

0.9 NoadditionofextraCaCO 3to#3

1 0 500 1000 1500 2000 2500 3000 3500 Time/hr

Figure2.7:EOC evolutionofreplicatespecimensinsolutionP.Arrowsindicate twoCaCO 3 additionsto#1and#2.Endofexposurecorrespondstothelast datum. 75 0.5 SolutionSW(#1) SolutionSW(#2) 0.6

0.7

/Vvs.SCE 0.8 OC E

0.9

1 0 500 1000 1500 2000 2500 3000 3500

Time/hr

Figure2.8:EOC evolutionofreplicatespecimensexposedtosolutionSW.Endof exposurecorrespondstothelastdatum. 10

C(#1) 9 C(#2) NP(#1) NP(#2) 8 P(#1) P(#2) SolutionpH SW(#1) 7 SW(#2)

6 0 500 1000 1500 2000 2500 3000 3500 Time/hr

Figure2.9:EvolutionofthesolutionbulkpHwithexposuretime.

76 10000 SolNP24hr SolNP360hr SolP48hr SolP312hr 8000 SolSW384hr SolSW504hr 2 6000 cm

10Hz 10Hz

Im(Z)/ 4000

2000

100Hz 100Hz

0 0 2000 4000 6000 8000 10000

2 Re(Z)/ cm

Figure2.10:TypicalEISplotofthehighfrequencylimitforNP,P,andSW. 3.E+06 24hr 144hr 10points/dec 360hr 624hr

2 2.E+06 864hr 1368hr cm

2376hr 3048hr Im(Z)/ 1.E+06

0.E+00 0.E+00 1.E+06 2.E+06 3.E+06 4.E+06 5.E+06

2 Re(Z)/ cm

Figure2.11:EISbehaviorofthespecimen#1insolutionNP(100KHz1mHz 5points/decadeunlessindicatedotherwise). 77 6.E+06

2 4.E+06 48hr

cm 216hr

312hr 336hr

Im(Z)/ 480hr 2.E+06 504hr 624hr 1248hr 2376hr 3072hr 0.E+00 0.0E+00 2.0E+06 4.0E+06 6.0E+06 8.0E+06 1.0E+07 1.2E+07

2 Re(Z)/ cm

Figure2.12:EISbehaviorofthespecimen#1insolutionP(100KHz1mHz5 points/decade). 2.5E+07 408hr 696hr 888hr 3096hr 2.0E+07 3120hr 2 1.5E+07 cm

Im(Z)/ 1.0E+07

5.0E+06

0.0E+00 0.0E+00 5.0E+06 1.0E+07 1.5E+07

2 Re(Z)/ cm Figure2.13:EISbehaviorofthespecimen#3insolutionP(100KHz1mHz5 points/decade). 78 2.0E+05 384hr 504hr 648hr 864hr 1.5E+05 1200hr 2 1464hr

cm 1896hr

3096hr 1.0E+05 Im(Z)/

5.0E+04

0.0E+00 0.0E+00 5.0E+04 1.0E+05 1.5E+05 2.0E+05 2.5E+05 3.0E+05 3.5E+05 4.0E+05 Re(Z)/ cm 2 Figure2.14:EISbehaviorofthespecimen#1insolutionSW(100KHz1mHz 5points/decade). 3.0E+05

10points/dec 2.0E+05 24hr 360hr 2 1.0E+05 504hr cm

648hr 864hr 0.0E+00 Im(Z)/ 1392hr 2000 2400hr 3048hr 1.0E+05 1000

0 1000 2000 3000 4000 5000 6000 2.0E+05 0.E+00 1.E+05 2.E+05 3.E+05 4.E+05 5.E+05 6.E+05 7.E+05

2 Re(Z)/ cm

Figure2.15:EISbehaviorofthespecimen#1insolutionC(100KHz1mHz5 points/decadeunlessindicatedotherwise). 79 CPE F(Y F,n F)

RS CPE AL2 (Y AL2,n AL2)

R AL1

RAL2

Figure2.16:AnalogequivalentcircuitusedtosimulatetheEISresponses.

1.E03

2 1.E04 cm n sec 1 1.E05 / AL2 NoCaCO 3 ,Y F addedtoP (#3) Y 1.E06

1.E07 0 500 1000 1500 2000 2500 3000 3500

Time/hr

Figure2.17:Evolutionoftheadmittanceparameterasafunctionoftimeforthe specimens#1insolutionsNP(circles),P(squares),C(triangles),andSW __ (diamonds)(Y F, YAL2).ArrowsindicateCaCO 3 additionstosolutionP(#1).

80 1.E+08

NoCaCO 3addedtoP(#3) (#3) 1.E+07 2 1.E+06 cm / 1.E+05 AL2 ,R

AL1 1.E+04 R

1.E+03

1.E+02 0 500 1000 1500 2000 2500 3000 3500

Time/hr

Figure2.18:Evolutionoftheresistivecomponentsasafunctionofexposuretime forthespecimens#1insolutionsNP(circles),P(squares),C(triangles),andSW

(diamonds)(R AL1,— RAL2).ArrowsindicateCaCO 3 additionstosolutionP(#1). 1.2E+11

NP(1) NP(2) 2 8.0E+10

F NP(3) 4 NP(4)

/cm P(1) 2

F P(2) C 4.0E+10 P(3) P(4)

0.0E+00 1.2 1.1 1.0 0.9 0.8 0.7

E/Vvs.SCE

Figure2.19:MottSchottkyplotoftheoxidefilmcapacitancerecordedforNPand 2 Psystems(specimens#3and#4)at~330hrofexposure.C F valuesobtained byEISatEOC oftheduplicatespecimens#1and#2atcomparableexposureage areplottedaswell(specimen#isdenotedinparenthesis). 81 10 P NP C 1 SW

2 P(#3) Acm

0.1 / corrAL i 0.01

0.001 0 500 1000 1500 2000 2500 3000 3500

Time/hr

Figure2.20:Nominalcorrosioncurrentdensityevolutionforthespecimens#1in allmedia.NoextrapowderedCaCO 3wasaddedtothetriplicatespecimenin solutionP(#3).

82

Chapter3

SpecialIssuesintheCathodicBehaviorofAluminizedSteelType2inScale FormingWaters

3.1 Introduction

AsmentionedinChapter1,aluminizedsteelType2iscommonlyusedas acomponentforapplicationsindrainageculvertpipethataredesignedto operateforlongservicelives,sothatextremelylowcorrosionratesaredesirable

(CerlanekandPowers,1993).Asevenlowcorrosionratesmaybeimportant, theirdetectionrequiressophisticatedtechniqueswithassociatedinherent uncertainty.Therefore,understandingofmechanisticissuesiscriticaltoincrease thelevelofconfidenceinthecorrosionrateestimation.Akeymechanistic questionisthenatureandextentofthecathodicreactiontakingplaceonthe micrometerscaleFerichconstituentinclusions,e.g.FeAl 3andFe 2Al 5embedded inthesolidsolutionaluminummatrix(Parketal.,1999,Nisancioglu,1990,and

Nisanciogluetal.,1981)asthecathodicreactionwillcontroltheoverallrateof metaldissolution.Consequently,experimentsintendingtoobtainadditional informationonthecathodicbehavioronaluminizedsteelinscalingformingwater wereperformedandareaddressedinthischapter.

Toisolatethecathodicreaction,experimentswereperformedbycyclically polarizingtopotentialsmorenegativethanthoseencounteredundernormalE OC

83 conditions(e.g.<900mV).Theexperimentsproducedsomekineticparameter informationusefulforcalibratingpredictivemodels,butalsorevealedenhanced cathodicactivityatthemorenegativepolarizationregimesthatmeritsdetailed discussion.Thefollowingdescribestheresultsandsetsthestageforfuture investigationofthecausesofthatbehavior.

Asdiscussedearlier,theinclusionsnotonlyactasmicrositesforcathodic reactionbutalsocanpromotelocalizedcorrosionofaluminumsurroundingthe inclusions.Forinstance,GundersenandNisancioglu(1990)proposedthat aluminumcontaining~3%FeexposedtonearlyneutralpHsolutionswith negligiblebufferingcapacityispreferentiallydissolvedinthevicinityofthe inclusionsasaconsequenceofalocalpHincreaseduetothecathodicreaction occurringattheinclusions.Effectively,thisleadstoincreasedexposureofthe inclusionsatthemetalsurface,andtherefore,anenhancementofthecathodic reactionwithconsequentfurtherincreaseinthealuminumdissolutionrate.In bufferedsolutions,however,localizedalkalinizationinthevicinityofthe inclusionsmaybepreventedbyneutralizationofOHions.Therebypreferential aluminumdissolutionaroundinclusionsisminimized,asconfirmedby

NisanciogluandHoltan(1979)andlaterbyBjoergumetal(1995)onAA1100in bufferedneutralpH,NaClsolutions.

Atpresent,thereissomecontroversyinregardstothetypeofdominant cathodicreactionatthepotentialsofinterestinaluminumcontainingFerich inclusions.Previousinvestigations(SeriandFurumata,2002)conductedto determinethecathodicbehaviorofcommerciallypurealuminumexposedto

84 aeratedunbuffered0.05MNaClsolutionatneutralpHidentifiedH2evolution underactivationcontrolasthemaincathodicreactionforpotentialsrangingfrom

~750mVto~1400mV.Seri’sresultswereinagreementwiththosereportedby

Gartland(1987)foraluminumcoatedsteelexposedtoaeratedseawater.

However,Ryndersetal(1994)andParketal(1999)reportedO2reductionas thedominantcathodicreactionforAA6061inaerated0.6MNaClsolutionforup to~1,000mV SCE .

Othertypesofinclusions,e.g.Cucompounds,havealsobeenreportedto actassitesforcathodicreactionsharingpossiblysimilaritiestoFeinclusionsin theinterpretationofthecathodicreactionmechanisms.Forexample,Vukmirovic etal(2002)andlaterJakabetal(2005)documentedthatcathodicpolarizationof

AA2024T3containingCurichparticlesinunbufferedNaClsolutioncaused detachmentofCuinclusions(byundercuttingduetocorrosionofthesurrounding aluminum)fromthealuminummatrix.Themechanically/electricallydetached metallicCuadopteditsowncorrosionpotentialleadingtoformationofCu +2 ions thatlaterreplatedonthemetalsurface,resultinginanincreaseinthecathodic reactionrate.

3.2 ExperimentalProcedure

ThealuminizedsteelType2usedinthispartoftheinvestigationcame fromthesamebatchasthoseusedinpreviousChapters.Circularunblemished specimensof95cm 2 nominalsurfaceareawerecutoutfromtheasreceived aluminizedsteelsheet.Thesurfacehadnoblemishesdetectablebyunaided

85 visualinspection.Twospecimensurfaceconditionsweretested:asreceived

(AR)andfinelyground(FG).TheFGsurface,indentedtosimulateanaged conditionafterrollingfinishmayhavewastedawayandbetterexposed inclusions,waspreparedbyhandrubbing1mdiamondmetallographic polishingcompoundwithasoftpaperwhichremoved~5moftheouter aluminizedlayer.BothARandFGsurfaceswereultrasonicallycleanedwith ethanolandstoredinadesiccatorbeforeimmersion.A500mLthreeelectrode testcellwasusedexposinghorizontallyoneofthespecimenfaces(Figures2.3 and2.4).AllpotentialsarereportedintheSCEscale.

Forcomparison,limitedtestswereconductedwithasmeltedbulkalloy

6 specimens ofcompositionFe 2Al 5,similartothatfoundasintermetallicsin aluminizedsteel,andwithcommerciallypurealuminum(AA1100H14)sheet stockwithnominalAlcompositionof~99%and~1%Femaximum 7.The specimensweremountedinanepoxyresinexposing1.4cm 2and4cm 2forthe intermetallicandtheAA1100respectively,wetgroundtoa600gritsurfacefinish, placedinathreeelectrodeconfigurationcorrosioncell(PrincetonApplied

Research®)witha~0.5cmLuggincapillarytospecimensurfacedistance.

SolutionPwasusedinthispartoftheinvestigationwithcompositionand propertiesthesameasthatshowninTable2.2inChapter2.ThecalculatedLSI valuewas+1.4,aconditionthatwasmanifestedbytheformationofaprecipitate ofCaCO 3toyielda~0.5mmthickpowderylayeronthespecimensurfaceshortly afterexposure.

6SuppliedcourtesyofDr.N.Birbilis,OhioStateUniversity. 7SuppliedbyMetalSamplesInc. 86 Theimmersiontestswereconductedinduplicatefornearly1,700hrat22

±2°C.Thesolutionwasincontactwithlaboratoryairthroughasmallopeningfor thefirst~410hrofexposurefollowedbydeaerationwithpureN 2gas.EOC and solutionconductivityweremonitoredperiodically.Also,cathodiccyclic polarization(CYP)testswereconductedsequentiallyatthreedifferentscanrates

(1,0.5,and0.05mV/sec)atselectedexposuretimeswithpotentialsshiftedfirst fromEOC to~1.15V(forwardscan)andthenbacktoEOC (reversescan).The potentialswerecorrectedafterwardsforohmicdroptakingintoaccountthe solutionresistanceRSdeterminedfromthehighfrequencylimitofEIS measurements.Giventhebufferingcapacityofthesolution,pHfluctuationsat themetalsurfacewereexpectedtobeminimizedduringcathodicpolarization.At theendoftheimmersiontest,allspecimenswereexaminedby40Xoptical microscopyandwithaScanningElectronMicroscope(SEM).TheFe +2 concentrationofthesolutionbulkwasmeasuredattheendofexposureby

AtomicAbsorptionSpectroscopy.

3.3 Results

ExperimentaltrendsexemplifiedinthisChapterareforsinglespecimens unlessotherwisenoted.Trendsobtainedforduplicatespecimenswere comparabletothoseshownhere.CYPtestsofbothsurfaceconditionswere conductedwhenthemetalswerestillinpassivestate.Noundergasketcrevice corrosiondevelopedinanyofthespecimensforwhichresultsarereported.

87 3.3.1 MicrostructureAnalysis

ASEMviewofthetypicalmicrostructureofthenearsurfacecrosssection oftheasreceivedaluminizedspecimensisshowninFigure2.1(Chapter2).The unexposedsurfacemorphologyoftheARandFGconditionsisshowninFigure

3.1.Thelightfeaturesare~1.6to3.3mFerichinclusionsofapproximate composition~85%Aland~15%Fe.TheFGsurfaceappearancewas comparabletothatoftheARmaterialexceptthattheinclusionscovered respectively~7.6%and~5.5%ofthetotalspecimensurface.Thematrix surroundingtheinclusionswas,asexpected,richerinaluminumwithaverage compositionof~98%Aland~2%Fe.Afterlongtermexposure,~210m diameterisolatedpitswereobservedintheFGspecimensbutnoneintheAR specimens.Inaddition,lightdiscolorationofthealuminizedcoatingwasnotedon theFGspecimensafter~800hrofexposurewhereasnodiscolorationwas observedfortheARspecimensevenafter~1,700hrexposure.

3.3.2 SolutionComposition

TheinitialsolutionpHcloselyapproachedthelowestvaluesreportedin

Table2.2,increasingto8.20after1,500hr.Solutionresistivitywasalsoconstant andclosetothevaluereportedinTable2.2.TheFe +2 concentrationinsolution forbothsurfaceconditionsattheendofexposurewasbelowtheminimum detectionleveloftheinstrument(0.01ppm).

88 3.3.3 EOC andCYPTrends

Figure3.2exemplifiestheEOC evolutionforupto~1,700hrforthe duplicatespecimens.TrendsweresimilarforbothFGandARsurfaceconditions.

Shortlyafterimmersion,EOC valueswere~750mV,andremainednearly constantfor24hrafterwhichthepotentialgraduallydecreasedtowardaterminal valueof~900mV,consistentwiththeEOC trendsobtainedinChapter2.There unblemishedasreceivedaluminizedsteelwasdocumentedwasfoundthehave extremelylownominalcorrosionratesandcorrespondinglycleansurface appearanceforupto3,000hrofexposureinasolutionsimilartothatusedinthis partoftheinvestigation.

TypicalCYP(Evs.i Cwherei Cisthecathodiccurrentdensitynormalized tototalspecimenarea)behavioroftheFGandARconditionsinthenaturally aeratedsolutionisexemplifiedinFigure3.3.AdditionalCYPtestsconductedat differentexposuretimesandinwellagitatedsolutionshowedcomparabletrends.

AtthetwofastestscanratesbothARandFGconditionshadsimilarCYPtrends, withnegligiblehysteresisat1mV/secandmoderatehysteresisat0.5mV/sec.

Thecurvesforbothsurfaceconditionsseeminglyexhibitedatypicalactivation polarizationregimewithapparentcathodicTafelslopesof~170250mV/dec, comparabletothosereportedbyArmstrongandBraham(1996)forcommercially

8 purealuminuminNaClsolution,andvaluesofi CatthestartingEOC of~10 7

8 2 6 2 10 A/cm .Attheapexpotential,i CfortheARconditionwas~210 A/cm at1 mV/sec,approximatelytwotimessmallerthanthatfortheFGconditions.Atthe lowestscanrate,0.05mV/sec,thepolarizationcurvesshowedmuchmore

89 pronouncedhysteresisandgreatercurrentdensitiesattheapexpotentialfor bothsurfaceconditionsthaninthefastertests.Inallcases,thei Cvaluesateach potentialforthereversescanwaslargerthanthoserecordedfortheforward scan,suggestingalargesignalpseudoinductiveresponseofthesystemfor negativepotentialexcursionsfromEOC .

Figure3.4showscomparabletestsfortheFeAlandAl1100specimens.

Thosewerenormallykeptpolarizedat850mV(potentialrepresentativeofthe typicalEOC ofaluminizedsteel),whichwasnottheirnaturalEOC sothestarting pointoftheirCYPcurvesisnotatzerocurrentdensitybutratheratthesteady statepolarizingcurrentdensity(>~0.2A/cm 2forbothmaterials).AdditionalCYP testsconductedatdifferentexposuretimesshowedcomparabletrends.Forall scanrates,hysteresiswasrelativelylargeforFeAl,butnotforAl1100.The curvesshowedsteepcathodicslopesinagreementwiththeresultsreportedby

SeriandFurumata(2002),withi Cvaluesforthereversescanlargerthanthose fortheforwardscan.Valuesofi Cattheapexpotentialwerecomparabletothose obtainedfortheFGspecimens.Additionalexperimentsconductedonspecimens exposedtoawellagitatedsolutiondidnotcauseasignificantchangeini C.

Figures3.5and3.6showresultsoftestsasinFigures3.3and3.4, respectively,butconductedwhiledeaerationhadbeeninprogressforatleast72 hr.AdditionalCYPtestsconductedatdifferentexposuretimesshowed comparabletrendstothoseinFigures3.5and3.6.TheCYPcurvesatthefaster scanratesforthetwosurfaceconditionsandthealloysshowedcomparable trendstothoseunderaeration.However,at0.05mV/sectherewasless

90 hysteresisthanintheaeratedcasenotablyfortheARandFGconditionsbutalso forthealloys.ThestartingEOC valueswereingeneralmorenegative(~40mV) thanfortheaeratedsolutionforbothARandFGconditions,althoughthei C valuesattheapexpotentialwerenotmuchchanged.Aftersolutionreaerationfor

>48hr,thestartingEOC andCYPbehaviorrevertedinallcasestothatobtained beforedeaeration.

3.4 Discussion

Inboththeaeratedanddeaeratedteststhei Cvaluesatagivenpotential fortheARandFGconditionswereinaratio~2:1,respectively,whiletheSEM examinationindicatedaratioofthesameorder(~1.4:1)fortheareafraction coveredbyFerichinclusions.Theshapeofthepolarizationcurvesduringthe forwardscanatthefastscanratesandthelackofsensitivitytosolutionagitation suggestactivationlimitedcontrolovermuchofthetestcycle.Thoseobservations areconsistentwiththeFerichinclusionsactingasmicroelectrodesforthe cathodicreaction,toanextentthatdependsstronglyontheamountofthose inclusionsasnotedelsewhere(Nisancioglu,1990)forcomparablesystems.

Thenatureofthemaincathodicreaction(s)activeinthepotentialregime examinedisnotentirelyclear,asituationnotuncommoninstudyingaluminum alloys(MoonandPyun,1998).O 2reduction(OR)canbeexpectedunder aerationtobethedominantcathodicreactionat~900mVEOC .Sincethatisin theorderofthereversiblepotentialforthewater/hydrogensystematthenear neutralpHofthesystem,H 2evolution(HE)maynotyetbeimportant.This

91 expectationissupportedbytheobserveddecreaseinEOC tomorenegative valuesupondeaeration.However,thedecreasewasmodest(~40mV) consideringthatdeaerationwaseffectively~99%basedondissolvedoxygen measurements.ItispossiblethenthatHEwasproceedingatanincipientrateat theformerEOC ,andthatthe40mVdecreasewasenoughaddedoverpotential fortherateofHEtobesufficientforestablishinganewmixedpotentialwhen combinedwiththeanodicreaction.

AnotherreasontoexpectHEtobeimportantatthemorenegative potentialsisthatthecathodicreactionmaintaineditsactivationlimitedbehavior afterdeaeration,attheratesthatwerecomparabletoorevenhigherthanbefore insomecases.Thesizeandtypicalseparationoftheinclusions,whichisonlya fewm(Figure3.1),issignificantlylessthanthedepthδoftheNernstlayer(e.g. severalhundredm(Kaesche,1985)typicallyencounteredunderthenearly stagnant/lightlystirringconditionsused.Thus,thediffusioncontrolledcurrent densitywouldbegivenapproximatelybyi L=nFC BD/δwheren,C BandDarethe valence,bulkconcentrationanddiffusivityofthespeciesundergoingreduction.

5 2 7 ForOR,n=4,D~210 cm /secandC B~310 Munderaeration,soforthe

5 2 expectedδvaluesi Lwouldbe>~10 A/cm whichislargerthanmostofthe forwardscani Cvaluesobserved.However,underdeaerationi LforORwould becomeabouttwoordersofmagnitudesmaller,withvaluesintheorderof10 7to

10 6A/cm 2,butsuchlimitationwasnotobservedinthecathodiccurvesunder deaerationevenatthelowscanrates.Yet,ifthediffusionaltransportwerenotan issue,thesustainedhighcathodicreactionratesunderdeaerationwouldalsobe

92 inconsistentwiththeusualfirstorderkineticsforOR,werei Cisproportionalto theconcentrationofO2intheelectrolyte.Thosediscrepanciesdonotapplyto

HE,whichatthesolutionpHismostlikelytoproceedbydirectwaterreduction, whichisneithersubjecttoconcentrationpolarizationnorgreatlydependentonO 2 concentration.

ItwouldappearthenthatwhileORissignificant(atleastfortheforward scans)neartheaeratedEOC ,HEbecomesdominantatthemorenegative potentialsperhapsaidedbyhavingasmallerTafelslopethanthatofOR.Itis cautionedthatinvokingHEdoesnotexplainallthepolarizationeffectsobserved upondeaeration.Forexample,uponaveragingresultsofmultiplespecimens, cathodiccurrentsweresomewhathigherafterdeaeration.Inthecontextofa simplemixedpotentialscenario,itwouldbenecessarytoproposeanincreasein therateofboththeanodicandthecathodicreactions,intheappropriate proportions,toexplainbothadecreaseinEOC aswellasanincreaseinthe cathodicreactionrates.Thepresentevidenceisinsufficienttoidentifyifandhow ananodicrateincreasetakesplaceupondeaerationandthisissueshallremain forlaterinvestigation.

Settingasidetheissueoftheidentificationofthecathodicreaction,the moststrikingfeaturedemandingexplanationisthestronghysteresispresentin thereturncathodiccurve,notablyfortheFGcondition,aswellasthemuch lesserextentofhysteresisupondeaeration.Clearly,theextent,direction,and scanratedependenceoftheobservedhysteresisindicatethatthealuminized surfacebecameanincreasinglybettercathodeasthecathodicreactions

93 progressed,butthemechanismforsuchincreaseanditsdependenceon aerationisnotevident.

Detailedelucidationoftheaboveissueswouldrequireadditional experimentalevidencesuchassurfaceanalyticaldataandcontrolledtransport experiments(e.g.usingarotatingdiskelectrode(Newman,1966))thatare beyondthescopeofthepresentinvestigation.Instead,atentativescenariowill bepresentedbelowthataccountsfortheobservedbehaviorintheaerated condition,andforsomeofthefeaturesseenafterdeaeration.Thescenariomay serveasafirststepinformulatingafuturespecializedstudyoftheproblem.The approachisinspiredbywelldocumentedmodelsofcathodicenhancementin aluminumcopperalloysbydepositionofcopperdissolvedinaqueousmedia

(Vukmirovic,2002).

Analogoustothosemodels,itisspeculatedthatuponcathodic polarizationbelowthestartingEOC aspeciesthatservesasanefficienthostfor theoperatingcathodicreaction(inthefollowingassumedtobeonlyHEfor simplicity)depositssomewhereonthealuminizedsurface.Thatnewsurfaceisin additiontotheinitiallypresentinclusions,andmayhaveahigherexchange currentdensityforthecathodicreactionthantheinclusions.Thus,asmall amountofdepositionmayhaveastrongeffectsothatevenasmallinitial concentrationofthedepositingspeciesinthesolutioncouldsufficeandevennot becomeexhaustedfromthesolutionthroughouttheentirepolarizationcycle.The rateofdepositionisfinite,soconsistentwithobservationtheeffectwouldbe strongeratthelowerscanrates.Onfirstapproximation,thecathodiccurrentdue

94 tothedepositionreactionmaybeconsideredtobesmallcomparedtothatofthe maincathodicreaction.Alsoasanapproximation,onlyasingleanodicreaction willbeassumedforthecathodicpotentialregimeexplored,modeledaspotential independentpassiveAldissolutionataconstantratei P2 .

ThetentativelyproposeddepositionreactionisFereduction(Fe +2 +2e

→Fe),wheretheFe +2 ionsareavailablefrompriorpreferentialdissolutionofthe inclusions.Theinclusionsmayhavebeeninelectroniccontactwiththerestof themetal,orasfreeparticlesseparatedfromthematrixduetoundercutting cathodiccorrosionofthesurroundingaluminum(Vukmiroviketal,2002,Parket al,1999).AssumingequilibriumwithsomemetallicFeonthesurfaceatthe beginningofthepotentialscan,theinitialFe +2 ionconcentrationinthepHrange

+2 (E E )/0.03 ofinterestisgivenby[Fe ]i=10 OC 0 whereE 0=681mVisthestandard

+2 Fe /Feredoxpotential(BockrisandReddy,1970).ThetypicalE OC valuesof

900mVand940mVfortheaeratedanddeaeratedconditions,respectively,

+2 8 9 correspondthento[Fe ]ivaluesof~3.610 Mto~3.610 M(0.002ppmand

0.0002ppm),whichareconsistentwiththeupperboundconcentrationobserved byAtomicAbsorptionSpectroscopy.TheFe +2 ionspresentinthesolutionatthe beginningofthepolarizationcycleincreasinglyreducetodepositedFeas cathodicpolarizationprogresses.Forsimplicity,ahighcathodicreaction exchangecurrentdensityonthenewlyformedsurfacewillbeassumed,sothe requiredamountandrateofdepositionissmalland[Fe +2 ]canbetreatedas beingapproximatelyconstantoverthepolarizationcycle.Givenaslowenough scanrate,theFedepositionwillbecomesignificantandthemaincathodic

95 reactionratewillbenoticeablygreaterinthereturnscan,thusresultingin pseudoinductivehysteresisasobservedexperimentally.

Theobservationoflesserhysteresisforthedeaeratedthanfortheaerated solutioninARandFGsurfaceconditionsmaybeexplainedbytheeffectof aerationonthestartingEOC (~40mVhigherthaninthedeaeratedsolution).The orderofmagnitudeleanerinitialFe +2 concentrationnotedaboveforthe deaeratedsolutionwouldresultinacorrespondinglylowerextentofnewFe deposition,andhence,lesspronouncedhysteresis.Atthemorenegativestarting

EOC underdeaeration,therewouldhavebeensomeFedepositiononthe surface,whichmightaccountforthesimilarorgreatercathodicreactionrates observedafterdeaerationcomparedwithbefore.Asindicatedabove,itwouldbe howevernecessarytoinvokeastrongeranodicreactionrateupondeaeration(an increaseofi P2 intheabovesimplifiedassumptions)toexplainamorenegative

EOC inthefaceofsimilarorincreasedcathodicaction.Thathypothesisandits operatingmechanismwouldnecessitateadditionalexperimentalevidencefor evaluation,sothefollowingwillfocusontheresponseobservedunderaerated conditions.

Thepredictionsoftheabovescenarioforaeratedconditionswere evaluatedbyasimplifiedquantitativemodelthatwasformulatedbyassigning

TafelkineticstobothHEandFedeposition,withnominalexchangecurrent densitiesi 0Ci,equilibriumpotentialsEeqci,andcathodicTafelslopesβ Ciwhere thesubscriptiisreplacedby1forFeandby2forHEaccordingly.HEis assumedtotakeplaceattheFerichinclusionsinitiallypresent,andatthenewly

96 depositedmetallicFesurface.TheregionwhereFedepositiontakesplaceisnot known,soacathodiccurrentdensityforFedepositionwillbenominallyassigned toactonthespecimensurfacenotinitiallyoccupiedbytheinclusionsorany previouslydepositedFe,leavingituptothechoiceofi 0C1 andrelatedparameters toobtainappropriatescalingfactors.Thealuminumontherestofthesurfaceis assumedtobeexperiencingslowpassivedissolutionatacurrentdensityi P2.The solutionhashighconductivitysotheohmicpotentialdropisneglected.

Pertheassumptionsabove,thetimedependenttotalcathodiccurrent underactivationcontrolcomprisesthatofHEandFedepositionsuchthat:

ICT (t) = IC I2 )t( + IC2N )t( + IC1 )t( =IC2 )t( + IC1 )t( (3.1) whereI C2Iand IC2N aretheHEcurrentsontheinclusionsandonthenewly depositedFe,respectively,andI C1istheFedepositioncurrentontherestofthe surface.ItisalsoassumedthatHEonbothinclusionsandnewlydepositedFe hasthesamekineticparametersexceptfortheexchangecurrentdensity,which isi 0C2ontheinclusionsandgreaterbyamultiplierfactork 2onthedepositedFe.

Thus,I C2 (t)canbewrittenas:

Eeqc −E )t(  k ⋅k t  2 I )t( = i ⋅  A + 1 2 I (τ d) τ ⋅10 βC2 (3.2) C2 0C2  C0 2F ∫ C1   0  whereFistheFaradayconstant,E(t)istheappliedpotential,A C0 istheinitialFe

k t richinclusionarea,and 1 I (τ d) τ givestheareaofthedepositedFe.The ∫ C1 2F 0

2 +2 parameterk 1=A SN AistheFecoverageconstantincm permolesofFe ,N Ais theAvogadro'snumber,andA Srepresentstheareadescribedbyasimplecubic 97 structureofFeatomswithatypicallatticeparameterof0.28nm(Kepaptsoglou etal,2007).

PertheassumedlocusofFedeposition:

Eeqc −E )t(   k t  1 I )t( = i ⋅ A −  A + 1 I (τ d) τ ⋅10 βC1 (3.3) C1 0C1   C0 2F ∫ C1    0  whereAthetotalspecimenarea.Then,thenetcathodiccurrentis:

  k t  I ()()t = I t + I )t( − i ⋅ A − A + 1 I (τ d) τ (3.4) net C2 C1 P2  C0 2F ∫ C1    0  Figure3.7showsolutionstoEq.(3.4)numericallycalculatedbyfinite differencesfortheaeratedcondition,respectively.Typicalvaluesofβ C1andi 0C2

(Kaesche,1985)werechosenalongwithvaluesofβ C2andi P2numerically calculatedfromtheCYPtestsconductedat1mV/sec(seeTable3.1).Consistent

2 withspecimendimensionsandsurfaceanalysis,Awassetto95cm andA C0 to

5cm 2(ARcondition).AnominalinitialFe +2 concentrationequalto0.002ppm waschosen,calculatedasabove.Plausibleinputvaluesofi 0C1 andk 2were chosensuchthatthemodelcalculationssimulatedatypicalCYPtrendoftheAR conditionat0.05mV/sec.Thoseinputvalueswereusedfortheotherscanrates aswell.

Themodelresultswereinreasonableagreementwiththeexperimental trends.However,aslightdiscrepancyofthemodelresultsrespecttothe experimentaldataisnotedforthereturnscanat0.05mV/secfortheaerated solution.Amomentaryincreaseoftheexperimentalcathodiccurrentdensity followedbyasteeperslopewasobservedfortheslowestreturnscan,notquite 98 wellreproducedbythesimplifiedmodel.Thisobservationisnotclearatthis momentbutitcanbespeculatedthatiftheFedepositionmechanismisassumed tobeaveryslowprocesscomparedtotheslowestscanrateexamined,thenits responsetothepotentialchangeisnotinstantaneoussothatFe +2ionscontinue todepositevenduringthereturnscan.Theresultingeffectyieldsa pseudoinductivebehaviorinaccordancewiththeexperimentalresults.

3.5 Conclusions

1. Cyclicpolarizationtestsconductedontheasreceivedandfinelyground

surfaceunblemishedaluminizedsteelType2exposedtoasolutionwithhigh

scalingtendency,highalkalinityandmoderatechloridecontentyielded

cathodiccurrentdensitiesforthefinelygroundsurfaceconditionthatwere

abouttwiceasmuchasthoserecordedfortheasreceivedsurfacecondition,

consistentwithlargeramountsofFerichinclusionsnotedonthefinely

groundsurface.

2. Experimentalevidencepresentedheresuggeststhatthereisnoclear

indicationaboutthetypeofthecathodicreaction(s)takingplaceattheFerich

inclusions.However,experimentalresults(e.g.changeinE OC duetosolution

deaeration)permittedtospeculatethatO 2reductionwasthemainreactionat

potentialof~900mVandH 2evolutionreactiontookoveratmorenegative

potentials.

3. Cyclicpolarizationtestsalsoshowedthatforthesmallestscanrateexamined

(0.05mV/sec)asignificanthysteresisexistedbetweenthecathodiccurrent

99 densitiesfortheforwardandreversescans.Theamountofhysteresis

decreasedforincreasingscanrates(0.5and1mV/sec)associatedtothe

amountofFe +2 ionsbeingdepositedduringpolarization.Itisproposedthat

largerhysteresiswasobservedfortheaeratedsolutioncomparedtothe

deaeratedsolution,especiallyatthesmallestscanrate,becausetheamount

ofFe +2 ionsislargerintheaeratedsolution.

4. Theresultsobtainedfromasimplifiedquantitativemodelwereinreasonable

agreementwiththeexperimentalresults.

100 Table3.1:Parameterschosenforcyclicalpolarizationmodeling.

βC2 βC1 i0C2 i0C1 iP2 k2 k1 mVdec 1 mVdec 1 Acm 2 Acm 2 Acm 2 cm 2mol 1 200 120 10 8 1010 510 8 100 4.710 8

Figure3.1:SEMimagesoftheunexposedFG(left)andAR(right)surface conditions.LightfeaturescorrespondtoFerichinclusions.

0.4 SpecimenFG(1) SpecimenFG(2) 0.5 SpecimenAR(1) SpecimenAR(2) 0.6

0.7 /V(vsSCE)

OC 0.8 E

0.9

1.0 0 500 1000 1500 2000

Time/hr

Figure3.2:EOC evolutionoftheARandFGsurfaceconditions.Specimen numberisdenotedinparenthesis.

101 0.8

0.9

1.0 E/VvsSCE ARconditionSR=1mV/sec ARconditionSR=0.5mV/sec 1.1 ARconditionSR=0.05mV/sec FGconditionSR=1mV/sec FGconditionSR=0.5mV/sec FGconditionSR=0.05mV/sec 1.2 1.E09 1.E08 1.E07 1.E06 1.E05 1.E04 2 i/Acm

Figure3.3:CyclicalcathodicpolarizationoftheARandFGsurfaceconditionsin unstirrednaturallyaeratedsolutionat408hrofexposure.Returnscancurrent wasalwaysgreaterthanfortheforwardscanasexemplifiedbyarrows.

102 0.8

0.9

1.0 E/VvsSCE FeAlSR=1mV/sec FeAlSR=0.5mV/sec 1.1 FeAlSR=0.05mV/sec Al1100SR=1mV/sec Al1100SR=0.5mV/sec Al1100SR=0.05mV/sec 1.2 1.E09 1.E08 1.E07 1.E06 1.E05 1.E04 2 i/Acm

Figure3.4:CyclicalcathodicpolarizationoftheFeAlandAl1100alloysin unstirrednaturallyaeratedsolutionat408hrofexposure.Returnscancurrent wasalwaysgreaterthanfortheforwardscanasexemplifiedbyarrows.

103 0.8

0.9

1.0 E/VvsSCE ARconditionSR=1mV/sec ARconditionSR=0.5mV/sec 1.1 ARconditionSR=0.05mV/sec FGconditionSR=1mV/sec FGconditionSR=0.5mV/sec FGconditionSR=0.05mV/sec 1.2 1.E09 1.E08 1.E07 1.E06 1.E05 1.E04 2 i/Acm

Figure3.5:CyclicalcathodicpolarizationoftheARandFGsurfaceconditionsin unstirreddeaeratedsolutionafter650hrofexposure.

104 0.8

0.9

1.0 E/VvsSCE

1.1 FeAlSR=1mV/sec FeAlSR=0.5mV/sec Al1100SR=1mV/sec Al1100SR=0.5mV/sec 1.2 1.E09 1.E08 1.E07 1.E06 1.E05 1.E04 2 i/Acm Figure3.6:CyclicalcathodicpolarizationoftheFeAlandAl1100alloysin unstirreddeaeratedsolutionafter650hrofexposure. 0.8

1mV/sec 0.5mV/sec 0.05mV/sec 0.9

1.0 E/VvsSCE

1.1

1.2 1.E09 1.E08 1.E07 1.E06 1.E05 1.E04 2 i/Acm Figure3.7:ModelresultsfortheARsurfaceconditionintheaeratedsolution. 105

Chapter4

GalvanicBehaviorontheCorrosionResistanceofAluminizedSteelType2

4.1 Introduction

AsmentionedinpreviousChapters,aluminizedmetalliccoatingshave excellentintrinsiccorrosionresistancecomparedtoothermetalliccoatings.As showninChapter2,outeraluminizedcoatingcanmaintainpassivityforextended exposuretimesinscaleformingenvironmentssothatlongservicelivesof unblemishedaluminizedsteelcomponentscouldbeexpected.However,the aluminizedcoatingmaybemechanicallypartiallydisruptedincommonuse exposingtheunderlyingbasesteel.Insuchcase,itisimportanttoknowifthe aluminizedcoatingwillgalvanicallyprotecttheexposedsteel,andtowhich extentthesizeoftheexposedsteelportionwillbeimportantwhenexposedto environmentscommonlyencounteredinFlorida.

ThisChapteraimsatdeterminingthecorrosionbehaviorofmechanically distressedaluminizedsteelType2withexposedunderlyingsteelsubstrate, immersedinwatersofvaryingscalingtendencieswithmoderateandhigh chloridecontentsbracketingcompositionstypicallyfoundinFloridawaters.

Theseconditionsareofinterestasenvironmentalaggressivitymaybesufficient tocausesignificantcorrosionoftheexposedsteel,butnotenoughtopromote

106 adequategalvaniccurrentdeliveredbytheouteraluminizedcoating.Of importanceistodeterminetheamountofcurrentdeliveredbytheouter aluminizedcoatingwhencoupledtosteelofdifferentareas,andthemechanisms associatedwiththegalvaniccorrosionprocessesrelevanttobetterforecasting durabilityincriticalhighwayapplications.Advancedforecastingwillbeaddressed inafutureinvestigation.

4.2 ExperimentalProcedure

ThealuminizedsteelType2usedinthispartoftheinvestigationcame fromthesamebatchasthoseusedinpreviousChapters.Circularunblemished specimensof95cm 2 nominalsurfaceareawerecutoutfromtheasreceived aluminizedsteelsheet,andcoatingbreaks2cmand0.2cmdiametersand300

mdeepweremachinedinthecenterofoneofthespecimenfacesexposingthe underlyingsteel.TheblemishedspecimensareidentifiedhereonasLCBand

SCBforthelargeandsmallcoatingbreaks,respectively.Theexposed steel/aluminizedcoatingarearatioA Rwas~0.03fortheLCBspecimensand~3

10 4fortheSCBspecimens.Tracesofmetalshavingswereremovedfromthe machinedbreakswitharazorblade.Amagneticcoatingthicknessgaugewas usedtoverifythattheexposedsteelwasfreeofaluminizedcoating.Afterwards, theblemishedspecimenswereultrasonicallydegreasedwithacetoneand ethanol,andstoredinadesiccator.A500mLthreeelectrodetestcell configurationsimilartothatschematicallyshowninFigure2.3inChapter2was used,exposinghorizontallytheblemishedface.Ametalmetaloxideactivated

107 titaniummeshwasusedasacounterelectrodeplacedat~6cmfromthemetal surfaceanda0.8cmlongand0.2cmdiametertitaniumwireusedasapseudo referenceelectrode(Castroetal.,1996)periodicallycalibratedagainstaSCE momentarilyplacedintheliquid.Unlessspecified,allthepotentialsreportedhere willbegivenontheSCEscale.Todeterminetheelectrochemicalbehaviorofthe underlyingsteel,additionalexperimentswereconductedinduplicateon uncoupledsteelspecimensof~3cm 2nominalsurfacearea,madeby mechanicallystrippingthealuminizedcoatingfromthesamealuminizedsteel stockandwetgroundtoa320gritsurfacefinish,placedinacompanioncell.For thoseexperiments,aSCEelectrodewasplacedmomentarilyineachtest solutionforthedurationoftheelectrochemicalmeasurements.

Tomonitorgalvaniccurrentsbetweentheexposedsteelandthe surroundingaluminizedcoatingaswellastheelectrochemicalimpedancesofthe individualmacrocellcomponents,atestcellshowninFigures4.1and4.2was used.Thetestcellconsistedofanasreceivedunblemishedaluminizedsteel specimenof95cm 2nominalsurfaceareaplacedatthebottomofthecellanda separatebutnormallyinterconnected(exceptduringEISandgalvanic measurements)3cm 2nominalsurfaceareasteelspecimenpositioned~2cm paralleltothealuminizedsurface.ThemacrocellassemblieshadanA R~0.03.

Thesteelcomponentwasmadebymechanicallystrippingthealuminizedcoating fromthesamealuminizedsteelstock,andwetgroundtoa320gritsurfacefinish.

Electricalconnectionwasmadeusingastainlesssteelwirespottedweldedtothe backsideofthesteel.Afterwards,thebacksideandtheedgesofthesteelwere

108 coatedwithepoxy.Boththealuminizedandthesteelcomponentswerecleaned withacetoneandethanolandstoredinadesiccatorpriortoimmersion.

Alltestcellswereneverreplenishedwithnewsolutionfortheentire exposure.Therelativelysmallelectrolytevolume/totalspecimenarearatiowas intendedtoberepresentativeofworstcaseculvertpipeconditionswithstagnant wateronthepipeinvert,orofoccludedconditionsforporewateronthesoilside ofapipe.

ThetestsolutionsevaluatedwereC,NP,P,andSWperthenomenclature inChapter2andcompositionsshowninTables2.2and2.3.Thetestsolutions werequiescentandnaturallyaeratedthroughasmallopeninginthetestcells.In suchcase,thetestsolutionswereexpectedtobeinequilibriumwiththepartial pressureofCO 2ofthesurroundingair.Theequilibriumsolutioncompositions, calculatedbytheMineql+®software,fortheopensystemwerecomparableto thoseforthepseudoclosedsystemusedinChapter2.SolutionpHwas measuredbyaresearchgradecombinationpHelectrode(model476086from

CorningInc.)withaninternalAg/AgClreferencesystemconnectedtoaCorning

Model140pHmeter(ScientificInstruments,Scienceproducts,CorningGlass

Works)withaninputimpedanceof~10 12 setasavoltmeter.Anauxiliary multimeterwasconnectedtothevoltmeteroutputtoachievearesolutionof0.1 mV.ThepHelectrodewascalibratedbeforeandafteruseusingpH=4,pH=7and pH=10buffersolutionscorrectedbytheappropriatesolutiontemperaturefactor.

Aconductancebridge(model31AfromYSICo.Inc.,YellowSprings,OH)with platinumiridiumelectrodeswasusedforconductivitymeasurements.

109 Theimmersiontestswereconductedinduplicateandinsomecasesin triplicateforupto~3,500hrat22±2˚C.SolutionpHandelectricalconductivity weremonitoredatselectedtimes.Opencircuitpotentials(EOC )wereperiodically measuredasafunctionofexposuretimewithamultimeterof200Minput resistance.TomapthepotentialprofilewithradiusaLuggincapillaryplacedat

~1mmfromthemetalsurfacewasmanuallyscannedoverthesurfacein duplicateLCBspecimensexposedtosolutionsPandNP.Inaddition,EIS measurementswereregularlyconductedattheEOC withaGamry®PCI4300 potentiostatinthefrequencyrangefrom100kHzto1mHztaken5datapoints perdecadeusingsinusoidalsignalsof10mV RMS amplitude.Galvaniccurrents betweenthealuminizedandsteelcomponentswereperiodicallymeasuredwitha

0.1inputresistanceammeter(ModelHP34401A).Byconvention,netanodic currentswereassignedpositivesigns.MeasurementsofEOC ofthe interconnectedcomponentswererecordedrightbeforemeasurementsof galvaniccurrents.Toevaluatetheindividualimpedanceresponseofthetwo macrocellcomponentsinthegalvaniccouple,thecomponentswere disconnectedandabatteryoperated dc currentsourceofimpedanceatleast oneorderofmagnitudeabovetheimpedanceofeachcomponentofthecouple wasconnectedacrossthecomponents,topreservetheindividualstatic polarizationconditions(seeFigure4.2).Thecomponenttobetestedwasthen connectedtotheEISsystemasusual.Theothercomponentofthecouple remained dc polarizedbutnearlyfreeof ac excitationcurrentduringthetest.At

110 theendoflongtermexposure,allspecimenswereremoved,cleaned,and examinedby40Xopticalmicroscopy.

Directassessmentofthecorrosionrateofthealuminizedportion conductedinselectedspecimensshowninTable4.1wasaccomplishedby performingcoatingthicknessmeasurementsaftertheendofexposureusinga magneticcoatingthicknessgauge(modelMikrotest®IIIbyElektroPhysik), reportedbythemanufacturertohaveanaccuracyof±5%ofthereading.The measuringprotocolincludedtheselectionofsixlocationsonthealuminized surfacedistributedasfollows:threelocationsattheunexposedrimofthe specimenthatapproximatedconditionsbeforeexposure,andthreelocationson theexposedaluminizedsurfacewhereithadretaineddepositsintheformof corrosionproductsorotherprecipitates.Afterwards,thedepositsatthosethree locationswerestrippedfromthealuminizedsurfacebylightlyhandrubbingwith

600gritabrasivepaperuntilrevealingthebarealuminizedsurfaceunderneath.

Similarrubbingontheunexposedlocationswasfoundtoresultinnodetectable metallosspermagneticgaugeindications.Atotalofthreemeasurementswere takenateachlocationbythreeindependentoperators,eachselectingdifferent spotsineachspecimenfollowingthemeasuringprotocolabove.Then,the resultswerecombinedforeachlocation,andtheresultingaverageandstandard deviationwerecalculated.Nominalaveragecoatinglosswasroughlyestimated bysubtractingtheremainingcoatingthickness(afterremovingdeposits)from thatmeasuredattheunexposedmetal,andthenconvertedtonominalaverage corrosionratebydividingbythecorrespondingtestduration.Thenominal

111 averagecoatinglosswasthencomparedtotheintegratedmaterialloss computedfromEISmeasurementsasshowninSection4.4.4.

4.3 Results

Table4.2summarizesvisualassessmentandEOC evolutiontrendsofthe blemishedspecimensaswellastheunblemishedspecimensreportedinChapter

2.Thecorrespondingdetailedcommentsincludingelectrochemicalimpedance resultsintheformofNyquistdiagramsoftheblemishedspecimensaregivenin thefollowingsections.TreatmentoftheEISdatapresentedinthisChapterwas thesameasthatemployedinChapter2.Impedancetrendsareinsome instancesexemplifiedforsinglespecimens(labeledas#1hereon).Comparable impedanceresultswereobtainedfortheduplicates(labeledas#2hereon)and forthetriplicates(labeledas#3hereon)unlessotherwisenoted.Triplicate specimens,availableinsomecases,weretestedfortrendconfirmationwhen needed.ResultsforreplicatesnotgiveninthisChapteraredocumentedin

AppendixB.ResultsfortheLCBspecimensexposedtosolutionCandforthe macrocellassembliesinsolutionsCandSWarenotavailablebecause significantcrevicecorrosiondevelopedunderneaththesealinggasketinall replicatespecimenssotheresultswerediscarded.

4.3.1 SolutionCompositions

Figures4.3and4.4showthepHevolutionforupto3,000hrfortheLCB andSCBspecimens,respectively.Immediatelyafterimmersion,bulkpHvalues

112 were~7.8forNP,~7.5forP,~7.3forC,and~7.6forSW,closetothevalues reportedinTable2.2inChapter2.Astimeprogressed,thebulkpHforsolutionP steadilyincreasedto~7.7and~8.2fortheLCBandSCBconfigurations, respectively,upto~1,200hrandremainednearlyconstantafterwards.Thebulk pHforsolutionNPshowedanincreasetoterminalpHvaluesof~9.0(SCB)after

~200hrand~8.8(LCB)neartheendoftheexposure.ThebulkpHforthe solutionSWforbothSCBandLCBconfigurationsincreasedto~8.0bytheend ofthetest.InsolutionC,thebulkpHshowedpHfluctuations(aroundapHunit) aroundtheterminalpHof~7.5.ComparablepHtrendswerealsoobservedfor themacrocellassembliesexposedtosolutionsNPandP.

Totalhardnessandtotalalkalinity,determinedbytitrationfollowing proceduresindicatedintheStandardMethodsfortheExaminationofWaterand

Wastewater(1992),aswellasthesolutionconductivityarereportedinTable2.2.

TheFe +2 concentrationinallsolutions,measuredbyAtomicAbsorption

Spectroscopyafter~2,000hr,wasbelowtheminimumdetectionlimitofthe instrument(0.01ppm).

4.3.2 BlemishedSpecimens

4.3.2.1EOC Trends

Figures4.5through4.11showtheEOC evolutionforupto~3,000hrforthe

LCBandSCBspecimens,respectively.

TheLCBspecimensexposedtosolutionP(Figure4.5)showedEOC valuesof~780mVimmediatelyafterimmersion,increasingtonearlyconstant

113 valuesof~745mVforaperiodrangingfrom~1,200hrto~1,700hrofexposure.

Attheendofthatstage,E OC startedagradualdecreasetoattainterminalvalues of~910mVafter~2,000hr.TheSCBspecimensexposedtosolutionP(Figure

4.8)showedEOC valuesof~760mVimmediatelyafterimmersion,then decreasedto~900mVafter~180hrandslowlyrecoveredto~820mVnearthe endofthetest.ValuesofEOC obtainedwithaLugginprobeplacedat~1mm abovethesurfaceatvariousradiallocationsofreplicateLCBspecimensin solutionPat~72hrand~200hrofexposure,werenearlyconstantonly~12mV morepositiveovertheexposedsteelthanoverthealuminizedsurface.TheEOC distributionnexttothemetalsurfacefortheLCBconfiguration,calculatedusinga dc computationalmodelpresentedinChapter5,wasinagreementwiththeEOC profilesobservedhere.

TheLCBspecimensexposedtosolutionNP(Figure4.6)showedE OC valuesof~770mVimmediatelyafterimmersion,increasingto~730mVfor periodsrangingfrom~500hrto~1,600hr.Attheendofthatperiod,EOC decayedto~930mVforperiodsrangingfrom~900hrto~2,000hr.Forupto

~1,200hr,theLCBspecimen#2didnotdisplayadecreaseinEOC possibly associatedwithaprematuretesttermination.TheSCBspecimens(Figure4.9) showedEOC valuesof~750mVimmediatelyafterexposuretosolutionNP, decreasingto~900mVforperiodsrangingfrom~50hrto~200hr.TheSCB specimen#1showedlongterm(daysweeks)EOC fluctuationsforupto~1,500hr followedbyastabilizationperiodaroundtheterminalEOC .LongtermEOC fluctuationswereunnoticeableintheduplicatespecimen.

114 TheLCBandSCBspecimensexposedtosolutionSW(Figure4.7and

Figure4.10,respectively)showedcomparableE OC trends.Foraveryfewhrs afterimmersion,EOC valueswere~750mVfollowedbyasharpdecreasetoa terminalE OC around~880mV.

TheSCBspecimensexposedtosolutionC(Figure4.11)showedEOC valuesof~620mVafewhrsafterimmersionfollowedbyagradualdropto~

810mVafter~1,000hr,andthenrecoveredslowlyreaching~710mVbythe endofexposure.

Figure4.12illustratestheE OC evolutionforupto~500hrforthe uncoupledsteelspecimensexposedtosolutionsC,NP,andP.Immediatelyafter exposure,theE OC was~380mVforsolutionNPand~430mVforCandP.A fewhrsafterimmersion,theE OC decayedsteeplytonearlyconstantterminal valuesaround~720mVforsolutionsNPandPand~630mVforsolutionC.

TheseterminalE OC valueswerecomparabletothoserecordedfortheLCBand

SCBspecimensinthesamesolutionsbeforethestartoftheE OC decay.

4.3.2.2DirectObservationsofCorrosion

4.3.2.2.1TheAluminizedCoating

IntheLCBspecimensexposedtosolutionsNPandP,thebeginningof theEOC dropwasconcurrentwiththeappearanceofgrayishdiscolorationofthe aluminizedsurfacearoundtheperimeteroftheexposedsteelspot.The discoloration,moderateinPanddarkerintheNPsystem,latercovereduniformly theentirealuminizedsurfaceforminganadherentlayer~1015m(NP)and<1

115 m(P)thickasmeasuredbyamagneticthicknessgaugeaftertheendofthe exposure.Specimenautopsyshowedthatcorrosiondamageassociatedwith uniformdiscolorationappearedtobemainlyassociatedwithchangesintheouter coatinglayerasconfirmedbymetallographicanalysis.Metallographic examinationconductedonacrosssectionnearthealuminized/steeledgeofthe

LCBspecimen#1(andthespecimen#2aswell)exposedtosolutionNP(Figure

4.13)showedanannulus~70mwidesurroundingtheexposedsteelspotof severecorrosion,notnotedinanyofthespecimensinsolutionP.Asaresult,the outeraluminizedcoatinglayerinNPwascompletelyconsumedexposingthe innerlayerwhichappearedtoremainintactforthetimeframeexamined.ASEM image(Figure4.14)ofthediscoloredsurfaceoftheLCBspecimen#1insolution

NPtakenattheendofexposureshowedatight,compactlayercovering uniformlythealuminizedsurface.FurtherSEMEDSanalysis(Figure4.15)ofa driedportionofthatlayerwasconsistentwiththepresenceofaluminum hydroxideAl(OH) 3inagreementwiththeresultsreportedinChapter2andthe resultsshownelsewhere(Davis,1999).Fewisolatedsmallpitswereobservable onlyundermagnification(indicativeofpitdiameter<0.1mm)inbothsolutionsNP andP.

Ontheotherhand,theLCBspecimensexposedtosolutionSWshowed isolatedsmallvisiblepits(indicativeofpitdiameter~0.1mm)onthealuminized surfaceearlyonfollowedbytheappearanceofuniformlightdiscoloration, forminganadherentlayer<1mthick,buttheappearanceofthatlayer(at~360 hrofexposure)wasnotcoincidentwiththestartoftheE OC decay.Thelight

116 surfacediscolorationinSWdidnotstartneartheexposedsteelperimeterbut insteadatseverallocationsonthealuminizedsurface.Interestingly, metallographicexaminationconductedonthespecimen#1inSW(Figure4.16) showedthatthealuminizedcoatingsurroundingtheexposedsteeldidnotdisplay signsofseverecorrosionwithbothouterandinnercoatinglayersinplace.

Duringexposure,asimilargrayishdiscolorationwasnotedstartingatthe aluminizedsurfaceinthevicinityoftheexposedsteelofallSCBspecimensin solutionsNPandC,andatvariousspotsonthealuminizedsurfaceinSW.The discoloration,darkforsolutionsCandNPandlighterforSW,progresseduntil coveringuniformlytheentirealuminizedsurface,forminganadherentlayer~510

m(NP),<2m(C),and<1m(SW)thick.Theappearanceofinitial discolorationwasconcurrentwiththeE OC dropforsolutionC(~545hrafter immersion).ForsolutionsNPandSW,theappearanceofinitialdiscolorationwas notconcurrentwiththebeginningoftheEOC drops(whichtookplaceaftershort exposuretimes)butinsteadwerenoted(forthespecimens#1)at~1,030hrand

~275hrforNPandSW,respectively.Incontrast,thealuminizedsurfaceofthe

SCBspecimensexposedtosolutionPdidnotshowdiscolorationorpits throughouttheentiretestperiod.

AutopsyoftheSCBspecimensshowedthatcorrosiondamageassociated withuniformdiscolorationappearedtobemainlyassociatedwithchangesinthe outercoatinglayerasconfirmedbymetallographicexamination.Inaddition,few pitsvisibletothenakedeye(~0.1mmdiameter)insolutionsCandSWwere notedonthealuminizedsurfaceshortlyafterexposure.Someofthosepitsin

117 solutionCappearedtohavereachedtheunderlyingsteelsincereddishdeposits weredetectedatsomepitmouthsasshowninFigure4.17.Fewisolatedsmall pitswereobservableonlyundermagnification(indicativeofpitdiameter<0.1 mm)insolutionNP.AsintheLCBspecimensintheNPsystem,theSCB specimensinsolutionsNPandCaswellshoweda~50mwideannulusof severecorrosionsurroundingtheexposedsteelasshowninFigure4.18.Itcan benotedthattheouteraluminizedlayerwascompletelyconsumedexposingthe innercoatinglayer,whichappearedtohaveremainedintactthroughoutthe exposure.Contrarily,theSCBspecimensinSWandPdidnotshowsevere corrosionaroundtheexposedsteelasexemplifiedinFigure4.19fortheSW solution.

4.3.2.2.2TheExposedSteel

Afewhrsafterimmersion,visualexaminationconductedontheexposed steeloftheLCBandSCBspecimensexposedtosolutionsPandNP(andthe individualsteelspecimensinPandNPsolutionsaswell)showedauniform reddish/blackscale(likelyrichinFe +2 /Fe +3 )formedovertheentiresteelsurface.

Lateron,thescaleinthosespecimensdevelopeduntilformingalayer~300m thick.At~450hrofexposure,thecentral~0.3cm 2oftheexposedsteelareaof allLCBandindividualsteelspecimensinsolutionsPandNPdevelopeda13 mmthickporousreddishgrowth.Therewasnoticeableadditionalsteelmetalloss underneaththecentralgrowthintheLCBandindividualbaresteelspecimensin

NP,butlesssoinP.Ametallographicexamination(Figure4.20)carriedoutin

118 theLCBspecimen#1exposedtosolutionNPshowedthatthemetallossatthe exposedsteelwasestimatedtobe~0.1grams.Nosuchcentralgrowthwas observedintheSCBspecimensexposedtothosesolutions.At~500hr, formationofsmallcrystalsappearedontopoftheFerichscaleinbothLCB,

SCB,andindividualsteelspecimensimmersedinsolutionP.SEMEDSanalysis offewcrystalsobtainedfromtheLCBspecimensinPwasconsistentwiththe presenceofCaCO 3.Duringpostexposurecleaning,thescalesontheexposed steeloftheLCB,SCB,anduncoupledsteelspecimensinsolutionNPwere easilyremoved,butweremoreadherentinsolutionP.

TheexposedsteeloftheSCBspecimensinsolutionCshowedcorrosion inonlyone(#1)ofthetriplicatespecimens,anearlyformationofathinreddish scale(likelyrichinFe +2 )thatlaterdevelopedtoformalayer~<300mthickon topofthesteel.Nosignsofcorrosionwereobservedineitherreplicate#2or#3, wherethesteelspotremainedbrightovertheentiretestperiod.Thereplicate individualsteelspecimensinsolutionCshowedearlyformationofcorrosion depositsdistributedovertheentiresurfaceofsimilarappearancetothatnotedin theSCBspecimen#1.

TheexposedsteeloftheSCBspecimensinsolutionSWwasbrightand freeofcorrosionscalethroughouttheentireexposure,andtherewasonlyvery lightsteeldiscolorationwithnocorrosiondepositsoftheLCBspecimensin solutionSW.

SelectedphotographsoftheLCBandSCBspecimenstakenafter exposureandaftercleaningareshowninFigure4.21.

119 4.3.2.3ImpedanceBehavior

4.3.2.3.1LCBSpecimens

Figures4.22through4.24showthenonareanormalizedimpedance evolutionforupto~2,400hrfortheLCBspecimensexposedtosolutionsP,NP, andSW.

Figures4.22and4.23showtheEISresultsforsolutionsNPandP, respectively,beforeandaftertheonsetoftheEOC drop.Fortheperiodbeforethe onsetoftheE OC drop,the1mHzimpedancemoduliinbothsolutionsweresmall

(~<1.5kforNPandP)forupto~1,300hrofexposure.Pervisualassessment ofthespecimensurface,theimpedancebehaviorduringthatperiodwas expectedtobedominatedmainlybytheimpedanceofthesteelportionbyitself sincecorrosionscalestherewerenotable,indicativeofsignificantcorrosionrates andcorrespondinglylargeintegratedadmittance.Incontrast,thealuminized surfaceremainedbright,suggestingpassivebehaviorwithconsequentverysmall integratedadmittancedespitethelargealuminizedsurface.Aftertheonsetofthe

EOC drop,the1mHzimpedancemodulidecreasedevenfurtherto~150(NP) and~250(P),consistentwithactivecorrosionofthealuminizedsurfaceinboth solutions.Atthatstage,theimpedancebehaviorwasexpectedtobedominated mainlybytheimpedanceoftheuniformlycorrodingaluminizedportion,whereas theexposedsteelwascathodicallyprotectedbythesurroundingaluminized surface.Thatexpectationwassupportedbytheevidencepresentedinthe subsequentsections.

120 Figure4.24showstheEISresultsforsolutionSWfortheperiodafterthe onsetofE OC drop.The1mHzimpedancemodulirangedfrom~2.5kto~4.5k throughoutthetest,expectedtobedominatedbylocalizedcorrosionofthelarge aluminizedportion.Asbefore,theexposedsteelwascathodicallyprotectedby thesurroundingaluminizedsurfaceasdiscussedinthesubsequentsections.

4.3.2.3.2SCBSpecimens

Figures4.25through4.29showsthenonareanormalizedimpedance8 evolutionforupto~2,700hrfortheSCBspecimensexposedtosolutionsNP,P,

SW,andC.

Figure4.25showstheEISresultsforsolutionNPwherethe1mHz impedancemoduliinitiallyincreasedwithtimetoreach~30kforupto~1,000 hr,despitetheearlycorrosionscalesdepositedontheexposedsteel.After

~1,000hr,the1mHzimpedancemodulistartedtodecrease,consistentwiththe startofaluminizeddiscoloration,tovaluessmallerthanatthebeginning(~600

).Figure4.26showstheEISresultsforsolutionPwherethe1mHzimpedance moduliincreasedwithtimefrom~30kto~80kafter~2,500hr,consistent withgenerallypassivebehaviorandtheabsenceofvisualevidenceofactive corrosionofthealuminizedsurfaceovertheentiretestexposure.

Figure4.27showstheEISresultsforsolutionSWwherethe1mHz impedancemodulirangedfrom~3kto~5kthroughouttheexposure.

8TheEISmeasurementsconductedontheSCBspecimensinallsolutionswere obtainedaftertheonsetoftheE OC droptookplace. 121 Figures4.28and4.29showtheEISresultsforthespecimens#1and#2 insolutionC.TheEISresultsforthetriplicatespecimenwerecomparableto thoseoftheduplicate.The1mHzimpedancemoduliinthosecaseswereinitially largeapproaching~12kfor#1and~50kfor#2at~120hrofexposure.

Afterwards,the1mHzimpedancemodulistartedtodecreasetoreach~2kfor

#1and~4.5kfor#2after~650hr,coincidingwiththeappearanceofthedark grayishlayeronthealuminizedsurfaceinbothspecimens.After~1,000hr,there wasalongtermrecoverytowardlarger1mHzimpedance moduliforboth specimens.

Inallcases,theEISbehaviorwasexpectedtobedominatedmainlybythe impedanceoftheactive(NP,SW,andCsystems)andpassive(Psystem) aluminizedsurface.Theexposedsteelinallcasesremainedcathodically protectedsoitsimpedancewasexpectedtobecomparablylargetothatofthe aluminizedcoatingandthatexpectationwassupportedbytheevidence presentedinthesubsequentsections.

IntheLCBspecimensinNPandtheSCBspecimensinCandNP,the amountofelectricchargeconsumedbythecorrosionoftheannulusregion calculatedbytheFaraday’slawwas<2.7Coulombswhichrepresentsalocal impedanceof>170k.Thisvaluewasconsiderablylargerthanthe1mHz impedancemodulideterminedafteraluminizeddiscoloration(~150forNPand

~24.5k),thus,itscontributiontotheoverallanodicdissolutionofthe aluminizedsurfacecanbeneglected.

122 4.3.3 MacrocellAssemblies

4.3.3.1EOC andMacrocellCurrentTrends

VisualappearanceandEOC trendsforthemacrocellassembliesare summarizedinTable4.2.TheEOC trends,rustevolutionatthesteelcomponent, andchangesintheappearanceofthealuminizedcoatinggenerallyparalleled thoseoftheLCBspecimensexposedtothesameenvironments.Inadditionto thatinformation,measurementsinthesemacrocellassembliesprovidedthe galvaniccurrent(I galv )betweenthesteelandaluminizedcomponents.The evolutionofI galv ,aswellasthemixedEOC isshowninFigure4.30forupto

~2,700ofexposure(dataavailableonlyforPandNP).Inbothsolutions,the unblemishedaluminizedsteelcomponentofthecouplewasalwaysanetanode whilethesteelcomponentwasanetcathode.TheinitialI galv valueswere~14A and~1.5AforsolutionsNPandP,respectively.UponthelaterstartofEOC drop,theIgalv valuesinbothsolutionsstartedtoincreasereachingterminal valuesof~60Aandat~35AforsolutionsNPandP,respectively.

4.3.3.2ImpedanceBehavior

Theimpedanceresponsesofthecoupledmacrocellassembliesandthe individualcomponentsexposedtosolutionsPandNPbefore(~900hr)andafter

(~1,780hr)theonsetofthelowEOC regimesareillustratedinFigures4.31 through4.34.

BeforetheEOC drop(Figures4.31and4.33),the1mHzimpedance moduliofthealuminizedcomponentwerelarge(~55kforPand~13kfor

123 NP),consistentwithgenerallypassivebehaviorandtheabsenceofvisual evidenceofactivecorrosion.The1mHzimpedancemodulusforthesteel componentwas~1kforbothsolutions,inagreementwiththeobservationof earlycorrosiondepositsonthesteelsurfaceinbothenvironments.Notably,the overallimpedanceresponsesofthecoupledmacrocellassembliesinboth solutionsnearlyequaledthatofthesteelcomponentbyitself,indicatingthatthe steelruledtheimpedancebehaviorofthecoupledsystem.

AftertheonsetofthelowEOC regime(Figures4.32and4.34),the1mHz impedancemoduliofthealuminizedcomponentgreatlydecreasedto~1kin solutionPandto~2kinsolutionNP,consistentwiththeappearanceofuniform discoloration(strongforNPandmoderateforP)andlightpittingindicativeof ongoingcorrosioninbothsolutions.Inaddition,theimpedancediagramsofthe steelcomponentinbothsolutionsresembledanearlystraightlineratherthanthe earlierdepressedsemicircularappearance.The1mHzimpedancemagnitudes ofthecoupledassembliesnearlymatchedthoseofthealuminizedcomponentby itself,indicatingthatthealuminizedcoatingdominatedtheimpedancebehavior ofthecoupledsystemforthelowEOC regime.

4.3.4 UncoupledSteelSpecimens

Figure4.35showsthenonareanormalizedimpedanceoftheuncoupled steelspecimensrecordedafter~216hrofexposuretosolutionNPand~72hrto

P.The1mHzimpedancemodulusforthesteelcomponentwas~500800for bothsolutions,inagreementwiththeobservationofearlycorrosiondepositson

124 thesteelsurfaceinbothenvironments.Theoverallimpedancetrendsinboth solutionswereingoodagreementwiththoserecordedfortheLCBspecimens andthecoupledmacrocellassembliesexposedtothesamesolutionsforthe periodbeforetheE OC dropdespitethelargersolutionresistancesR Sobserved fortheuncoupledsteelspecimensattributedtothelargerseparationbetweenthe metalsurfaceandthereferenceelectrodesensingpoint.Again,thisobservation confirmsthattheimpedanceresponseforthealuminized/steelsystemforthe periodbeforetheE OC dropislargelydominatedbythatofthesteel.

4.3.5CoatingThicknessMeasurements

Figure4.36exemplifiesschematicallyatypicalaluminizedcoatingcross sectionofanaluminizedsteelType2thathasbeenexposedforextended periodsoftime.Table4.1summarizestheaveragecoatingthickness measurements(comprisingbothinnerandouterlayers)obtainedfromthree independentoperatorsfortheconditionsbeforeandafterexposureobtainedfor selectedspecimens.Thicknessmeasurementsweremeasuredwithastandard deviationof~ ±7.6m.Table4.1alsoincludesestimatesofthenominalcorrosion ratesforthealuminizedportionobtainedpermethodologyshowninSection4.2.

Forinstance,nominalcorrosionratesofthealuminizedcomponentsforthe macrocellassembliesinsolutionsNPandPwerelarge(~1620m/yrinNPand

~1325m/yrinP)inagreementwiththevisualobservationofuniformsurface discolorationnotedonthosespecimens.Nominalcorrosionrateswerealsolarge fortheLCBspecimensinNP(~2133m/yr)andsmallerbutmodestfortheLCB

125 specimensinP(~7m/yr)alsoconsistentwithvisualobservationofsurface discolorationinthosecases.TheLCBspecimensinSWshowedthesmallest nominalcorrosionrates(~2m/yr)ofallspecimensexamined,inagreementwith lightuniformcorrosion.

4.4 Discussion

4.4.1 EOC TrendsandCorrosionMechanisms

Figure4.37isaschematicofthetypicalE OC evolutiontrendsshownin

Figures4.5through4.11fortheLCBandSCBspecimens.Macrocellassemblies, whereavailableforthecorrespondingenvironments,hadE OC trendsessentially identicaltothoseoftheLCBspecimensandwillnotbediscussedseparately here.

Shortlyafterexposure,theEOC valuesofthespecimenswithlargeA R

(LCBandmacrocellassemblies)insolutionsPandNP(~700mV~730mV) werenobler(~100150mV)thanthosewithsmallerAR(SCB)exposedtothe samesolutionsandcomparabletothosemeasuredfortheuncoupledsteel specimens(~720mV)exposedtosolutionsPandNP.Inasmuchastheactive steelshowedasmalldegreeofpolarizabilitycomparedwiththemorepolarizable passivealuminizedcoatingearlyoninthetest,theresultingEOC trendswere thendominatedlargelybytheE OC ofthelargeexposedsteelcorrodingata moderaterate.ForthespecimenswithsmallA RinsolutionsNP,P,andSWand withlargeA RinSW,noblerE OC valuesweremaintainedforafewhrsafter immersionbeforetheE OC decaytookplace.

126 Inthefollowingthecorrosionmechanismofblemishedaluminizedsteel willbediscussed,keepinginmindthemechanismsproposedinChapter2forthe baselineunblemishedmaterialcondition.Thediscussioniskeyedtoeachofthe solutionsevaluated.

4.4.1.1SolutionP

Thebehaviorofthesmallcoatingbreak(SCB)specimenswassimilarto thatoftheunblemishedspecimens,exceptthatattheverybeginning(firstdayor so)theE OC wasrelativelypositive,likelydominatedbythatofthesmallexposed basesteel,whichinitiallydevelopedrustasmentionedabove.Afterthatperiod, theE OC droppedtothatoftheunblemishedsystem,suggestingthattherustlayer onthesteelactedasanobstacletoO 2reductionthere.Fromthereon,theE OC wassuchthattheexposedsteelwascathodicallyprotectedbytherestofthe system(likelyonlyaverysmallcurrentisneededforthat).Thealuminized surfaceremainedpassivethereon.

Inthespecimenswithalargeramountofexposedsteel(LCBand macrocellassemblies),theE OC wasinitiallyquitepositive,dictatedbythe corrosionpotentialofthelargeexposedsteelspotcorrodingatamoderaterate inthelowCl ,scaleformingsolutionasmentionedabove.Themoststriking featureofthesesystemswasthatafteranintervaloftypically~1,500hrthe aluminizedsurfaceexperiencedmacroscopicallyuniformactivationandthe potentialdroppeddramatically,withthealuminizedsurfaceactingasastrong protectinganodetotheexposedsteel.ThebulksolutionpHremainedneutral,

127 andabout2moftheouteraluminizedlayerweremacroscopicallyuniformly consumedinthenext2,000hrorso.

Theactivationofthealuminizedsurfacewasmanifestedbylightgray discolorationandtheappearanceofafewsmallmacroscopicallyapparentpits.

AsobservedinChapter2forsimilarconditions,thefewactivemacropitsare deemedtobeinconsequentialbecauseoftheirsmallnumberanddimensions, andtheirconsequentlylargecombinedassociatedohmicresistance,which wouldyieldonlyasmallfractionoftheobservedmacrocellcurrent.Thus,the macropitswillnotbefurtherdiscussed.

Itistentativelyproposedthatthismacroscopicallyuniformcorrosion reflectsthecombinedpresenceofmanymicropitsdistributedonaspatialscale comparabletothatoftheinclusions.Somealkalinedissolutionisexpectedto havetakenplaceaswell,butlikelytobeofsecondaryimportance(exceptduring theinitialactivationstagesasspeculatedfurtherbelow)becauseoftherelatively largebufferingcapacityofsolutionP.Thediscolorationisviewedastheresultof precipitationofhydratedaluminaoutsidethemouthsofthosepits.Thelarge cathodiccurrentattheexposedsteelplusadditionalcathodicactionatinclusions

(minusthecurrentneededtobalanceanyalkalinedissolution)sustainsthe combinedanodicprocessesatthemicropits.

Theaboveproposalisspeculativeinthattheconditionsneededtosupport thatmodalityofpittingina0.01MCl solutionsuchassolutionPwouldneedto beascertainedinfuturework.Inthatconnection,thefollowingquestionscould beformulated:(1)Whyaretheproposedmicropitssouniformlydistributedand

128 stable?,and(2)Whywastherealongincubationperiod(effectivelyunlimitedin thecaseofsmallcoatingbreaks)beforeactivationofthealuminizedsurface?

Apossibleanswerto(1)isthatsincetheexposedsteelzonewasastrong cathode,competitiveactionbetweenadjacentpitswaslessimportantthan otherwise,andlargerpitswillhavelessofthecathodicprotectionactionin immediateneighborsthatwouldhavetendedtoloweractivepitdensity.The cathodicactioninthesmallbreakcaseisdeemednottobelargeenoughto providetherequiredcathodicsustainingaction.Withregardsto(2),itis speculatedthatsomedegreeofalkalinedissolutionisneededtostartthemicro pits(likelynucleatedaroundtheinclusionsasdiscussedinChapter2).That processisinitiallyslowduetothehighpotentialsprevalentearlyinthetest.The necessarydegreeofdissolutiontakesplacefirstattherimoftheexposedsteel wherepHismildlyelevatedthroughamechanism(Evans,1926)wheretherimis anetcathode,hencemorealkaline,andthecenterisanetanode,asconfirmed bythepresenceofacentraldepressiononthesteel.Thealkalinizationismild andetchingaroundtheinclusionsintheringaroundtheexposedsteelisslow.

Afteralongtime(e.g.1,500hr)micropitactivationofthealuminizedsurface immediatelyaroundthesteelfinallytakesplace.Asthosemicropitsdevelopand localpotentialdropsfurther,theactivezoneslowlyexpandsawayfromthe exposedsteel,withconsequentexpansionofthemildlyalkalinezone(butwith likelyenhancedlocalactionaroundinclusionsatthelowerprevalentpotentials), untilmicropitsaffecttheentirealuminizedsurface.Experimentstotestthe validityofthisspeculativescenarioinfutureresearchmayinclude(andnotbe

129 limitedto)thefollowing:(a)detailedlocalpHmeasurementstoascertainthat mildalkalinizationisapremicropittingstep;(b)verificationthatmicropitshave etchingaroundinclusionsasprecursors;(c)exploringsolutionchemistry spontaneouschanges(forexampleduetoexhaustionofbufferingcapacity becauseofinteractionwithairorwithproductsofsteelcorrosion)asan alternativetriggertothealuminumexcitationand(d)explorationofthepotential formicrobiologyinducedcorrosioninthesystem.

4.4.1.2SolutionNP

Inthesesolutions,therewasalsodelayedonsetofmacroscopically uniformactivecorrosioninblemishedspecimens,althoughitisrecalledthat enhancedcorrosionalsodevelopedintheunblemishedspecimenslateinthe test(Chapter2).Someoftheprocessesproposedaboveforspecimenswith largecoatingbreaksinsolutionParelikelytobepresentheretoo,withthe importantdifferencethatthissolutionevolvesspontaneouslywithtimeto increasinglyhigherbulkpHvalues(~9.0)asresultofinteractionwithopenair.

Theonsetofthehighcorrosionregimethenappearstobeassociatedwiththe pHincrease,andalkalineoxidationisprobablythedominantformofdeterioration asitwasinthecaseoftheunblemishedspecimensbutaggravatedbythe couplingwiththestronglycathodicsteelsurface.Consistentwiththis interpretation,inbothsmallandlargecoatingbreaksystemstherewassevere aluminizedsurfacecorrosion(withcompleteconsumptionoftheoutercoating layer)immediatelyaroundtheperimeteroftheexposedsteelregionasexpected

130 fromthelocalincreaseinpHfromO 2reductionattherimoftheexposedsteel.

AsshownbymodelinginChapter5,corrosionofthealuminizedsurfacenextto therimisalsoexpectedtobeaggravatedbymacrocellcouplingsincethe resistivepathislowestthere.AsnotedinChapter2,whilemacroscopically uniform,thecorrosionofthealuminizedsurfacemayhavebeenmorelocalized atthemicroscopiclevel,likelyinvolvingaluminumsurroundinginclusions,where increasinglyhigherpHtakesplacebecauseofO 2reduction,orbecauseofsome extentofmicropitformationaroundthoseinclusionsfollowingtheinitialalkaline oxidationundercutting.SolutionNPhassignificantbufferingstrength,butthe effectsoflocalalkalinizationaroundinclusionsmaybestillimportantbecause theywouldbeadditionaltothatofthealreadyenhancedhighbulkpHofthe solution.Macropitswerefewinthesesystemsandappeartobesecondaryper theargumentsexposedearlier.

Finally,itisnotedthatinthesmallcoatingbreakspecimens,theE OC droppedalongtimebeforetheonsetofsurfacediscolorationandassociatedfast corrosion.ItisthoughtthattheearlyE OC dropreflectedlessefficientO 2reduction atthesmallcentralsteelspot,becauseoftheearlybuildupofacompactsteel corrosionproductscalethere.Sincethesteelareawassmallcomparedwiththe restofthesystem,localsteelpolarizationandconsequentoverallE OC dropwere expectedtobesubstantial.Inthelargecoatingbreakspecimens,thesteel surfacewaslarger,andoccludingeffectswouldhavebeenproportionallyless important.

131 4.4.1.3SolutionC

Inthissolution,onlysmallcoatingbreakspecimenscouldbeevaluated, butdelayedonsetofactivealuminumcorrosiontookplaceaswell.Unlikethe othersolutions,solutionChasnegligiblebufferingpowerandtheeffectsoflocal alkalinizationatinclusionsarelikelytobeimportant.Inthecaseoftheblemished specimensthebulksolutionpHremainednearlyneutral,sowidespreadalkaline oxidationasproposedforsolutionNPdoesnotappeartobethemaincauseof theobserveddiscoloration.Instead,localizedalkalinizationmayhavebeen responsibleforgenerationoffinelydispersedmicropitsattheinclusionsize scale,whichwouldthenrepresentthemainformofaluminumattack.Such mechanismissubjecttothesamecaveatsnotedaboveforthecaseofsolution

P.InsolutionC,however,theinitiationofmicropitsisfacilitatedbythelower bufferingcapacity,whichmayexplainwhyactivationtookplaceeventhoughthe coatingbreakwassmall.

Itisnotedthatinthecaseofunblemishedspecimensthemechanism responsiblefortheactivationofthealuminizedsurfaceinsolutionCwas probablyaresultofatemporaryearlysurgeinsolutionpHinthepseudoclosed cellconditionsusedthere.Thoseexperimentsshouldberepeatedunderopen cellconditionsforrelevantcomparisonwiththeblemishedspecimentestresults.

Forcompleteness,theprocessofalkalinizationandundercuttingof inclusionsisdescribedhereinmoredetail,keyedtothepictorialdescriptionin

Figure438adaptedfromsourcesthatincludeNisancioglu(1990)andParketal

(1999).TheincreaseinthelocalpHfromthecathodicreactionstendstoelevate

132 theOH ionconcentrationinthevicinityofthecathodicreactionlocus(Figure

4.38A).Furthermore,thealuminumactivationsurroundingtheinclusionsmay causeanincreaseintheeffectiveareaoftheinclusionswhichfurthercatalyses thecathodicreaction,enhancingaluminumdissolutionthere(Figure4.38B).

Ifconditionsarepropitious,someoftheinclusionscaneventuallybecome nonfaradicallyseparatedasfreeparticlesfromthealuminummatrix,dueto undercuttingenhancedpHcorrosionofthesurroundingaluminumasproposed byVukmirovicetal.(2002)(Figure4.38C).Thefreeparticleswouldcorrode morereadilyastheyarenotcathodicallyprotectedbythesurroundingcorroding matrix(Figure4.38D),formingFe +2ions.Thoseionscanbeelectrochemically redeposited(byFe +2 +2e →Fe)onthesurfaceeitheruniformlyor,morelikely, aroundtheperimeteroftheinclusions.TheFedepositionphenomenonwas describedindetailinChapter3.TheplatedFe,whichisastrongcathode,may promotefurtheraluminumcorrosionifhighlocalpHdevelopsaroundtheplated

Fe(Figure4.38E).Astimeprogresses,moreundercuttingcorrosionof aluminumandthesubsequentplatingofFeisexpectedatmanyfinelydispersed locationswithmacroscopicallyuniformappearance.

4.4.1.4SolutionSW

ThemainaspectsdescribedinChapter2fortheunblemishedcondition applyalsototheblemishedspecimens.Intheblemishedcondition,theE OC , initiallydictatedbycorrodinginclusionsandthecentralexposedsteelzone,is thoughttomeetorexceedsE pit .Therestofprocessshouldbequalitativelyasin

133 theunblemishedcondition,exceptthatbecauseofcouplingwiththeexposed steelonewouldhaveexpectedanevenfasterinitiationofthepittingregimeand amorepositiveterminalE OC here.However,thatwasnotthecaseineither count.Thatobservationsuggeststhatevenforlargecoatingbreaksthecathodic currentfromtheexposedsteelspot(3%oftotalarea)attheoperatingpotentials wasnotlargecomparedwiththetotalcathodiccurrentatinclusions(initially)and inclusionspluspits(lateron)onthealuminizedsurface.Protectionofthe exposedsteelwasexcellentbecauseactivationofthealuminizedsurfacewas prompt,sothesteelsurfaceremainedvirtuallyfreeofcorrosionproducts.

4.4.2 GalvanicMacrocells

TheE OC trendsandtheappearanceofaluminizedsurfacediscolorationof theLCBspecimensinsolutionsNPandPwereconsistentwiththemacrocell galvaniccurrenttrendsrecordedforthecoupledmacrocellassembliesexposed tothesamesolutions.Measurementsofgalvaniccurrentsforwhichdataare available(PandNP,Figure4.30)demonstratedthattheouteraluminizedcoating layerbehavedalwaysasnetanodeuponcontactwithsteel.However,the amountofmacrocellcurrentdeliveredbytheoutercoatinglayerinthose solutionswasinsufficienttopreventrustformationonthesteelsurfaceearlyon intheexposure.ThisobservationwasalsonotedinthespecimenswithsmallA R exposedtothesamesolutions.Thisweakearlygalvanicactioncouldbe attributedtoapredominantlypassiveconditionoftheouteraluminizedcoating layer,asmanifestedbyitslargeimpedancemoduliinbothsolutionsearlyon.

134 LargergalvaniccurrentswereexpectedinbothsolutionsfortheA Rexamined uponsignsofcorrosionoftheouteraluminizedcoatinglateroninthetest.

TherewerenomacrocellcurrentmeasurementsavailableforsolutionSW, butthesteelinthespecimenswithsmallA Rinthatsolutiondidnotshowsignsof corrosionovertheentireexposuretime,andthesteelinthespecimenswithlarge

ARinsolutionSWshowedonlyverylightdiscoloration.Thoseresultsindicate stronggalvanicprotectionbythesurroundingaluminizedcoatingintheSW solutionaswell,consistentwithobservationofpittingofthealuminizedsurface andsomesecondarymacroscopicallyuniformcorrosion.InsolutionSW,the protectiveregimewasestablishedsoon,asmanifestedbythedropofEOC into protectivepotentialsafteronlyabouttwodaysofexposureforspecimenswith bothsmallandlargeA R.

ThegalvanicbehaviorofthespecimenswithsmallARinsolutionC showedvariability,inthatoneofthreespecimensshowedsignsofsteel corrosionbutinallcasesanannulusofaluminizedouterlayercorrosionwastage aroundthesteelwasnoted.Itisintriguing,however,thattherelativelypositive

EOC (~620mV)inallreplicatespecimensexistedforatleast~1hrupto~100hr andclearlyprotectivepotentialsdidnotdevelopuntilabout~600hr,yetthesteel showednosignsofcorrosionintwocases.Forthosecases,however,itshould berecalledthataluminizedcorrosionwaslimitedtotheaforementionedannulus ofseverecoatinglossaroundthesteel.Withsuchtightmacrocellconfiguration, thelocalsteelpotentialcouldhavebeensignificantlymorenegativethanthat

135 measuredbythereferenceelectrodeseveraldiametersaway,sotherecorded

EOC valuesmayhavebemisleading.

4.4.3 CorrelationbetweenA RandTimetoInitialDiscoloration

Figure4.39showsthetimefortheinitialappearanceofdiscolorationof thealuminizedsurfaceasafunctionofA Rfortheunblemished,blemished specimens,andthemacrocellassemblies.Thetimetoinitialdiscoloration, obtainedbyaveragingtheresultsofreplicatespecimensforeachA R,waslargest forthespecimenswithA R=0(unblemishedspecimens)insolutionsNP,P,and

4 SWanddidnotshowsignificantdifferencewhenvaryingA Rfrom310 (SCB specimens)to0.03(LCBandmacrocellspecimens)insolutionsNPandSW.For solutionParrowsinFigure4.39indicateminimumvaluessincenodiscoloration wasobservedforthespecimenswithsmallerA R.Thetrendsobtainedforsolution

P,NP,andSWarenotunexpectedsinceforlargeA R(largecathode/anodearea ratio),enhancedmacrocellactionbetweenthelargeexposedsteelandthesmall aluminizedcoatingcouldbeestablished,andhence,largecorrosionratesofthe aluminizedcoatingwouldbeexpectedwithconsequentearlierappearanceof aluminizedsurfacediscoloration.However,thetrendforsolutionCisoppositeto thoseobtainedfortheothersolutionsinthatsmallertimetodiscolorationwas attainedwhengoingfromunblemishedconditiontoafiniteA R.Thisdiscrepancy fortheCsystemcanbeexplainedbyrecallingthatwhiletherewasahighbulk pHexcursions(to~9.0,Chapter2,Figure2.9)shortlyafterimmersionforthe

4 unblemishedspecimens,thespecimenswithA R=310 maintainedanearly

136 neutralsolutionpHthroughouttheexposure(Figure4.4).TheearlypHelevation intheunblemishedspecimenstriggeredearlyglobaldepassivationwith consequentstronguniformsurfacediscolorationoftheunblemishedspecimens butnotfortheblemishedspecimens.

4.4.4 InterpretationoftheImpedanceResponse

4.4.4.1MacrocellAssemblies

Theanalogequivalentcircuitchosentosimulatetheimpedanceresponse ofthemacrocellassembliesisshowninFigure4.40.Itisassumedthatthe overallinterfacialadmittancecanbedividedintotwobranchesasexplained below.

TheupperbranchinFigure4.40isfortheexposedsteel(andthe individualsteelspecimensaswell)anddescribesscenariosforbothbeforeand aftertheEOC drop.FortheperiodbeforetheEOC drop,thecircuitconsistsofa

1 polarizationadmittance(Ra1 )fortheactivationpolarizationoftheanodic

+2 reaction(Fe→Fe +2e )inparallelwithaConstantPhaseAngleElementCPE 1 representingtheinterfacialchargestorageatthesteelsurface,andan

1 admittance(seriescombinationofthepolarizationadmittanceRC1 =2.3i C1/β C1 andthediffusionalcomponentW1)governedbyactivation/concentration

polarizationofthecathodicreaction.ThelatterislikelytobeO2+2H 2O+4e

→4OH anditisassumedtobesoand,forsimplicity,tooccurundersimpleone dimensionalconditions.Theresultingimpedancefortheexposedsteelhasthe

1 1 1 formZ 1(ω)=[1/Ra1+1/ZC1 (ω)] whereR a1 =2.3i a1/β a1andZ C1 (ω)=2.3

137 1 2 1 0.5 2 1 0.5 1 iC1/β C1+2.3(i LiC1)βC1 (jωδ D ) (tanh(jωδ D ) ) (BardandFaulkner,

2000)wherei a1andi C1 aretheanodicandcathodiccurrentdensities, respectively.AftertheEOC drop,theexposedsteel(whichmayormaynothave corrosionproductsonthesurfacedependingonthecase)ispolarizeddownto potentiallevelswheretheFe/Fe +2 reactionisnearequilibrium(Pourbaix,1974).

Thecorrespondingequilibriumcurrentdensityisexpectedtobesmallwith correspondinglysmalladmittance.Theremainingreactionofimportanceis expectedtobeO 2reduction,occurringatadiffusionlimited,potential independentvalue.

ThelowerbranchoftheequivalentcircuitinFigure4.40isforthe aluminizedcomponentanddescribesscenariosforbothbeforeandafteractive corrosionoftheouteraluminizedcoatinglayerasdescribedinSections2.4.2.1 and2.4.2.2inChapter2.

4.4.4.2BlemishedSpecimens

TheanalogequivalentcircuitinFigure4.40isdeemedtobesimplifiedto beapplicabletotheLCBandSCBconfigurations.Thesimplifiedequivalent circuitsshowninFigure4.41wereconsistentwiththeassumptionspresentedin

Section4.4.1andtheobservationsmadeearlier.

FortheperiodbeforetheE OC drop,theimpedanceresponse(dominated largelybytheanodicandcathodicreactionsattheexposedsteelasstated earlier)oftheLCBspecimensinsolutionsPandNPwasmodeledusingsolely theupperbranchoftheequivalentcircuitinFigure4.40butreplacingCPE 1by

138 theparallelcombinationofCPE 1andCPE F(keyedasCPE*)asshowninthe simplifiedequivalentcircuitinFigure4.41A.Thissimplificationisvalidonlyifthe passivealuminizedportionhascathodicandanodicadmittancessignificantly smallerthanthoseoftheactiveexposedsteelasitisobservedfortheperiod beforetheE OC drop.AftertheE OC drop,however,theimpedanceresponseforall thecaseswasmodeledusingthesimplifiedequivalentcircuitinFigure4.41B.

TheanodicpolarizationresistanceRAL2 inFigure4.41Brepresentstheactive aluminizedcorrosion(eitherbypittinginsolutionSWorbyuniformcorrosionin theothersolutions)inparallelwiththediffusionalcathodicimpedanceofthe exposedsteel,undertheassumptionthatthemajorityofthecathodicreaction tookplacethereasmentionedearlierandconsideringthatthevalueofthe resistanceR AL1 (representingtheparallelcombinationofthelocalelectrolytic currentdistributionaroundeachpitassociatedwithanohmicresistance componentasstatedinChapter2)isexpectedtobeconsiderablysmallerthan

RAL2 sothatR AL1 canbeneglected.TheelementCPE**inFigure4.41B encompassestheparallelcombinationofCPE 1,CPE F,andCPE AL2 .AftertheEOC droptookplace,theanodicadmittanceoftheexposedsteelinallsolutionswere nearlyzeroasaresultoftheproximityofthesystempotentialtothatofthe

+2 Fe/Fe equilibriumreactionasmentionedearlier,thusR a1 isinfinity.

However,theEISinterpretationusedforthemacrocellassembliesandthe blemishedspecimensdonotaccountforthepresenceofnonuniform ac current distributioncommonlyencounteredinarrangementsinvolvinginterconnected dissimilarmetals(KrancandSagüés,1993).Thisexperimentalartifactmaylead,

139 ifnotproperlyquantified,toanincorrectEISinterpretationandthereforeto inaccuratecorrosionrateestimates.Toaccountforuneven ac currentdistribution fortheLCBspecimengeometry,an ac computationalmodelisintroducedin

Chapter5.Theresultsfromthe ac computationalmodelindicatethatnegligible nonuniform ac currentdistributioncanbeexpectedinthesesystemseven thoughthereisasubstantialdifferenceinthepolarizationresistanceofthesteel andthealuminizedcomponents,especiallyearlyonintheexposure.Thus,the useoftheanalogequivalentcircuitsproposedinthisChaptertofittheEISdata isvalid.

4.4.5 ComputationoftheNominalCorrosionCurrentDensity

Per the assumptions above and the observations made earlier, for the period before the onset of the EOC drop a rough estimation of the nominal corrosioncurrentdensityfortheexposedsteelicorrFE wasmadebycomputingthe

1 1 1 chargetransferresistanceR CT =[Ra1 +RC1 ] ,wheretheresistorsR a1 andR C1 were obtained by fitting the EIS data using the analog equivalent circuits in

Figures4.40(upperbranchforthemacrocellassembliesandtheindividualsteel specimens)and4.41A(fortheLCBspecimensinNPandPsystems) 9.

9 ForbeforetheEOC dropregime,valuesofi corrFE fortheLCBspecimensinSWandthe SCBspecimensinalltestsolutionsarenotavailable,sinceallEISmeasurementsin thosecasesweretakenafterE OC hadreachedanarbitrarypotential<800mV.Inthat case,thevaluesofi corrFE wereexpectedtobenearlyzeroasaresultoftheproximityof thesystempotentialtothatoftheFe/Fe +2 equilibriumreactionasmentionedearlier. 140 FromtheSternGearyrelationship(SternandGeary,1957),thevaluesof icorrFE arecomputedasfollows:

1 icorrFE ~B(AFE RCT ) (4.1) where A FE isthenominalsteelareaandtheparameterBiscalled the Stern

1 Geary constant equal to β a1 βC1 [2.3(β a1 +β C1 )] for the assumed values of the

Tafelslopesβ a1 =60mV/decandβ C1 =120mV/dec(Kaesche,1985).

ForthemacrocellassembliesinsolutionsNPandPfortheperiodbefore theE OC drop,thenominalcorrosioncurrentdensityforthealuminizedcomponent icorrAL was computed using Eq. 2.8 following the assumptions presented for passiveunblemishedaluminizedsteelinSection2.4.2.1inChapter2.Valuesof

RAL1 computedherewereobtainedbyfittingtheEISdatausingsolelythelower branchoftheanalogequivalentcircuitinFigure4.40(thesameasthatinFigure

2.16inChapter2) 10 .Fortheperiodafteractivealuminizedsurfacecorrosion,the valuesofi corrAL inallcaseswerecomputedusingEq.2.9inChapter2withvalues ofR AL2 obtainedbyfittingtheEISdatausingthecorrespondingsimplifiedanalog equivalentcircuitsshowninFigures4.40and4.41B.

ThetimeevolutionsoficorrFE andicorrAL fortheblemishedspecimensand themacrocellassembliesisshowninFigures4.42through4.44withtheEIS parametersshowninTables4.3through4.5.

10 Valuesofi corrAL fortheLCBandtheSCBspecimensinalltestsolutionsbeforeE OC droparenotavailable,sinceallEISmeasurementsinthosecasesweretakeneither afterE OC hadreachedanarbitrarypotential<800mVortheoverallimpedance responsewaslargelydominatedbythesmallimpedanceoftheactivesteelcomparedto themuchlargerimpedanceofthepassivealuminizedportion. 141 ForthesteelportionintheLCBspecimens(Figure4.42),thevaluesof

2 2 icorrFE rangedfrom~10A/cm earlyonto~30A/cm bytheendofthepositive

2 2 EOC trendforNP,andfrom~10A/cm earlyonto~5A/cm forsolutionP.

Thosevalueswereroughlyinagreementwiththeresultsofthesteelcomponent inthemacrocellassembliesandtheindividualsteelspecimensexposedtothe samesolutionsandalsoconsistentwiththeobservedcorrosiondepositsoverthe steelsurfaceinbothsolutionsearlyonintheexposure.

FortheregimeaftertheEOC drop,theicorrAL valuesoftheLCBspecimens

(Figure4.43)weremodestforsolutionsPandNP(~3A/cm 2)andsmallerfor solutionSW(~0.1A/cm 2),consistentwiththeappearanceofmoderate/strong aluminizedsurfacediscolorationforPandNP,andlightinSW.Thei corrAL values forthealuminizedcomponentinthemacrocellassemblies(Figure4.43)were

~0.5A/cm 2and~5.1A/cm 2forsolutionsPandNP,respectively,also consistentwithmoderateinPandstrongaluminizedsurfacediscolorationinNP.

FortheSCBspecimens(Figure4.44),thei corrAL valueobtainedbytheendof exposurewasextremelysmallforP(~0.003A/cm 2),consistentwithabsenceof aluminizedcorrosionthroughouttheentiretestexposure.Valuesofi corrAL bythe endofexposurewere~1.5A/cm 2,~0.1A/cm 2,and~0.03A/cm 2,forNP,SW, andC,respectively.

Theintegratedaluminizedcoatingloss,duringtheexposureperiodfrom t=0tot fwheret fisthetimefortheendofthetest,wasevaluatedbyusingthe timeevolutionofi corr (t i)obtainedfromtheEISmeasurementswherei=1ton

142 representseachEISmeasurement.Theintegratedmateriallosswasthen calculatedfromthechargedensitysuchthat:

n−1 Q = ∑icorri ⋅ ()()ti+1 − ti + icorr1 ⋅ t1 + icorrn ⋅ tf − tn (4.3) 1 1 TheintegratedcoatinglossduringexposureisL INT =QA W(nFρ) ,A Wisthe aluminumatomicweight,andρisthealuminumdensity.Figure4.45compares theintegratedcoatinglossobtainedbyEISandthenominalcoatingthickness lossdeterminedbymagneticcoatingthicknessmeasurementsinaloglog representation.Thecomparisonshowsreasonableagreementbetweenboth estimates,insupportoftheassumptionsmadeforinterpretationoftheEISdata.

Figure4.46showsametallographicanalysisconductedontheLCBspecimen#1 exposedtosolutionNP.Corrosiondepositsnotedontopoftheouteraluminized layerwere~1015mthickwhichyieldsanominalcorrosionrateof~40m/yr, usingtheappropriateexposuretime.Thisresultisingoodagreementwiththat determinedbymagneticcoatingmeasurementsandEISmeasurements.

However,magneticcoatingthicknessdoesnothavethecapabilitytodetect pittinglossinthecaseofe.g.thesolutionSW,wherepittingwasthemainformof corrosion.Asaresult,measurementsofmagneticcoatingthicknessmay underestimatetheactualcorrosionratesinthosecases.

4.5 ImplicationoftheResults

Inthefollowing,thesameanalysisandassumptionspresentedinSection

2.5inChapter2areusedheretotentativelyprojectdurabilityofaluminizedsteel

143 Type2withcoatingbreaksexposingtheunderlyingsteel,andwillnotbe discussedinthissectionunlessclarificationisneeded.Itisstronglyemphasized thatthedurabilityprojectionsobtainedinthisinvestigationarenominalinnature sincethepresentexperimentswereconductedforrelativelyshorttimes, comparedtotheactualservicelivesinvolvedinfieldapplications.

Theextentandmorphologyofcoatingbreaksisassumedtoresemblethe conditionsexaminedexperimentally.Thosewouldapplyforexampletoapattern ofbreaksofsmallaspectratiospacedasmallfractionof1meter(afewinches) apart,atthebottomofashallowpoolofstagnantwaterasitmayoccurbetween corrugationsintheculvertinvert.Itisassumedforsimplicitythatthemediumis replenishedonlyinfrequently,duringepisodicflowevents.Oncethepost potentialdropregimeisestablished,corrosionratesareconsideredtoproceedat aspaceandtimeuniformrateuntiltheoutercoatinglayerisexhausted.

Thevaluesofi corrAL andi corrFE ,reportedinTables4.3through4.5,were usedtocomputetheSLforthealuminizedcoatingandthebasesteelusingEq.

2.10inChapter2,replacingaccordinglythealuminumparametersbythoseof thesteel.

InsolutionPwhichrepresentedconditionsofcarbonatescaleforming solutions,thatishightotalalkalinityandtotalhardness,fullouterlayer consumptionwouldbeprojectedtooccurin~2yrforA R~0.03(consistentwith moderatealuminizedsurfacediscolorationasthemainmodeofdeterioration),

4 butinexcessof100yrforA R~310 .ItisalsonotedthatforA R=0asinthe unblemishedaluminizedsteelasreportedinChapter2anegligiblenominal

144 corrosionrateandbrightappearancewasnotedforsolutionP,sotheouterlayer durabilityprojectionwouldalsobeinexcessof100yr.

Projectionsbecomedistinctlymorepessimisticforsolutionsofhigh alkalinity,negligiblecarbonatescalingtendencyandmoderatechloridecontent

(solutionNP).Severecorrosionwasnotedaroundtheexposedsteelperimeter

4 forbothA R~0.03and~310 withcompleteconsumptionoftheouteraluminized coatinglayerafteronlyafewweeks.Itisnotclearatthismomentifcorrosion wouldtendtoprogressevenfurtherspecificallyatthealuminizedringaroundthe steel.Itcanbenotedhoweverthatsincetheinnercoatinglayerhadremainedin placeatleastforthedurationoftheexperiment,itissuspectedthatuniform corrosionwouldtakeplaceinthiscase.Ifthatwouldbethecase,fullouterlayer consumptionwouldbeprojectedtooccurinonly~2yrforA R~0.03,andafter~7

4 yrforA R~310 ,bothvaluesinagreementwithstrongdiscolorationofthe aluminizedsurface.LongerSLoftheouteraluminizedlayerwasobtainedfor

AR=0(~30yr).

In solution SW simulating seawater composition, full outer layer

4 consumptionwouldbeprojectedtooccurin~30yrofserviceforbothA R~310 and ~0.03, and ~9 yr for A R=0. However, the strong localized corrosion as opposedtoalightuniformcorrosiondistresswasthemainformofcorrosionin this solution for all A R. Those values become important considering that the corrosion is strongly localized, with consequent risk of aluminized layer penetrationofacomponentexposedtosimilarmedia.

145 InsolutionCwhichrepresentedsolutionswithlowalkalinity,lowcarbonate scalingtendency,andmoderatechloridecontent,severecorrosionwasnoted

4 aroundtheexposedsteel(forA R~310 )withcompleteconsumptionoftheouter aluminizedcoatinglayeratthatspotafterafewweeksofexposure.However, metallographicevidencepermittedtoinferthatsincetheinnercoatinglayerhad remainedinplaceatleastforthedurationoftheexperiment,corrosionwould mainlytakeplaceuniformlyovertheentirealuminizedsurface.Ifthatwouldbe thecase,fullouterlayerconsumptionwouldbeprojectedtooccurin~20yrof

4 serviceforAR~310 .ForA R=0(Chapter2),outerlayerconsumptionwouldbe consumedin~10yrofservice.TheshorterdurabilityprojectionsforA R=0canbe relatedtoamomentaryincreaseinsolutionpH(>8.8)observedearlyinthetest,

4 notnotedforthecasesofA R~310 .

Afterconsumptionoftheouteraluminizedlayer(assumingthattheinner coatinglayerprovideslittletononecorrosionprotectiontothebasesteelas describedinChapter2),corrosionofthebasesteelstartsandisexpectedto proceedatratesof~12A/cm 2inSWand~10A/cm 2intheothermedia.Per theassumptionspresentedinChapter2,theprojectedSLforthebasesteel wouldbe~6yrinSWand~8yrintheothermedia.

TheoverallSLestimatessummarizedinTable4.6werecomputed followingtheconsiderationspresentedinChapter2.Table4.6alsoincludesthe projecteddurabilitycomputedbythepredictivemethods(theAKSteel,the

California,theAISI,andtheFDOT)repeatedfromTable2.8forconvenience.

146 4 ForthespecimenswithA R~310 (andforA R=0aswell)insolutionP

(highscalingtendency,~7.520yr.

4 ForA R~310 and~0.03insolutionNP(highalkalinity,~7.510yrcomparedwiththepresent findings.

InsolutionSW(extremelyaggressivesolutionsoflowresistivity,nearly neutralpH,andhighchloridecontent),theAISImethodwasincloseagreement relativetothepresentfindingsforallA R,whereastheCaliforniamethod projectedshorterservicelives.Inhighlyaggressiveenvironments,nodurability creditisgivenbytheFDOTmethodandnoSLprojectionsaregivenbytheAK

Steelmethodforsolutionswithscalingindexesbeyond~800ppm.

InsolutionC(lowscalingtendency,nearlyneutralpH,andmoderate chloridecontent),SLprojectionswereincloseagreementwiththosedetermined bytheAKSteel,California,andFDOTmethodsandoverlyconservative comparedtodurabilityprojectionsobtainedbytheAISImethod.

TheresultspresentedinChapter2forunblemishedsteelsupported consideringretainingpresentFDOTdurabilityguidelinesregardlessofscaling

147 tendencyforenvironmentswithmoderatelylowresistivitysuchasthoseusedin thetests(e.g.~500 cmto~1,000 cm)andneutraltomildlyalkaline conditions(e.g.~7.5

Inclosing,itisnotedtoothattheaboveresultsindicatethatcorrosion productsfromthesteelportionmayplayaroleincreatingoraccelerating corrosionofthealuminizedcoating,inpartresultingfromthelimitedelectrolyte volumeinvolvedinthetests.Thesmallelectrolytevolumewasintendedtobe representativeofworstcaseculvertpipeconditionswithstagnantwater,orof occludedconditionsforporewateronthesoilsideofapipe.Itisnotedthatlong termconditionsmaybemorebenignifthereisfrequentelectrolyterenewal.

Furthermore,thefindingsfromthepresentinvestigationapplytoaluminizedsteel withasurfaceconditionresemblingscratchedorotherwisedistressedmaterial,

148 withanexposedsteelarearepresenting~3%and0.03%ofthetotalarea.In actualmetalformingandsubsequentlyfieldapplicationpractice,thealuminized steelcomponent(e.g.culvertpipe)isliabletosurfacedistress,especiallyatthe sharpbentregionswhichmayexposebasesteel.Theexposedsteelareain thosecasesmaybeconsiderablylessthan0.03%.Toobtainadditional informationonperformanceunderthosecircumstances,sharplybentaswellas unprotectedcutendspecimensarebeingexaminedinacontinuinginvestigation.

4.6 Conclusions

1. Galvanicprotectionwasprovidedbythesurroundingaluminizedsurfaceto

basesteelexposedatcoatingbreaksinalltheenvironmentstested.

However,inthelessaggressivemedia(e.g.thesolutionP)protection

developedonlyafteraperiodofthousandsofhoursatwhichtheopencircuit

potentialwas~720~750mV(comparabletothoseofthesteel),whensome

corrosionofthebasesteelhadalreadytakenplace.

2. Attheendofthatpositivepotentialtrendperiod,thealuminizedsurfaceof

specimenswithexposedsteel(exceptforthespecimenswithsmallA Rin

solutionP)showedsignsofdevelopingamacroscopicallyuniformactive

condition.Theopencircuitpotentialsatthatstagewereruledbythe

aluminizedcoating.

3. Thepositivepotentialperiodwasshorterforthemoreaggressivemedia(NP,

C,andSW),wherethebasesteelremainedbrightthroughoutthetestperiod

149 inSW.Positivepotentialperiodwasalsoshorterwhenthearearatioof

exposedsteeltoaluminizedsurfacewasgreater.

4. Impedancespectroscopyestimatesofthelongtermcorrosionratesofthe

outeraluminizedlayerintheactiveconditionsfortheLCBconfiguration

(largeststeel/aluminizedarearatio)were~30m/yrforsolutionsPandNP,

and~1.5m/yrforSW.FortheSCBconfiguration(smallsteel/aluminized

arearatio),longtermcorrosionratesoftheouteraluminizedlayerinthe

activeconditionswere~15m/yrforNP,~0.03m/yrforP,~1m/yrforSW,

and0.4m/yrforC.Thoseestimateswereapproximatelyconsistentwith

directmeasurementsofthicknessloss.Notably,themostnominally

aggressivesolutionsdidnotresultinthehighestouteraluminizedlayer

corrosionrates.

5. Theresultsforblemished/macrocellspecimenshavetrendsthatextrapolate

reasonablytothelimitcaseofunblemishedaluminizedsurfacesaddressedin

Chapter2(zerosteel/aluminizedarearatio).Inthatlimit,theactive

aluminizedsurfaceconditionwasneverreachedintheleastaggressive

medium(P)duringthe3,000hrtest.However,activeconditionsdevelopedon

theunblemishedaluminizedsurfacesinthemoreaggressivemediaafter

incubationtimescomparabletothoseencounteredforblemishedspecimens

withthesmallestarearatio(~310 4).Longtermcorrosionratesinthat

conditionwere~35m/yr.

6. AsinChapter2,corrosionmacropitswereusuallysmallandinfrequenton

thecorrodingaluminizedsurfacesotheyappearedtoplayasecondaryrole

150 forthesolutionsC,NP,andP,andaprimaryformofcorrosionforsolution

SW.Themacroscopicallyuniformappearanceofthecorrosionindicatesthat

aluminumcorrosionproductsmayhavedepositeduniformlyonthe

aluminizedsurface.

7. Themechanismofactivationofthealuminizedlayermayinvolvelocal

alkalinizationfromenhancedcathodicreactionattheinclusions(especiallyin

thelowbufferingcapacitysolutionC),whichwouldactivatealuminuminthe

formofmicropitsatthescaleofthefinelydistributedinclusionspresentinthe

outeraluminizedcoatinglayer.Alkalinizationmayhavebeengreaternextto

thesteelregionduetofasterO2reductionratesthere,consistentwiththe

observationofadiscolorationfrontradiatingfromthecentralexposedsteel

area.

8. PlatingofFe(frominclusionparticlesseparatedfromthematrixby

undercuttingcorrosionand/orfrominitialcorrosionoftheexposedsteel)on

thealuminizedsurfacemayhavefurtherenhancedcathodicactioninan

autocatalyticmannerthatcouldaccountfortheobservationofthepositive

opencircuitpotentialperiod,especiallyinsolutionswithlowbufferingcapacity

(solutionC).

9. Tentativedurabilityprojectionsweremadefor16gagealuminizedsheet

assumingpenetrationfrombothsidesofthemetalandconsidering

consumptionoftheouteraluminizedlayerandofthebasemetal,usingthe

corrosionratesestimatedfromtheEISmeasurementsandfocusingon

stagnantwaterconditions.Forblemishedsurfaces,theprojectedservicelife

151 was>100yrfortheleastaggressiveenvironment(P)andthesmallestcoating

break,whereasforthelargestcoatingbreakservicelifewasshortenedto~10

yr.Fortheothermedia,durabilityprojectionswerebetween16and33yr.

Caveatsonthemeaningoftheselongtermextrapolations,notedinChapter

2,applyhereaswell.

10.Forblemishedsurfaceconditionswithexposedbasesteel,thefindingsinthis

sectionsuggestthattheAKSteelmethodmaybeamoreappropriate

alternativetothatsuggestedinChapter2forenvironmentswithmoderately

lowresistivitysuchasthoseusedinthetests(e.g.~500 cmto~1,000

cm)andneutraltomildlyalkalineconditions(e.g.~7.5

wouldstillsupportexploringtheuseofalternativeguidelinessuchastheAISI

methodforenvironmentswithextremelyhighchloridecontents(e.g.resistivity

<50 cm)andnearlyneutralpH.Asbefore,itisstronglycautionedthatother

environmentalparameterssuchasmicrobiologyinducedcorrosionmay

influencethecorrosionperformanceoftheAl/Fesystem,andthateventual

changesinexistingguidelinesshouldconsidernotonlythespecificresultsof

thisinvestigationbutalsotheentiretyoftheperformancerecordofaluminized

steelpipe.

152 Table4.1:Averagethicknessmeasurements,permagneticcoatingthickness test,andthecorrespondingnominalcorrosionrateestimatesforselected specimens. Thickness/m Exposure Nominal Specimen Before After time corrosionrate exposure exposure hr m/yr LCBSolutionSW(2) 45.7 45.5 2,800 2 SCBSolutionNP(2) 45.0 40.9 3,400 10 LCBSolutionNP(1) 47.8 38.1 2,600 33 LCBSolutionNP(3) 47.0 40.9 2,600 21 LCBSolutionP(1) 51.8 49.8 2,650 7 LCBSolutionP(2) 49.0 47.5 2,650 6 MacrocellassemblyP(1) 52.3 48.3 2,700 13 MacrocellassemblyP(2) 50.8 45.0 1,900 25 MacrocellassemblyNP(1) 48.5 43.4 2,700 16 MacrocellassemblyNP(2) 48.8 43.2 2,500 20 Thicknessmeasurementsaretheaveragevaluesobtainedbythreeindependent operators.Thicknessmeasurementsweredeterminedwithastandarddeviationof ±7.6 m.

153 Table4.2:SummaryofvisualassessmentandEOC trends. Unblemished(A =0) SCB(A ~310 4) LCB(A ~0.03) Macrocellassemblies(A ~0.03) Test R R R R Aluminized Aluminized Aluminized Aluminized solution E (mV) E (mV) SteelSurface E (mV) SteelSurface E (mV) SteelSurface OC Surface OC Surface OC Surface OC Surface Uniform Uniform black/reddish black/reddish 1:03hr:~805 1:01200hr:~745 1:01600hr:~710 scalefromstart. scalefromstart. 2:03hr:~800 Brightoverthe 1:020hr:~760 Brightoverthe 2:01200hr:~745 Moderate 2:01700hr:~740 Moderate Uniform At~450hr At~440hr, 3:05hr:~800 entire 2:020hr:~760 entire 3:01500hr:~740 discoloration 3:01100hr:~730 discoloration. black/reddish centralreddish centralreddish P 1:Terminal:~760 exposuretime. 1:Terminal:~820 exposuretime. 1:Terminal:~920 Fewsmall 1:Terminal:~885 Fewsmall scalefromstart. depositspot. depositspot. 2:Terminal:~770 Novisiblepits. 2:Terminal:~820 Novisiblepits. 2:Terminal:~920 isolatedpits. 2:Terminal:~885 isolatedpits. Nopreferential Nopreferential 3:Terminal:~800 3:Terminal:~905 3:Terminal:~885 corrosionat corrosionat spot. spot. Strong discolorationin Strong #1and#3and discoloration Uniformreddish ~70mouter Uniformreddish after~1,030h r scalefromstart. aluminized scalefromstart. Moderate 1:01600hr:~725 1:0800hr:~710 (~890hr).~50 At~460hr coatinglayer At~400hr 1:05hr:~650 discoloration 1:0160hr:~720 2:01200hr:~725 2:01400hr:~710 Strong mouter centralporous aroundsteel centralporous 2:05hr:~600 after~2,250hr 2:02hr:~750 Uniformreddish 3:0500hr:~735 3:0850hr:~710 discoloration. NP aluminized reddishdeposit fullylost.No reddishdeposit 1:Terminal:~895 (1,200hr). 1;Terminal:~900 scalefromstart. 1:Terminal:~930 1:Terminal:~810 Fewsmall coatinglayer spot. discolorationin spot. 2:Terminal:~930 Fewsmall 2:Terminal:~900 2:Terminal:~725 2:Terminal:~830 isolatedpits. aroundsteel Preferential #2. Preferential isolatedpits. 3:Terminal:~930 3:Terminal:~925 fullylost. corrosionat Fewsmall corrosionat Fewsmall spot. isolatedpitsin spot. 154 isolatedpits. #1and#3.No visiblepitsin

#2. Strong discoloration after~545hr Uniformreddish Strong 1:01hr:~615 (~648hr) scalefromstart 1:0175hr:~630 discoloration 2:090hr:~630 ((~624hr)). in#1. 2:08hr:~645 after~310hr 3:020hr:~610 ~50mouter Nocorrosion Undergasketcorrosion.Datadiscarded Undergasketcorrosion.Datadiscarded C 1:Terminal:~840 (~115hr). 1:Terminal:~695 aluminized scaleor 2:Terminal:~830 Fewisolated 2:Terminal:~730 coatinglayer discolorationin pits. 3:Terminal:~720 aroundsteel #2and#3. fullylost. Fewisolated visiblepits. Light Light Light 1:03hr:~780 discoloration 1:01hr:~750 discoloration 1:048hr:~750 Noscale.Very discoloration Nocorrosion 2:010hr:~730 after~525hr 2:01hr:~750 after~275hr 2:030hr:~750 slight after~380hr scaleor Undergasketcorrosion.Datadiscarded SW 1:Terminal:~805 (~585hr). 1:Terminal:~840 (415hr). 1:Terminal:~850 discolorationas (~360hr). discoloration. 2:Terminal:~835 Fewisolated 2:Terminal:~850 Fewisolated 2:Terminal:~850 testprogressed. Fewisolated visiblepits. visiblepits. visiblepits. AR=exposedsteel/aluminizedsurfacearearatio.AluminizedsurfacediscolorationappearedconcurrentwiththeinitiationofE OC dropfortheLCBspecimensand macrocellassembliesinsolutionsNPandP,andtheSCBspecimensinsolutionC.Initially,thealuminizedsurfacewasbrightinallspecimens.Lateron, discoloration,whentakingplace,wasuniformlyspreadovertheentirealuminizedsurface. 154 Table4.3:EvolutionofthenominalcorrosioncurrentdensityfortheLCB specimens#1exposedtosolutionsNP,P,andSW.Theparametersofthe simplifiedanalogequivalentcircuitsshowninFigure4.41arealsoincluded. ImmuneconditionfortheexposedsteelwasassumedwhenthesystemE OC reached<800mV.Passiveconditionfortheouteraluminizedcoatingwas assumedwhenthealuminizedsurfacewasbrightwithnovisiblepits.

SolutionNP(#1)–BeforetheE OCdrop Time R W R R Y* i i S 1 C1 a1 n* corrFE corrAL hr sec n*1 Acm 2 Acm 2 72 8.30 44.4 682.5 1378 1.65E03 0.68 12.13 264 8.48 79.2 401.2 1631 1.67E03 0.70 17.20 408 8.42 55.6 294.5 1636 1.71E03 0.70 22.19 Passive 456 6.11 11.1 358.6 1689 2.04E03 0.64 18.72 720 7.01 10.9 345.3 1556 1.83E03 0.68 19.60 1008 8.75 14.4 203.2 1430 1.50E03 0.75 31.13

SolutionNP(#1)–AftertheE OC drop

Time RS W1 RC1 RAL2 Y** icorrFE icorrAL n** 1 n** 2 2 hr sec Acm Acm 1752 9.05 9.0 499 1123 2.36E03 0.81 0.42 2088 9.03 8.8 470 902 2.34E03 0.83Immune 0.52 2424 9.05 8.7 456 172.4 2.13E03 0.86 2.75 LCBSolutionP(#1)–BeforetheE OC drop Time R W R R Y* i i S 1 C1 a1 n* corrFE corrAL hr sec n* 1 Acm 2 Acm 2 48 6.8 74.5 3508 808 1.05E03 0.78 8.44 192 7.5 55.6 2832 873 9.77E04 0.80 8.30 552 7.3 5.0 1634 980 1.13E03 0.77 9.04 Passive 960 7.4 4.8 2418 1496 1.01E03 0.78 5.99 1224 7.7 3.3 3177 1805 8.99E04 0.80 4.81 LCBSolutionP(#1)–AftertheE OC drop

Time RS W1 RC1 RAL2 Y** icorrFE icorrAL n** 1 n** 2 2 hr sec Acm Acm 1920 8.1 3.3 546 843 3.23E03 0.85 0.56 Immune 2400 8.1 3.3 436 163 7.22E03 0.86 2.91 155 Table4.3:(Continued) LCBSolutionSW(#1)

Time RS W1 RC1 RAL2 Y** icorrFE icorrAL n** 1 n** 2 2 hr sec Acm Acm 168 0.23 19.5 2602 4452 1.39E03 0.90 0.11 192 0.23 33.6 2796 4108 2.02E03 0.87 0.12 360 0.23 18.6 2824 4080 1.41E03 0.92 0.12 528 0.22 13.6 2509 2718 1.54E03 0.92 0.17 720 0.23 14.0 2828 2669 1.61E03 0.92 0.18 840 0.24 14.1 3448 2988 1.66E03 0.92 0.16 Immune 1008 0.24 14.6 4199 3499 1.68E03 0.92 0.14 1248 0.24 11.9 3933 3012 1.70E03 0.92 0.16 1536 0.25 12.5 5224 3819 1.68E03 0.92 0.12 1752 0.24 12.6 4450 3267 1.70E03 0.92 0.14 2256 0.24 13.8 5534 3761 1.67E03 0.92 0.13 2784 0.24 14.2 7125 4704 1.64E03 0.91 0.10 Table4.4:EvolutionofthenominalcorrosioncurrentdensityfortheSCB specimens#1exposedtosolutionsNP,P,SW,andC.Theparametersofthe simplifiedanalogequivalentcircuitsshowninFigure4.41arealsoincluded. ImmuneconditionfortheexposedsteelwasassumedwhenthesystemE OC reached<800mV.Passiveconditionfortheouteraluminizedcoatingwas assumedwhenthealuminizedsurfacewasbrightwithnovisiblepits. SCBSolutionNP(#1)

Time RS W1 RC1 RAL2 Y** icorrFE icorrAL n** 1 n** 2 2 hr sec Acm Acm 96 6.8 274 4080 5694 5.97E04 0.91 0.08 168 6.7 211 3236 7159 6.39E04 0.91 0.06 288 6.8 456 7244 15250 6.78E04 0.91 0.03 432 7.0 333 3898 8293 7.72E04 0.91 0.06 648 6.9 974 11570 16650 7.81E04 0.91 0.03 Immune 840 7.2 1196 16520 21460 8.16E04 0.91 0.02 1032 7.3 1819 37620 38930 8.15E04 0.91 0.01 1272 7.0 1046 12820 10820 8.91E04 0.91 0.04 1440 7.2 780 10510 8455 9.32E04 0.92 0.05 1944 7.2 846 1231 343 1.30E03 0.93 1.33

156 Table4.4:(Continued) SCBSolutionP(#1)

Time RS W1 RC1 RAL2 Y** icorrFE icorrAL n** 1 n** 2 2 hr k k sec Acm Acm 96 7.1 74.5 44.5 55.4 3.59E04 0.92 0.017 168 7.5 62.2 16.1 15.8 4.25E04 0.92 0.058 288 7.9 121.1 38.7 35.1 4.67E04 0.93 0.026 432 7.9 64.7 27.2 20.3 5.03E04 0.92 0.045 648 8.2 100.6 79.7 43.6 5.15E04 0.91 0.021 840 8.1 170.4 288.9 71.9 5.18E04 0.92Immune 0.013 1008 8.1 157.4 533.4 86.9 5.09E04 0.92 0.011 1272 8.3 291.3 2921 112.5 5.06E04 0.92 0.008 1440 8.5 539.1 1.5E5 189.1 4.94E04 0.92 0.005 1704 7.9 292.6 1.7E5 156.4 4.98E04 0.92 0.006 2160 8.2 335.2 1.9E5 372.2 4.83E04 0.93 0.002 SCBSolutionSW(#1)

Time RS W1 RC1 RAL2 Y** icorrFE icorrAL n** 1 n** 2 2 hr sec Acm Acm 96 0.32 18.1 2216 3144 8.29E04 0.92 0.15 168 0.35 11.6 3718 6144 9.27E04 0.92 0.07 288 0.35 5.9 4251 3895 1.20E03 0.91 0.12 432 0.35 6.2 5031 3419 1.39E03 0.90 0.13 624 0.35 6.8 5256 3208 1.49E03 0.90 0.14 840 0.37 7.8 7455 4202 1.51E03 0.90 0.11 1272 0.37 9.0 9400 4698 1.48E03 0.90 0.10 Immune 1440 0.39 9.4 10420 4907 1.45E03 0.90 0.09 1536 0.35 9.1 8856 4148 1.47E03 0.90 0.11 1680 0.35 8.9 8838 4539 1.45E03 0.90 0.10 1944 0.37 9.6 10590 4871 1.40E03 0.90 0.09 2112 0.37 9.7 10560 4816 1.40E03 0.90 0.10 2496 0.37 9.7 14450 5881 1.37E03 0.90 0.08 2688 0.37 4.7 11350 5062 1.38E03 0.90 0.09

157 Table4.4:(Continued) SCBSolutionC(#1)

Time RS W1 RC1 RAL2 Y** icorrAL n** 1 n** 2 hr sec Acm 120 11.3 827.1 28220 11910 3.67E04 0.91 0.04 168 10.6 553.1 11440 8569 4.14E04 0.91 0.05 288 10.4 278.7 3489 5792 6.05E04 0.91 0.08 432 10.2 182.5 2137 3519 8.64E04 0.92 0.13 648 10.1 120.2 1290 1715 1.29E03 0.93 0.27 840 10.3 54.9 660 858 1.80E03 0.94 0.53 1296 10.4 71.0 1853 1892 2.61E03 0.90 0.24 1440 10.4 113.7 4506 4228 2.35E03 0.91 0.11 1608 10.7 108.6 8494 7126 2.21E03 0.91 0.06 1704 10.3 70.5 7674 5444 2.25E03 0.91 0.08 1968 10.9 170.4 13860 9269 2.18E03 0.91 0.05 2160 10.6 181.8 13180 11060 2.16E03 0.91 0.04 2496 10.9 226.3 16780 15450 2.09E03 0.91 0.03 2664 10.5 219.9 16640 14470 2.09E03 0.91 0.03 Table4.5:EISparametersfromanalogequivalentcircuitinFigure4.40and nominalcorrosioncurrentdensityforthealuminizedandsteelcomponentsinthe macrocellassemblies. Time R R R W Y i Specimen Sol. S a1 C1 1 1 n corrFE hr k k sec 0.5 sec n/ 1 A/cm 2

Before 900 P 175.1 0.9 0.6 17.9 3.2E03 0.75 16.1 EOC drop 900 NP 59.8 1.2 0.3 51.1 5.0E03 0.55 24.2 Steel component After 1780 P 210.6 3.8 0.1 5.1 6.4E03 0.75 EOC Immune drop 1780 NP 50.1 3.3 0.2 54.4 1.1E03 0.55 Time R R Y R Y i Specimen Sol. S AL1 AL2 n AL2 F n corrAL hr k sec n2 / AL2 k sec nF / F A/cm 2

Before 900 P 57.4 9.9 9.8E04 0.98 71.2 5.2E04 0.94 0.09 EOC drop 900 NP 16.5 6.9 3.4E03 0.99 24.6 7.9E04 0.94 0.13 Aluminized component After 1780 P 55.7 0.2 3.2E02 0.84 1.0 1.3E03 1.00 0.46 EOC drop 1780 NP 16.7 0.05 1.3E01 0.80 0.09 1.2E02 0.85 5.08

158 Table4.6:Comparisonofdurabilityestimates,inyr,obtainedbyapplicationof commonlyusedforecastingmethodsandthoseobtainedinthisinvestigation. Test Thisinvestigation AKSteel California AISI FDOT 4 solution AR=0 AR~310 AR~0.03 >100 >100 10 P <20 29 57 56 (>100) (>100) (11,11) 36 16 10 NP <20 25 50 33 (38) (15) (10) 15 33 27 SW NA 7 15 NA (19) (28) (30) 19 27 C <20 30 62 27 (23) (28,24) Numbersinparenthesiscorrespondtotheresultsfromreplicatespecimens.

Figure4.1:Photographofthetestcellusedtomonitorgalvaniccurrentsand impedancebehavioroftheunblemishedaluminizedsteelandsteelcomponents.

159

Tiwire(int.ref. electrode) Acrylic Steelcomponent (3.14cm 2)

5cm 3cm 2cm

Gasket Unblemishedaluminizedsteel component(95cm 2) Adj. Batt. Igalv ~1M + -

acIsolation Figure4.2:Schematicofthetestcellarrangement. 9.5

9.0

8.5

8.0

7.5 SolutionpH LCBNP(#1) 7.0 LCBNP(#2) LCBP(#1) LCBP(#2) 6.5 LCBSW(#1) LCBSW(#2) 6.0 0 500 1000 1500 2000 2500 3000 3500 Time/hr

Figure4.3:EvolutionofthesolutionbulkpHfortheLCBconfiguration.

160 9.5

9.0

8.5

8.0

7.5 SCBNP(#1)

SolutionpH SCBNP(#2) SCBP(#1) 7.0 SCBP(#2) SCBC(#1) SCBC(#2) 6.5 SCBC(#3) SCBSW(#1) SCBSW(#2) 6.0 0 500 1000 1500 2000 2500 3000 Time/hr

Figure4.4:EvolutionofthesolutionbulkpHfortheSCBconfiguration.

0.5 LCBSolP(#1) LCBSolP(#2) LCBSolP(#3) 0.6

0.7

/Vvs.SCE 0.8 OC E

0.9

1.0 0 500 1000 1500 2000 2500 3000 Time/hr

Figure4.5:EOC evolutionoftheLCBspecimensinsolutionP.Endofexposure correspondstothetimeofthelastdatumtaken.

161 0.5 LCBSolNP(#1) LCBSolNP(#2) LCBSolNP(#3) 0.6

0.7

Prematuretermination /Vvs.SCE 0.8 OC E

0.9

1.0 0 500 1000 1500 2000 2500 3000 Time/hr

Figure4.6:E OC evolutionoftheLCBspecimensinsolutionNP.Endofexposure correspondstothetimeofthelastdatumtaken. 0.5 LCBSW#1 LCBSW#2

0.6

0.7

/Vvs.SCE 0.8 OC E

0.9

1.0 0 500 1000 1500 2000 2500 3000

Time/hr

Figure4.7:EOC evolutionoftheLCBspecimensinsolutionSW.Endofexposure correspondstothetimeofthelastdatumtaken.

162 0.5 SCBSolP(#1)

SCBSolP(#2) 0.6

0.7

/Vvs.SCE 0.8 OC E

0.9

1.0 0 500 1000 1500 2000 2500 3000 Time/hr

Figure4.8:EOC evolutionoftheSCBspecimensinsolutionP.Thetestexposures wereterminated~450hrafterthelastdatum. 0.5 SCBSolNP(#1)

SCBSolNP(#2) 0.6

0.7

/Vvs.SCE 0.8 OC E

0.9

1.0 0 500 1000 1500 2000 2500 3000 3500 4000 Time/hr

Figure4.9:EOC evolutionasafunctionoftimeoftheSCBspecimensexposedto solutionNP.Endofexposurecorrespondstothetimeofthelastdatum.

163 0.5 SCBSolSW(#1)

SCBSolSW(#2) 0.6

0.7

/Vvs.SCE 0.8 OC E

0.9

1.0 0 500 1000 1500 2000 2500 3000 Time/hr

Figure4.10:EOC evolutionasafunctionoftimeoftheSCBspecimensexposed tosolutionSW.Endofexposurecorrespondstothetimeofthelastdatum. 0.5 SCBSolC(#1) SCBSolC(#2)

0.6 SCBSolC(#3)

0.7

/Vvs.SCE 0.8 OC E

0.9

1.0 0 500 1000 1500 2000 2500 3000 3500 4000 Time/hr

Figure4.11:EOC evolutionasafunctionoftimeoftheSCBspecimensexposed tosolutionC.Endofexposurecorrespondstothetimeofthelastdatum.

164 0.3 Steel(#1)solutionC Steel(#2)solutionC 0.4 Steel(#1)solutionNP Steel(#2)solutionNP Steel(#1)solutionP 0.5 Steel(#2)solutionP

/VvsSCE 0.6 OC E 0.7

0.8 0 100 200 300 400 500 600

Time/hr

Figure4.12:EOC evolutionasafunctionoftimeofthereplicateuncoupledsteel specimens.Endofexposurecorrespondstothetimeofthelastdatum.

50m

Figure4.13:CrosssectionoftheLCBspecimen#1exposedtosolutionNP showingcompleteoutercoatinglosssurroundingtheexposedsteel.

165 (1)

(2)

Figure4.14:SEMimage:(1)1000xmagnificationand(2)5000xmagnification ofthesurfacemorphologyoftheLCBspecimen#1insolutionNPtakenafterthe endofexposure.

166

Figure4.15:SEMEDSanalysisofcorrosiondepositsonthealuminizedsurface oftheLCBspecimen#1insolutionNP.

167 100m

Figure4.16:CrosssectionoftheLCBspecimen#1exposedtosolutionSWnear theedgeoftheexposedsteel.

100m

Figure4.17:CrosssectionoftheSCBspecimen#1exposedtosolutionC showingthatapit~0.5mmdiameterthatreachedtheunderlyingsteel.

168 50m

Figure4.18:CrosssectionoftheSCBspecimen#1exposedtosolutionNP showingcompleteoutercoatinglosssurroundingtheexposedsteel.

50m

Figure4.19:CrosssectionoftheSCBspecimen#1exposedtosolutionSWnear theexposedsteelregion.

169 Steeldepression

100m

Figure4.20:CrosssectionoftheLCBspecimen#1exposedtosolutionNP showingadditionalmetallossatthecentralregionoftheexposedsteel.

170 SCBspecimen(#1)inSolNP SCBspecimen(#1)inSolP

Smallisolatedpits SCBspecimen(#1)inSolSW SCBspecimen(#2)inSolC

Completecoatingloss surroundingthebreak LCBspecimen(#1)inSolSW LCBspecimen(#2)inSolP

LCBspecimen(#1)inSolNP Twodistinctiveprecipitate formation.Centralgrowth was~13mmthick Figure4.21:Postexposurephotographsofselectedblemishedspecimens. 171 1000 72hr 60 264hr 40 408hr 456hr 20 1008hr 0 1176hr 0 20 40 60 80 100 120 140 160

1416hr 2088hr 500 2424hr Im(Z)/

0 0 500 1000 1500 2000

Re(Z)/

Figure4.22:NyquistplotoftheimpedanceresponseoftheLCBspecimen#1in solutionNP(100KHz1mHz5points/decade). 1000 48hr 192hr 360hr 800 552hr 960hr 1296hr 1920hr 600 2400hr Im(Z)/ 400

200

0 0 200 400 600 800 1000 1200 1400 1600 Re(Z)/

Figure4.23:NyquistplotoftheimpedanceresponseoftheLCBspecimen#1in solutionP(100KHz1mHz5points/decade).

172 2000 192hr 240hr 360hr

528hr 720hr 1000 840hr

Im(Z)/ 1008hr 1536hr 2256hr 2784hr 0 0 1000 2000 3000 4000 5000

Re(Z)/

Figure4.24:NyquistplotoftheimpedanceresponseoftheLCBspecimen#1in solutionSW(100KHz1mHz5points/decade).

20000 96hr 168hr 288hr 648hr 15000 840hr 1032hr 1272hr 1440hr 1944hr 10000

Im(Z)/ 200

5000 100

0 0 200 400 600 0 0 5000 10000 15000 20000 25000 30000 35000 40000

Re(Z)/

Figure4.25:NyquistplotoftheimpedanceresponseoftheSCBspecimen#1in solutionNP(100KHz1mHz5points/decade).

173 240000

200000

160000

120000 Im(Z)/

96hr 80000 288hr 648hr 1008hr 40000 1440hr 1704hr 2160hr 2496hr 0 0 40000 80000 120000 160000 200000

Re(Z)/

Figure4.26:NyquistplotoftheimpedanceresponseoftheSCBspecimen#1in solutionP(100KHz1mHz5points/decade). 2000 288hr 432hr 624hr

840hr 1000 1272hr 1440hr Im(Z)/ 1680hr 1944hr 2688hr 0 0 1000 2000 3000 4000 5000 6000 Re(Z)/

Figure4.27:NyquistplotoftheimpedanceresponseoftheSCBspecimen#1in solutionSW(100KHz1mHz5points/decade).

174 10000 1000

8000 500

120hr 168hr 6000 0

432hr 0 500 1000 648hr 840hr

Im(Z)/ 1032hr 4000 1440hr 1704hr 2160hr 2496hr 2000 2664hr

0 0 2000 4000 6000 8000 10000 12000 14000

Re(Z)/

Figure4.28:NyquistplotoftheimpedanceresponseoftheSCBspecimen#1in solutionC(100KHz1mHz5points/decade).

175 50000 2000

1000 40000

0 0 1000 2000 3000 4000 30000 120hr 288hr

Im(Z)/ 648hr 20000 840hr 1032hr 1440hr 1704hr 10000 1968hr 2160hr 2496hr 2688hr 0 0 10000 20000 30000 40000 50000 60000 Re(Z)/

Figure4.29:NyquistplotoftheimpedanceresponseoftheSCBspecimen#2in solutionC(100KHz1mHz5points/decade). 100 0.0

0.2 E

10 OC

0.4 /VvsSCE A / galv I 0.6 1

0.8

0.1 1.0 0 500 1000 1500 2000 2500 3000 Time/hr

Figure4.30:EOC andgalvaniccurrentI galv measurementsforthemacrocell assembliesexposedtosolutionsP(circles)andNP(squares).Thesteel componentswerealwaysnetcathodes. 176 50000 SteelComponentBeforeOCPdrop

AluminizedComponentBeforeOCPdrop 40000 CoupledassemblyBeforeOCPdrop

700 30000

/ 600

500 Im(Z) 20000 400

300

200 10000 100

0 0 200 400 600 800 1000 1200 0 0 10000 20000 30000 40000 50000 60000 70000 80000 Re(Z)/

Figure4.31:Nyquistplotoftheimpedanceresponseofthemacrocellassembly andtheindividualcomponentsexposedtosolutionP(100kHz–1mHz,5 points/decade)before(~900hr)theEOC drop. 700 SteelComponentAfterOCPdrop AluminizedComponentAfterOCPdrop 600 CoupledassemblyAfterOCPdrop

500

400 /

Im(Z) 300

200

100

0 0 200 400 600 800 1000 1200 Re(Z)/

Figure4.32:Nyquistplotoftheimpedanceresponseofthemacrocellassembly andtheindividualcomponentsexposedtosolutionP(100kHz–1mHz,5 points/decade)after(~1,780hr)theEOC drop. 177 15000 SteelComponentBeforeOCPdrop AluminizedComponentBeforeOCPdrop CoupledassemblyBeforeOCPdrop

10000 /

500 Im(Z)

5000 250

0 0 200 400 600 800 1000 1200 1400 0 0 5000 10000 15000 20000

Re(Z)/

Figure4.33:Nyquistplotoftheimpedanceresponseofthemacrocellassembly andtheindividualcomponentsexposedtosolutionNP(100kHz–1mHz,5 points/decade)before(~900hr)theEOC drop.

178 2000 SteelComponentAfterOCPdrop AluminizedComponentAfterOCPdrop CoupledassemblyAfterOCPdrop

1500 / 1000 100 Im(Z) 80

60

500 40

20

0 0 50 100 150 200 0 0 500 1000 1500 2000 2500 3000 3500 Re(Z)/

Figure4.34:Nyquistplotoftheimpedanceresponseofthemacrocellassembly andtheindividualcomponentsexposedtosolutionNP(100kHz–1mHz,5 points/decade)after(~1,780hr)theEOC drop. 250 Steel(#1)solutionNP 200 Steel(#2)solutionNP Steel(#1)solutionP

150 Steel(#2)solutionP

Im(Z)/ 100

50

0 0 100 200 300 400 500 600 700 800 Re(Z)/

Figure4.35:Nyquistplotoftheimpedanceresponseofthereplicateuncoupled steelspecimensexposedtosolutionsNPandP(100kHz–1mHz,5 points/decade).

179

Corrosiondeposits

~62.8m Aluminizedcoating ~47.8m(beforeexposure) (innerandouterlayers) Basesteel ~38.1m(afterexposure)

Figure4.36:SchematicofatypicalaluminizedcoatingcrosssectionofaLCB specimen#1exposedtosolutionNP.

EOC /V LCBconfiguration 0.6 SCBconfiguration LCBNP LCBP Unblemished 0.7 SCBC

UnbC SCBP 0.8 UnbP LCBSW SCBSW UnbSW 0.9 SCBNP UnbNP 1.0 t/hr 0 1,000 2,000 3,000

Figure4.37:SchematicoftheE OC trendsshowninFigures4.5through4.11. 180 A Solutionbulk B + + O H O2 H H2 2 H 2 Oxide OH AlO 2 OH HighpHregion

Fe richinclusion Outeraluminized layer

C D + H H2 O2 O2 OH +2 OH Fe Fedeposition

E O2 OH PlatedFe

Figure4.38:Schematicdescriptionofthecorrosionmechanismofaluminized steelaroundtheFerichinclusionpresentintheouteraluminizedlayer:(A) developmentofhighpHregionaroundtheinclusionduetothecathodicreaction, (B)corrosioninitiationofthesurroundingaluminumexposinglargerinclusion areawithconsequentenhancementofthecathodicreaction,(C)detachmentof theinclusionasafreeparticlefromthealuminummatrix,(D)dissolutionofthe freeparticleandplatingofFeonaluminizedsurface,(E)developmentofahigh pHregionaroundtheplatedFe(afterVukmirovicetal.(2002)).

181 10000 AR=0.03 AR=3104 AR=0

1000

100

10 Timetoinitialdiscoloration/hr

1 1 2 3 4 5 NP P SW C

Figure4.39:Averageofthetimetoinitialdiscolorationofreplicatespecimensas 4 afunctionofA R.ResultsforA R=0andA R=310 insolutionPareminimum valuesasindicatedbythearrows. CPE 1 Ra1 Steelcomponent W 1 RC1 FE RS CPE AL2

RAL1 Aluminizedcomponent RAL2

CPE F Figure4.40:Analogequivalentcircuitusedtosimulatetheimpedanceresponse ofthemacrocellassembliesinsolutionsNPandPfortheregimesbeforeand aftertheE OC drop. 182 (A) CPE* (B) CPE**

RS Ra1 RS RAL2

RC1 RC1

W1 W1

Figure4.41:Simplifiedequivalentcircuitusedtosimulatetheimpedance responseoftheLCBandSCBspecimens.Thecircuit(A)wasemployedsolely fortheLCBspecimensexposedtosolutionsNPandPbeforetheE OC drop.The circuit(B)wasusedforallsolutionsaftertheE OC drop. 100 LCBNP LCBP MacrocellP MacrocellNP 2 Acm

10 / corrFE i

1 0 200 400 600 800 1000 1200 1400 Time/hr

Figure4.42:Evolutionofi corrFE oftheexposedsteelportionfortheLCB specimens(#1)insolutionsNPandPobtainedperanalogequivalentcircuit showninFigure4.41(A)andthesteelcomponentinthemacrocellassemblies obtainedpertheupperbranchoftheanalogequivalentcircuitinFigure4.40.

183 10 LCBNP LCBP LCBSW MacrocellP 2 1 MacrocellNP Acm / corrAL

i 0.1

0.01 0 500 1000 1500 2000 2500 3000 Time/hr

Figure4.43:Evolutionofi corrAL ofthealuminizedportionfortheLCBspecimens (#1)obtainedusingtheanalogequivalentcircuitshowninFigure4.41(B)and thealuminizedcomponentinthemacrocellassembliesusingthelowerbranchof theanalogequivalentcircuitshowninFigure4.40. 10 SCBC SCBNP 1 SCBP

2 SCBSW Acm

0.1 / corrAL i 0.01

0.001 0 500 1000 1500 2000 2500 3000 Time/hr

Figure4.44:Evolutionofi corrAL ofthealuminizedportionfortheSCBspecimens (#1)obtainedusingtheanalogequivalentcircuitshowninFigure4.41(B).

184 100

10 m(EIS)

1 Integratedcoatingloss/

0.1 0.1 1 10 100

Nominalcoatingloss/ m(ThicknessMeasurements)

Figure4.45:CorrelationbetweentheintegratedcoatinglossobtainedbyEISand thenominalcoatingthicknesslossdeterminedbymagneticcoatingthickness measurementsforselectedspecimensshowninTable4.1.

185 Corrosiondepositthickness

50m

Figure4.46:CrosssectionoftheLCBspecimen#1exposedtosolutionNP.The darkouterlayercoveringtheentireouteraluminizedcoatinglayercorrespondsto corrosiondepositsof~1015mthick.

186

Chapter5

Computationof ac and dc CurrentandPotentialDistributionsofAluminizedSteel Type2withCoatingBreaks

5.1 Introduction

AsdiscussedinChapter2,unblemishedaluminizedsteelshowedhigh corrosionresistance,comparabletothatofpurealuminum,innearneutralpH waterswithhighscalingtendencies.However,theresultsinChapter4showed thatinsuchenvironmentstheunderlyingsteelexposedataluminizedcoating breaks,imitatingsurfacedamageasitmaybeencounteredinfieldexposure, corrodedactivelyfromthebeginningofthetest.Throughouttheentireexposure time,theouteraluminizedcoatingalwaysactedasanetanodetotheexposed steel,buttherewasinitiallyinsufficientprotectivemacrocellgalvanicaction betweentheexposedsteelandthesurroundingaluminizedcoating,whichwasin passiveconditionearlyonintheexposure.Lateron,largermacrocellcurrents wererecordedsuggestingamuchimprovedprotectiontotheexposedsteelby thealuminizedcoating,whichbythattimewasactivelycorroding.

ThisChapterintroducesmodelingofthesteadystate( dc )extentof galvanicactionbetweenthesurroundingaluminizedcoatingandtheexposed steelasfunctionofpolarizationparametersofthetwometals,active/passive conditionofthealuminizedsurface,andelectrolyteconductivity.Theresulting modelservesasabasisforinitialevaluationoftheimpactofsomeofthose 187 variablesontheeffectivenessofthegalvanicactionbeyondtheconditions examinedexperimentally,forfutureexpansiontoaddressothergeometric configurationsthatmaybeencounteredinthefield,andeventualincorporationto durabilitypredictionmodels.Themodelsystemwasbasedonthephysical configurationoftheLCBspecimens(Chapter4),usingatwodimensional dc computationalmodelsolvednumericallybythefinitedifferencemethod.The dc modeloutputwasthestaticcurrentandpotentialvaluesateverypointinthe metalsurface.

ThisChapteralsoaddressesmodelingofbehaviorofthesamesystem under ac conditions.AsshowninpreviousChapters,theEIStechniqueisa sophisticatedexperimentaltooltoaccuratelydeterminecorrosionratesofmetals byapplyingasmall ac signal.However,theEISresponsecanbesometimes complicatedtoevaluateduetothepresenceofnonuniform ac currentand potentialdistributionswhichmaylead,ifnotproperlyidentified,toan inappropriateinterpretationoftheEISresponse.Thus,itisofimportanceto quantifytheeffectofnonuniform ac currentssothataccurateestimatesof corrosionratescanbeachieved.TheanalogequivalentcircuitsshowninFigure

4.41inChapter4,usedtointerprettheimpedanceresponsesoftheblemished specimens,donottakeintoconsiderationtheeffectofuneven ac current distributedalongthemetalsurface.Toaccountforpossiblenonuniform ac currentdistributionartifactspresentundertheseconditions,atwodimensional

(ac)computationalmodelwasdeveloped.Comparisonbetweentheimpedance

188 responsecalculatedbythe ac modelandtheexperimentalEISresultsobtained fortheLCBspecimens(Chapter4)isalsopresented.

5.2 TheModelSystem

Themodelsystem,correspondingtothetestcellinFigure2.3(Chapter2), wascylindricallysymmetricalongthecentralaxiswithadiskshapedaluminized

2 steelType2bottomofexternalradiusr e=5cm foratotalsurfaceareaof95cm , withtotalaluminizedcoating~45mthick(ofcompositionreportedinChapter2).

Thecentralportionofthecellspacebottomhadacircularcoatingbreakofradius r0=1cm(matchingthecoatingbreaksizeoftheLCBconfiguration),exposingthe underlyingbasesteel.Theelectrolytewastreatedasanaturallyaerated homogeneousmediumfillingacylindricalzoneofheightH=6.5cmoverthe specimensurface.Constantconductivityσandchargeneutralitywereassumed throughouttheelectrolyte.Thereferenceelectrodesensingtipwasassumedto bepositionedcenteredonthecoatingbreak.Forsimplicity,thecounterelectrode wastreatedasnonpolarizable,diskshapedwithradiusre=5cm,andplacedat thetopoftheelectrolyteregionparalleltothespecimensurface.Theentiremetal surfacewastreatedasifwereflatthroughoutsothatanymillingstepeffectsof theedgeandwallofthecoatingbreakwereneglected.

5.2.1 The dc Model

Twoscenarioswereexploredherebasedontheexperimental observationsoftheLCBspecimensreportedinChapter4.Thefirstscenario

189 describedconditionsforE OC around700mVobservedatearlyexposuretimes, whentheexposedsteelexperiencedactiveuniformdissolutionandthe surroundingaluminizedsurfacewasessentiallypassive(e.g.solutionsNPand

P).ThesecondscenariodescribedconditionsaftertheonsetoftheEOC drop

(~<850mV)observedlateronintheexposure,whenthealuminizedsurface showeduniformdiscolorationwithformationofsmallisolatedpitsandthe exposedsteelwasgalvanicallyprotectedbythesurroundingaluminizedsurface.

Forthefirstscenario,itwasproposedthattheprevalentcathodicreaction

atthepotentialsofinterestwasO 2reductionoftheformO 2+2H 2O+4e →4OH .

ThisreactionwasassumedtoobeysimpleButlerVolmerkinetics,actingoverthe entiresteelsurfaceandtoalesserextentonthesmallamountsofFerich inclusionspresentatthealuminizedsurface.Thecathodicreactionwasassumed tobeundermixedactivationconcentrationcontrolattheexposedsteeland, becauseofthemuchloweraveragecurrentdensityonthealuminizedsurface, underpurelyactivationlimitedcontrolthere.Thereverseofthecathodicreaction atbothplacescouldbeeasilyignoredsincethesystemEOC wasalwaysfar belowtheO 2/H 2Oredoxpotential.ThetransportofO 2intheelectrolyte immediatelynexttotheexposedsteelsurfacewasassumedtoproceedonlyby diffusion(withconstantO 2diffusivityD),limitedtoathinstationarydiffusional layerofthicknessδoverthesteelsurface.TheO 2concentrationelsewherewas assumedtobeuniform(reflectingnaturalconvection)andinequilibriumwiththe

O2partialpressureP O2 =0.21atmofthesurroundingairinthetestcell(Krancand

Sagüés,1993).ItisspeculatedthatbothO 2reductionandH 2evolutionwouldbe

190 partoftheoverallcathodicreactionatpotentials~<850mV,asdemonstratedin

Chapter3.Forthesakeofsimplicity,themaincathodicreactionaftertheEOC dropisassumedtobeO2reductiontakingplacemostlyattheexposedsteel approachingalimitedconcentrationcontrolregime.

Thus,therateoftheO 2reductionreactionatthemetalsurfaceforboth scenariosis:

Eeqcx −ΦS CS βCx iCx =i0Cx ⋅ ⋅10 (5.1) CB wherethesubscriptx=1isfortheexposedsteelandx=2isforthealuminized surface,i 0Cx istheexchangecurrentdensityforthecathodicreaction,CSandC B aretheO 2concentrationsnexttothesteelsurfaceandinthesolutionbulk, respectively,βCx isthecathodicTafelslope,E eqcx istheequilibriumpotentialfor theO 2reaction,andФ Sisthelocalpotentialintheelectrolyteadjacenttothe equipotentialmetalsurface.Pertheaboveassumptions,theC S/C Bratioisequal tounityatthealuminizedsurfaceforthebeforeandafterE OC drop.

PerChapter4,theprevalentanodicreactionsforthefirstscenariowere assumedtobeuniformFedissolutionFe→Fe +2 +2e attheexposedsteel,and passivedissolutionatthealuminizedsurfaceassumedtoproceedatapotential independentratei P2 .TheFedissolutionreactionwasassumedtobeunder activationlimitedcontrol,followingsimpleButlerVolmerkinetics.

191 Thus,theanodiccurrentdensityattheexposedsteelbeforetheE OC dropis givenby:

ΦS −Eeqax

βax (5.2) iax = i0ax 10 wherethesubscriptx=1isfortheexposedsteel,βax istheanodicTafelslope,i 0ax istheexchangecurrentdensityfortheanodicreaction,andE eqaxisthe equilibriumpotentialfortheFe/Fe +2 redoxpair.

Forthesecondscenario(aftertheE OC drop),therateofaluminum dissolutionoftheformAl→Al +3 +3e wasexpectedtoincreaserelativetobefore theE OC drop,consistentwithuniformdiscolorationofthealuminizedsurface notedatlongerexposuretimes.Toreflecttheincreaseofthealuminum dissolution,itwasassumedthattheanodicaluminumreaction,nolonger potentialindependent,wasunderactivationlimitedcontrolfollowingsimple

ButlerVolmerkinetics.Then,forthesecondscenariotheanodiccurrentdensity atthealuminizedsurfaceiscalculatedperEq.5.2substitutingthesubscriptx=2.

Atthesteadystateregime,theconstantσandchargeneutralityconditions implythatthepotentialintheelectrolyteΦforbothscenarioscanbestatedin termoftheLaplace’sequation,expressedbelowintwodimensionalcylindrical coordinates(WestandNewman,1992):

∂2Φ ∂2Φ 1 ∂Φ + + = 0 (5.3) ∂z2 ∂r 2 r ∂r wherezisthedistancenormaltothemetalsurfaceandristhedistanceinthe radialdirectionfromthespecimencenter.

192 Forbothscenarios,nexttothemetalsurfacethenetcurrentdensity acrosstheelectrolytemustmatchthenetrateoftheelectrochemicalreactions.

Thus,bythesteelsurface:

ΦS −Eeqa1 Eeqc1−ΦS ∂Φ C βa1 S βC1 (5.4A) σ ⋅ = i0a110 − i0C1⋅ ⋅10 ∂r z=0 CB andbythealuminizedsurface:

ΦS −Eeqa2 Eeqc2 −ΦS ∂Φ βa2 βC2 (5.4B) σ ⋅ = i0a210 − i 0C210 ∂r z=0 wherethefirsttermontherighthandsideoftheEq.5.4Bisequaltoi P2 forthe firstscenario(beforeE OC drop).

Theremainingboundaryconditionsforbothscenarioswereprovidedby thelackofcurrentdensityflowthroughallfreesurfacessuchthat:

∂Φ ∂Φ = = 0 (5.5A) ∂r ∂z r= r,0 =re z=H andforthesecondscenario(afterE OC drop)thesupplyofO 2attheexposed steelsurfaceequaledtotheamountofO 2consumedbythecathodicreaction suchthat:

dC iC1 = n ⋅F ⋅D ⋅ (5.5B) dz steelsurface forn=4(bythereactionO2+2H 2O+4e →4OH )andF=96,500C/mol(Faraday constant).

193 5.2.1.1Implementationofthe dc Model

Thesolutiontothe dc problemconsistedoffindingthevaluesofФat everypointintheelectrolytebysatisfyingEqs.(5.35.6)usingafinitedifference method.Figure5.1showsschematicallytheimplementationofthe dc modelfor themodelsystemdescribedinSection5.2.Tominimizethenumberof calculationswhileretaininggoodaccuracy,atwodimensionalcylindricalgraded networkwithconstantgridspacingintheradialrandnormalzdirectionswas generatedfollowingapproachbyOzisik(1994).Othermodelfeaturesfollow previousworkbyKrancandSagüés(1993)andCui(2003).Peraxialsymmetry, onlytheregionr>0wasmodeled.Forgeometriesmatchingtheconfigurationof theLCBblemishedspecimens,r=0.1cmforatotalof50nodesandz=0.1 cmforatotalof65nodeswereadopted.

Theimplementationofthefinitedifferencemethodwasasfollows.The normalderivativeofthepotentialwasrepresentedusingatwonode representationsuchthatforthefirstscenario(beforeE OC drop)bythesteel surfaceis:

E −Φ Φ −E z  C eqc1 i 1, i 1, eqa1  Φ = Φ + i ⋅ i 0, ⋅10 βC1 − i ⋅10 βa1  (5.6A) i 0, i 1, σ 0C1 C 0a1  B  andbythealuminizedsurface: E −Φ z  eqc 2 i 1,  Φ = Φ + i ⋅10 βC 2 − i  (5.6B) i 0, i 1, σ 0C2 P 2   whereΦ i,0 andC i,0 correspondtothepotentialandO 2concentrationbythemetal surface,respectively,andΦ i,1andCi,0 arethepotentialandO 2concentrationin 194 theelectrolytenexttothemetalsurface.Thesubscriptiherecorrespondstothe nodalpointsintheradialdirection.

Forthesecondscenario(afterE OC drop)bythesteelsurface,thenormal derivativeofthepotentialis:

 Eeqc1−Φ 1,i Φ 1,i −Eeqa1  z Φ = Φ + i ⋅10 βC1 − i ⋅10 βa1  (5.7A) 0,i 1,i σ  0C1 0a1    andbythealuminizedsurface: E −Φ Φ −E z  eqc 2 i 1, i 1, eqa 2  Φ = Φ + i ⋅10 βC 2 − i ⋅10 βa 2  (5.7B) i 0, i 1, σ 0C2 0a2   Asstatedaboveinthemodelassumptions,theO 2transportatthe exposedsteelsurfacewasassumedtofollowsimplelineardiffusionwith

δ=z=0.1cmtypicallyfoundinstagnantsolutions(Kaesche,1985).Thus,in finitedifferenceformulation,theO 2concentrationnexttothesteelsurfaceis:

4FD ⋅ C 1,i z C 0,i = Eeqc1−Φ 0,i (5.8) i 4FD 0C1 ⋅10 βC1 + CB z Therepresentationoftheboundaryconditionsattheexternalsurfaces wascarriedoutbycreatingafictitiousarrayofpointsofnodalpointcoordinates correspondingtothenormaldirectiontoeachexternalsurface.Asymmetrical conditionwasappliedtothegridnetworkpointslocatedonthecenterlinesothat

Φ0,j=Φ1,jwhereΦ0,jarethepotentialofthegridnetworkpointslocatedonthe centerlineinthedirectionnormaltothemetalsurfaceandΦ1,jarethepotentialof thepointsnexttoΦ0,j.Thesubscriptjhereisassociatedtothenodalpointsinthe 195 zdirectiontothemetalsurface.Thesymmetricalconditionatthecenterline obviatestheneedforotherwiseaddressingthesingularitythatmayariseatr=0 fromEq.5.3.

Inthesolutionbulk,thepotentialvalueswereestimatedusingacentral differenceschemeoftheform:

Φ Φ  1 1  Φ , ji +1 + , ji −1 + Φ + + i − ,1 j z2 z2 i + ,1 j r 2 r ⋅ r  r 2 Φ =  i  (5.9) , ji 2 2 1 2 + 2 + z r ri ⋅ r ThesolutionstrategyadoptedtonumericallysolveforEqs.(5.6)to(5.9) madeuseoftheJacobimethod(BurdenandFaires,1985).Suchmethod consistedofassigningguesspotentialandO2concentrationvalueseverywhere inthesolutiontobegintheiterationprocess.Theguessvalueswereplacedin twoarrays,oneforpotentialsandtheotherforconcentrations.New concentrationvaluessatisfyingEq.5.8werethencomputedfromtheguess arraysforeachnodalpointatthesteelsurfaceandstoredinacompanion concentrationarray.NewpotentialvaluessatisfyingEq.5.6(fortheregime beforeE OC drop)orEq.5.7(fortheregimeafterE OC drop)werethencomputed, ateachnodalpointinthesolutionvolumeandattheboundaries,fromtheguess arraysexceptusingthenewvaluesofconcentrationpreviouslycomputed.Those newpotentialvalueswerestoredinacompanionpotentialarray.Thecompanion potentialandconcentrationarrayvalueswerethenusedtooverwritetheinitial guessarrays.Theprocesswasthenrepeatedusingtheoverwrittenguessarray asthestartingvalue.Arelaxationfactorα(typicallywithα=0.6)wasusedto

196 blendthepotentialvalueofeachnewgenerationwiththepreviousone(Ketter andPrawel,1969).Thiscomputationsequencewasrepeatedforeachnew generationuntilaconvergencecriterionwasmetasshowninthenext paragraph.Appropriateselectionofthepolarizationkineticsparametersforthe steelandforthealuminizedcomponentspermittedobtainingthelocal dc current densityforeverynodebythemetalsurfaceasshownbelow.

Figure5.2showsforarepresentativeexamplethatthecomputedtotal anodicandcathodiccurrentsbythemetalsurfaceapproachedtoacommon terminalvalueasthenumberofiterationincreased.Therelativedifference betweenthecomputedcurrentsdecreasedto<1%after10 5iterations.This observationsuggeststhatareasonablysmallconvergenceerrorcanbeobtained after10 5iterations.Asaresult,forallmodelcomputations,arelativedifferenceof

1%wasusedasacriteriontodeterminenumberofiterationsneededtomeet thatvalue.Allreportedcalculationsinvolvedatleast10 5iterations.

5.2.1.2.CasesStudied

Toexaminethesensitivitytothe dc currentdensityandpotential distributions,valuesofσ bc =2,000S/cm(basecase),σ1=200S/cm(case1), andσ2=10S/cm(case2)werechosenforanexposedsteel/aluminized surfacearearatioA R~0.03.Theselectedσvaluescorrespondtonaturalwaters ofdifferentaggressivitytypicallyencounteredintheinvertoffieldmetallicculvert pipesinFloridawaters.Thebasecasewaschosentorepresentconditions comparabletothoseusedforexperimentalevaluation.

197 Experimentalresultsobtainedfromtheelectrochemicalmeasurements, whereavailable,wereusedasinputsforthe dc model.Inthecaseofunknown polarizationparameters,thefollowingassumptionsweremade.Consistentwith valuesreportedintheliterature,anominalanodicTafelslopeforthesteelβa1 =60 mV/dec(Kaesche,1985)wasassumedandi 0a1 waschosenbyadjustingits valuetoobtaini a1 thatmatchedthatobtainedfromtheEISmeasurementsofthe steelportionintheblemishedspecimensbeforeandaftertheE OC drop(see

Chapter4).Thevaluesofi 0C1 andi 0C2 wereestimatedconsistentwiththechoice

5 2 7 oftheotherpolarizationparameters.ValuesofD=210 cm /sec,C B=310 mol/cm 3,andδ=0.1cm,representativeoftypicalconditionsinstagnantaerated systems(Kaesche,1985),wereselected.Thosechoicesyieldedalimiting

1 5 2 currentdensityi L=nFDC Bδ ~2.310 A/cm forO 2reductiononplainsteel, whichisalsocommonlyobservedinnaturallyaeratedsystems(Kaesche,1985).

Theparametersusedforthe dc computationsaresummarizedinTable5.1.

5.2.2. The ac Model

Theassumptionsandconfigurationpresentedforthe dc modelarealso applicabletothe ac model.Themetalsurfacewasdividedintosmallequalsized elementsandalocalareanormalizedimpedancewasassignedtoeachelement.

Thevalueofthelocalimpedanceforeachelementwasobtainedfromthelocal dc anodicandcathodiccurrentdensities,theareanormalizedinterfacial capacitance,andthegeometryofthesystem.Forsimplicity,theinterfacial

198 capacitancewastakenasconstant,butsubjecttofrequencydispersion,foreach metalcomponent.Thus,theoverallimpedanceforeachelementisgivenby:

−1   1 1 nx Zx ()ω =  + + Yx ()jω  (5.10) Zax ZCx + ZdCx (ω)  wherethesubscriptx=1isforthebaresteelandx=2isforthealuminized surface,andYandnaretheCPEparametersrepresentingtheinterfacial capacitanceperunitareaasdefinedinChapter2.Therealcomponentsofthe anodicandcathodicFaradaicimpedances,envisionedhereassimpleresistors, aregivenby:

−1  i   ax  Zax =  3.2 ⋅  fortheanodicreaction(5.11A)  βax  −1  i   Cx  ZCx =  3.2 ⋅  forthecathodicreaction(5.11B)  βCx  andthediffusionalimpedancecomponentofthecathodicreactionattheexposed steelis(Sagüés(2006)):

−1   2 −1  3.2 ()iL − iC1 ⋅ ()jω⋅ z ⋅D  ZdC1()ω =  ⋅  (5.11C) β  2 −1   C1 tanh jω⋅ z ⋅D       Toaddressthe ac problem,acircuitconsistingofatwodimensional resistivenetwork(Figure5.3)representingthetestsolutionforthesystem describedinSection5.2wasused.Thevaluesoftheresistorsinthenetwork wereobtainedaccordingtothesystemdimensions,thesizeofthesolution elementchosen,andσ.Thecompleximpedanceforthesteel/aluminizedcoating systemateachtestfrequencywasthencalculatedastheratioofthecomplex 199 potential,obtainedatthelocationofthereferenceelectrodesensingpoint,tothe complexcurrentdensityatthemetalsurface.Complexpotentialsandcurrents everywhereinthesolutionwerecomputedfollowingapproachdescribedinthe nextsection.

5.2.2.1Implementationofthe ac Model

TheapproachpresentedinthisSectioniscomparabletothatusedby

KrancandSagüés(1993).

ThemodelsystemwasthesameasthatdescribedinSection5.2.Per axialsymmetry,onlytheregionforr>0wasmodeled.Theresistivenetwork consistedof10resistorsintheradialdirectionby10inthenormaldirectiontothe metalsurface.Atthesolutionbulk,thevaluesoftheverticalresistorswere

1 estimatedasR V=dz(2πσrdr) andforthehorizontalresistorsR H=dr(2πσr

1 2 1 dz) fordr=0.50cmanddz=0.65cm.Atthecenterline,R V=dz(πσdr ) and

1 RH=(πσdz) wereestablished.Nodeequationswereformulatedforeachpoint inthenetworkbyestablishingazerocurrentbalanceforeachnode,considering thesurroundingnodalpoints.Thisinvolvedatotalof121equations simultaneouslysolvedusingaMatlab ®routine.Thecounterelectrodewasjoined tothenetworkattheuppersurfacebysmallresistors(1)tofacilitatecurrent computation.An ac voltagesignalwasthenappliedbetweenthecounter electrodeandthemetal.

Valuesoftheadmittancecomponentsforeachsurfaceelement,obtained fromtheoutputofthe dc modelforthebasecaseonly,werecalculatedusingEq.

200 (5.11)followingtheassumptionspresentedinSection5.2.1.Typicalvaluesof interfacialcapacitanceparametersnandYforthealuminizedandsteel componentswereselectedfrompreviousChaptersandusedhereforthe ac computations.Table5.2summarizesthesetofparametersusedforthe ac model computations.

Toexaminepossiblenonuniform ac currentdistributionontheimpedance trendsduetothereferenceelectrodeposition,modelcomputationswere performedforreferenceelectrodesensingtippositionatthreedifferentdistances fromthecenterofthesteelsurface.Thetestfrequencyvariedfrom105to10 3Hz inallcases.

5.3 ResultsandDiscussion

5.3.1 The dc Model

Computeddistributions ofthe dc currentdensityandpotentialbythemetal surfaceasafunctionofradiusareshownforbothscenarios(beforeandafter

EOC drop)inFigures5.4to5.6forthebasecaseandthevariantsshowninTable

5.1.Therangeofvaluesofσusedasmodelinputrepresentedconditions bracketingsolutionconductivitiescommonlyfoundinFloridainlandwaters, characterizedbye.g.solutionsPandNP.Highσasthosefoundinnatural seawaterwerenotexaminedforthepresentsetofcomputations.

Forthefirstscenario(beforeEOC drop),computationresultsshowedlittle sensitivityoftheanodiccurrentdensitytothechoiceofsolutionconductivity

(Figure5.4).Thelargestandnearlyconstantanodiccurrentdensity(~8.5

201 A/cm 2)wasattheexposedsteel,decayingsteeplytotheassumedconstantlow anodiccurrentdensityvalue(710 3A/cm 2)atthealuminizedsurface.The computationresultswereconsistentwiththeobservedi corr obtainedfortheLCB specimensine.g.solutionPandalsoinagreementwiththeobservationof uniformrustformationonthesteelsurfaceearlyonintheexposure,withno visualcorrosiondamageatthealuminizedsurface.

Thecathodiccurrentdensityforthefirstscenario(Figure5.5)was greatestandnearlyconstantattheexposedsteel(~9A/cm 2),andsteeply decayedawayfromit,attaininganearlyconstantvalueof~9.210 4A/cm 2atthe aluminizedsurface.Theseresultswereconsistentwiththemodelassumptions andinagreementwiththeresultsobtainedbycyclicpolarizationtestsconducted onindividualsteelandunblemishedaluminizedsteelspecimensexposedto solutionsPandNP.Asbefore,computationresultsshowedlittlesensitivityofthe cathodiccurrentdensitytothechoiceofsolutionconductivity.

Figure5.6showsthepotentialtrendsnexttothemetalsurfaceasa functionofradiusforthefirstscenario.Thecomputedpotentialswerenearly constant(~715mV)withradiuswithvaluesslightlynoblerattheexposedsteel

(~18mV)fortheselectedσvalues.Thepotentialsforthebasecasewerein agreementwiththepotentialmeasurementsrecordedatseveralradiallocations oftheLCBspecimensinsolutionP.Computationsshowedlittlesensitivityofthe potentialtothechoiceofsolutionconductivity.

Figure5.7showsthecomputedmacrocellcurrentasafunctionofσforthe firstscenario(regimebeforetheonsetoftheE OC drop).Forσ bc =2,000S/cm

202 (basecase),themacrocellcurrentwas~2A,inagreementwiththe experimentalresultsobtainedatearlyexposuretimesforthemacrocell assembliesshowninChapter4.Asexpected,themacrocellcurrentsdecreased fordecreasingvaluesofσ.Theseresultsareconsistentwithattributingtheweak galvanicactionofthealuminizedcoating/exposedsteelsystemearlyoninthe exposuretothepassiveconditionofthealuminizedcoating.Thatconditionwas alsoasmanifestedbylargeimpedancemoduli(>100kcm 2)ofthecoating, whichwereexceedinglylargerthanthoseoftheexposedsteel(~2kcm 2).

Figure5.4showsthecomputedanodiccurrentdensityasafunctionof radiusforallσforthesecondscenario(afterE OC drop).Forσ bc =2,000S/cm

(basecase),thenearlyconstantanodiccurrentdensityattheexposedsteel

(~0.045A/cm 2)wasapproximatelytwoordersofmagnitudesmallerthanthat obtainedfromthefirstscenario(beforeE OC drop),inagreementwiththe proximityofthesystempotentialtotheequilibriumpotentialoftheFe/Fe +2 reaction,consistentwitheffectivecathodicprotection.However,increasingly largeranodiccurrentdensitiesattheexposedsteelwerenotedfordecreasing valuesofσ,suggestinglimitedcathodicprotectioninthosecases.Interestingly, forσbc =2,000S/cm(basecase)andmorenoticeableforσ1=200S/cm(case

1)andσ2=10S/cm(case2)thecomputedanodiccurrentdensityatthecentral portionofthesteelwaslargest(~0.45and~7.3A/cm 2forcases1and2, respectively)andsmallestattheedge(~0.19and~2A/cm 2forcases1and2, respectively).Thecalculationsareinagreementwiththeexperimental observationsofadditionalmetallossatthecenterspotoftheexposedsteelin

203 theLCBspecimensexposedtosolutionsPandNPduetoalocalacidificationat thatspotasmentionedindetailinChapter4.

Ontheotherhand,theanodiccurrentdensityatthealuminizedsurface waslargestnearthesteelperimeteranddecreasedawayfromthesteelmore noticeableforσ 1=200S/cm(case1)andσ 2=10S/cm(case2)andnotsofor

σbc =2,000S/cm(basecase).ThiscanbeviewedasbeingconsistentwithapH increasenearthesteelperimeterasaresultofanenhancementofthecathodic reactioninthatregion.IftheincreaseinpHislargeenough,thealuminum adjacenttothesteelcanexperienceaccelerateddissolution.Thisinterpretation wasconfirmedbytheobservationofaluminizedsurfacediscolorationstarting aroundthesteelperimeter.Theanodiccurrentdensitycomputedforthe aluminizedportionawayfromthesteeledgewas~1.2A/cm 2forthebasecase

2 2 anddecreasedslightlyto~1.0A/cm forcase1andto~0.5A/cm forσ2=10

S/cm(case2).Thosevaluesweresignificantlylargerthanthoseobtainedfor theperiodbeforeE OC drop,inagreementwiththeobservationofuniform aluminizeddiscolorationoftheLCBspecimensinNPandPaftertheonsetofthe

EOC decay(seeChapter4).

Thecathodiccurrentdensityattheexposedsteelforthesecondscenario

2 (afterE OC drop)(Figure5.5)approachedalimitingcurrentdensity(~23A/cm ) forallσ,inagreementwiththeassumptionoffullconcentrationpolarizationofthe cathodicreactionandalsoconsistentwiththenearlystraightlinewithslope~0.5

(typicalofaWarburglikebehavior)oftheEISspectrumobtainedforthesteel componentinthecoupledmacrocellassembliesexposedtosolutionsNPandP

204 asshowninFigures4.32and4.34inChapter4.Thecathodiccurrentdensityat thealuminizedsurfaceforthesecondscenario(afterE OC drop)wasconsiderably larger(~0.7A/cm2forallσ)thanthatobtainedforthefirstscenario.Themodel resultsindicatethatthealuminizedsurface,morespecificallytheFerich inclusionspresentintheouteraluminizedcoatinglayer,becomesbetter cathodesthaninthefirstscenario(beforeE OC drop)asthesystempotential decreasestoaconstantvalueof~850mV.

Figure5.6showsthepotentialnexttothemetalsurfaceasafunctionof radiusforthesecondscenario(afterE OC drop).Thepotentialforthebasecase werenearlyconstant(~850mV)withradiusandshowedincreasinglynobler potentials,asexpected,attheexposedsteelfordecreasingvaluesofσ(~790 mVforcase1and~720mVforσ2=10S/cm(case2)),suggestingweak cathodicprotectionbythealuminizedsurfaceinextremelylowconductivity environmentsasincase2,especiallynearthecentralregionofthesteel.

Figure5.7showsthecomputedmacrocellcurrentsasafunctionofσfor thesecondscenario(afterE OC drop).Thecomputedmacrocellcurrentwas~70

Afortheσbc =2,000S/cm(basecase),inagreementwiththeexperimental resultsobtainedfromthemacrocellassembliesasreportedinChapter4.As expected,themacrocellcurrentsdecreasedfordecreasingvaluesofσ.Forthe basecase,theenhancedgalvanicactionnotedforthesecondscenario comparedtothefirstscenariomayberelatedtotheactivecorrosionofthe aluminizedsurface,whichprovidednearlyfullgalvanicprotectiontotheexposed steelatthosenegativepotentials.

205 5.3.2 The ac Model

Theresultsforthe ac modelpresentedhererepresentonlyapreliminary evaluationsteptowardsnumericallyobtainingtheeffectofnonuniform ac current distributionontheEISresponseincoupledaluminum/steelsystems.

Theresults,obtainedonlyforthebasecasebeforetheE OC drop,are presentedasnonnormalizedareaimpedancediagramsZX(ω)intheNyquist formareshowninFigure5.8forthereferenceelectrodeplacedat0.5,2.5,and

6.5cmfromthecenterofthesteelsurface.TheEISresponsesdependedto someextentontheplacementofthereferenceelectrodesensingpoint,asthe lowfrequencyimpedancelimitstendedtobecomesmallerasthereference electrodewasplacedclosertothemetalsurface.Butmoreimportantly,astriking featureofthecalculatedimpedancebehaviorwasthepresenceofaconspicuous smalldiameterloopobservableatthehighfrequencyendasthereference electrodewasplacedfurtherawayfromthemetalsurfaceandlessnoticeable otherwise.

Forcomparison,Figure5.8alsoshowsacurve(A)representingtheEIS responsecalculatedusingthesame ac inputparametersasfortheothercurves butassumingthattheelectrolyteresistancedoesnothaveanyeffectsonthe ac currentandpotentialdistributions,thatis,allsurfaceelementsaresubjecttoa uniform ac potential.Theimpedanceresponseforcurve(A)canthenbe computedbyEq.5.10fortheintegratedimpedanceofthesteel/aluminized systeminserieswithaneffectivesolutionresistance.Notably,theimpedance responseforcurve(A)didnotshowthehighfrequencyarc.Inlightofthis,the

206 highfrequencyfeaturecanindeedbeattributedtoanonuniform ac current distributionartifactthatlikelyresultedin ac currentconstrictionnearthesteel regionatthelowfrequenciesasdetailedinKrancandSagüés(1993).

TheoverallEISresponsecomputedbythe ac model(forthereference electrodesensingtiplocatedatdistancefromthemetalsurfacecomparableto thatusedinpractice)wasincloseagreementwiththoseobtainedfromtheLCB specimensexposedtosolutionsNPandPfortheperiodbeforetheE OC drop

(Chapter4).However,thesmallhighfrequencyendloop,obtainedbythemodel, wasnotobservedexperimentally,indicativeofnegligibleuneven ac current distributioneffectforthetestconditionsused.Apossibleexplanationforthis discrepancyisthatduetothesizeofthereferenceelectrodeusedforthe experimentaltests,themeasuredpotentials,andconsequentlycurrentstoo, weresensedonamuchbroaderregionthanthatassumedbythemodel, resultinginaveragepotentialvaluesoveramuchlargerspace.Tocorroborateif thisisindeedthecause,additionalexperimentsshouldbeconductedusingsmall sizereferenceelectrodesplacedatvariouslocationsfromthemetalsurface.

5.4. Conclusions

1. AtE OC ~700mV(potentialregimebeforetheonsetoftheE OC drop),the dc

modelcalculationswereincloseagreementwiththeexperimentalresults.

Thecomputationsindicatedslightdependenceofthepotentialalongthe

metalsurfacewithsolutionconductivity.The dc modelyieldedsmall

macrocellcurrentswithlargeranodiccurrentdensityattheactivesteel

207 comparedtothatatthepassivealuminizedsurface,consistentalsowith

experimentalobservation.

2. AtE OC ~850mV(potentialregimeaftertheonsetoftheEOC drop),the dc

modelcalculationswerealsoingoodagreementwiththeexperimental

observations.Themodelresultsshowedastrongdependenceofthe

potentialandcurrentdistributionsalongthemetalsurfacewithsolution

conductivity.Asexpected,theactivealuminizedcoatingpolarizedthe

exposedsteeltoapotentialclosetotheFe/Fe +2 equilibriumpotential,

providinganearlyfullgalvanicprotectiontothesteelforσbc =2,000S/cm

(basecase).However,increasinglylargeranodiccurrentdensitiesatthe

exposedsteelwerenotedfordecreasingvaluesofσ,suggestinglimited

cathodicprotection.Inthosecases,theanodiccurrentdensityatthecentral

portionofthesteelwaslargestandsmallestattheedge,inagreementwith

theexperimentalobservations.

3. The ac modelresultsindicatedthattheimpedanceresponsecanbe

sometimescomplicatedtoevaluateduetothepresenceofunevenac current

distributionwhichmaylead,ifnotproperlyidentified,toamisinterpretationof

theimpedanceresponse.Inthepresentsystem,theeffectofnonuniform ac

currentswasrelativelysmallandusuallynotevidentintheexperimental

results.However,cautionisneededwhenproposinganalogequivalent

circuitstoavoidmisinterpretation.

208 Table5.1:Computationparametersusedforthe dc modelforallσevaluated. Firstscenario Secondscenario Parameter (beforeE OC drop) (afterE OC drop) Eeqa1 /V 0.90 Eeqa2 /V 1.50 Eeqc1 /V 0.50 Eeqc2 /V 0.50 2 9 i0a1 /Acm 710 2 13 i0a2 /Acm 510 2 15 i0C1 /Acm 10 2 16 14 i0C2 /Acm 710 510 2 9 iP2 /Acm 710 1 βa1 /mVdec 60 1 βa2 /mVdec 100 1 βC1 /mVdec 120 1 βC2 /mVdec 200

Table5.2:Computationparametersusedforthe ac modelforthebasecase. Y Y R R R R 1 2 n n a1 C1 a2 C2 sec n 1 sec n 1 1 2 cm 2 cm 2 cm 2 cm 2 310 3 510 4 0.75 0.95 3.24E+03 6.06E+03 6.20E+08 1.02E+08

209 ∂Ф/∂z=0

∂Ф/∂r=0 Solutionvolume ∂Ф/∂r=0 H Φ Φi,j Φi1,j i,j1 Φ r i+1,j Φi,j+1

z

Exposedsteel 300m r Nodes 0 Soundaluminizedcoating re

Figure5.1:SchematicofhalfportionoftheLCBspecimen(ofdimensionsr 0=1 cm,r e=5cm,andH=6.5cm)andthetwodimensionalcylindricalgraded networkusedforthemodelimplementation(r=z=0.1cm).

210 3.05E05

3.00E05

2.95E05

2.90E05 Current/A 2.85E05

2.80E05 Ia Ic 2.75E05 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 Numberofiterations

Figure5.2:ChangeofthetotalanodicandcathodiccurrentsI aandI C respectively,withthenumberofiterationsshowingconvergenceofthe dc model. Thecalculationsareforthecase1(200S/cm),startingpotentialvalues=717 7 3 mV,relaxationfactorα=0.6,andstartingO 2concentration=310 mol/cm .

211 RH

RV

H

dz

dr

Impedanceatthe Impedanceatthesteel aluminizedcoating

R P CPE RP CPE W Figure5.3:Representationofthe ac modelimplementationtotheLCBspecimen configuration.

212 1.E04

1.E05 200 S/cm 2,000 S/cm

2 1.E06

10 S/cm 10 S/cm /Acm a i 1.E07 200 S/cm 2,000 S/cm 1.E08 Baresteel Aluminizedcoating

1.E09 0 1 2 3 4 5

Radius/cm

Figure5.4:Anodiccurrentdensitydistributionasafunctionofradius(—base case(2,000S/cm),case1(200S/cm), .... case2(10S/cm)).Boldand lightlinescorrespondtotheperiodbeforeandaftertheE OC drop,respectively. 1.E04

1.E05 200 S/cm 10 S/cm 1.E06 2

1.E07 2,000 S/cm

/Acm 10 S/cm C i 200 S/cm 1.E08 2,000 S/cm

1.E09 Baresteel Aluminizedcoating

1.E10 0 1 2 3 4 5 Radius/cm

Figure5.5:Cathodiccurrentdensitydistributionasafunctionofradius(—base case(2,000S/cm),case1(200S/cm), .... case2(10S/cm)).Boldand lightlinescorrespondtotheperiodbeforeandaftertheE OC drop,respectively. 213 0.5

0.6 200 S/cm 2,000 S/cm

0.7

10 S/cm 0.8 2,000 S/cm

E/Vvs.SCE 200 S/cm

0.9 Baresteel 10 S/cm Aluminizedcoating

1 0 1 2 3 4 5 Radius/cm

Figure5.6:Potentialdistributionnexttothemetalsurfaceasafunctionofradius. (—basecase(2,000S/cm),case1(200S/cm), .... case2(10S/cm)). BoldandlightlinescorrespondtotheperiodbeforeandaftertheE OC drop, respectively. 100

10 A / galv I 1

0.1 1.E+01 1.E+02 1.E+03 1.E+04 1 σ/ Scm

Figure5.7:ComputedmacrocellcurrentsI galv asafunctionofσforthefirst scenario(squares),beforeE OC drop,andthesecondscenario(circles),afterE OC drop. 214 300 0.5cm 2.5cm 6.5cm 200 CurveA Im(Z) 100

0 0 100 200 300 400 500 600 Re(Z)

Figure5.8:CalculatedimpedanceshownasNyquistdiagramsforthebasecase forthethreereferenceelectrodepositionsmeasuredfromthecenterofthe exposedsteelsurface(testfrequencyrange:10 5to10 3Hzand5pointsper decade).Curve(A)wasobtainedbyassumingthatallsurfaceelementsinthe networkaresubjecttoauniform ac potential.

215

Chapter6

Conclusions

Thefollowingconclusionscanbedrawnfromthisinvestigation:

1. ForaluminizedsteelType2withoutmechanicalcoatingdamage,longterm

exposuresinanenvironmentwith~370ppmchlorideconcentrationbutof

highcarbonateprecipitatingtendencies(solutionP)resultedinextremely

lownominalcorrosionratesthroughouttheexposure,reaching<~0.08m/yr

neartheend.Inanenvironmentwithhightotalalkalinity,butnonscale

formingmedium(solutionNP),low/moderatenominalcorrosionrates<~1

m/yrwererecordedformostofthetestexposureincreasingto~2.2m/yr

neartheend,concurrentwiththeappearanceofmoderateuniform

discolorationandincreaseinsolutionpH.Insolutionsoflowtotalalkalinity

andcarbonatescalingtendency(solutionC),earlypittingfollowedbystrong

discoloration,associatedwithahighsolutionpH,werenotedattaining

nominalcorrosionratesof~1.3m/yrneartheendofexposure.Testsusing

simulatedoceanwater(solutionSW)of~20,000ppmchlorideconcentration

revealedearlyformationofsmallpitsaswellaslightuniformdiscoloration

withnearlyconstantnominalcorrosionratesof~3m/yrthroughoutthetest

216 exposure.Pitsandsurfacediscolorationinallcasesappearedtobelimited

totheouteraluminizedcoatinglayer.

2. TestsconductedonaluminizedsteelType2withcoatingbreakstoexpose

4 thebasesteel(steel/aluminizedarearatiosA Rof~0.03and~310 )

confirmedthataluminizedcoatingactedasananode(andtheexposedsteel

acathode),providinggalvanicprotectiontothebasesteelinallsolutions.

However,initialcorrosionoftheexposedsteelwasnotedinsolutionsofhigh

alkalinityandmoderatechloridecontentwithorwithoutpositiveprecipitating

tendency,indicativeofweakgalvanicactionearlyonintheexposure.

Galvanicprotectiontotheexposedsteelinoceanwaterandinsometestsin

solutionofmoderatechloridecontentwithlowalkalinityandprecipitating

tendencydevelopedearlyonintheexposuresincelittletononecorrosion

distresswasobservedattheexposedsteel.

3. Integratedcorrosionlossonselectedblemishedandunblemished

specimens,computedusingthecorrespondinganalogequivalentcircuits

wereinreasonablyagreementwithdirectthicknessmeasurements,

supportingthevalidityoftheimpedancemodelschosen.

4. Theresultsforblemished/macrocellspecimenshavetrendsthatextrapolated

reasonablytothelimitcaseofunblemishedaluminizedsurfaces(A R=0).In

thatlimit,theactivealuminizedsurfaceconditionwasneverreachedin

solutionPduringthe3,000hrtest.However,activeconditionsdevelopedon

theunblemishedaluminizedsurfacesinthemoreaggressivemediaafter

217 incubationtimescomparabletothoseencounteredforthespecimenswith

4 AR~310 .

5. Fortheblemishedandunblemishedspecimensexperiencingaluminized

surfacecorrosioninalltestsolutionsexceptforthesimulatedseawater,

uniformstrong/moderatesurfacediscolorationappearedtobetheprimary

formofcorrosion,whilethesmallisolatedmacropitsplayedasecondary

role.Insimulatedseawater,macropittingcorrosionappearedtobethe

primaryformofcorrosion.Themacroscopicallyuniformnatureofthe

corrosionmaybeamanifestationofmicropitsatthescaleofthefinely

distributedFerichinclusionspresentintheouteraluminizedcoatinglayer.

Themechanismofactivationofthealuminizedlayermayinvolvelocal

alkalinizationfromenhancedcathodicreactionattheinclusions(especiallyin

thelowbufferingcapacitysolutionC),whichwouldactivatealuminuminthe

formofmicropitsatthescaleofthefinelydistributedinclusionspresentin

theouteraluminizedcoatinglayer.Alkalinizationmayhavebeengreaternext

totheexposedsteelregionfortheblemishedspecimensduetoenhanced

O2reductionratesthere,consistentwithexperimentalobservations.

6. Theimpedanceresponseforpassivealuminizedsurfacecanbedescribed

bycoupledcathodicreactionstakingplaceattheFerichinclusions(forthe

unblemishedcondition)andmainlyattheexposedsteelfortheblemished

case,wheresurfacecoveragebyanintermediateadsorbatealterstherateof

thenextstep.Foractivealuminizedsurface,thehighfrequencyimpedance

responsewasdominatedbythethinningormoredefectivealuminumoxide

218 filmcapacitanceinparallelwiththelocalohmicresistanceofallmicroand

macroactivepits.Thelowfrequencyimpedanceresponsewasmainly

dominatedbythediscreteFaradaicpolarizationresistanceinparallelwith

theinterfacialcapacitanceatallactivepits.

7. Nominaldurabilityprojectionsmadefor16gageunblemishedaluminized

steelType2were>100yrforsolutionP,andbetween15and36yrforthe

othermedia.However,foraluminizedsteelType2withlargestpreexisting

coatingbreakprojecteddurabilitywasaslowas10yrforsolutionP.Forthe

othermedia,durabilityprojectionsforspecimenswithpreexistingcoating

breakswerebetween16and33yr.Theresultsobtainedinthisinvestigation

maybeusedasafirststepinproposingrefinementsofpresentlyused

durabilityguidelinesofaluminizedsteelType2culvertpipebasedon

environmentalcomposition.

8. Thepresentfindingswouldsupportretainingfortheunblemishedcondition

thepresentFDOTguidelinesregardlessofscalingtendencyfor

environmentswithmoderatelylowresistivitysuchasthoseusedinthetests

(e.g.~500 cmto~1,000 cm)andneutraltomildlyalkalineconditions

(e.g.~7.5

environmentstheresultssuggestthattheAKSteelmethodmaybeamore

appropriatealternative.Theresultsalsosupportexploringtheuseof

alternativeguidelinessuchastheAISImethodforbothunblemishedand

blemishedconditionsinenvironmentswithextremelyhighchloridecontents

(e.g.resistivity<50 cm)andnearlyneutralpH.Eventualchangesin

219 existingguidelinesshouldconsidernotonlythespecificresultsofthis

investigationbutalsotheentiretyoftheperformancerecordofaluminized

pipe.Inaddition,othercorrosionprocesses,suchasMIC,shouldbe

consideredforpossibleinclusioninfutureforecastingmethods.

9. Thecorrosiondistributioninblemishedcoatingswasinvestigatedusing2D

dc and ac models.The dc modelresultsmatchedwellexperimentaltrends.

The dc modelpermittedtoobtaincorrosionrateinformationoftheindividual

steelandaluminizedcomponentsforsolutionconductivitiesσbeyondthose

examinedexperimentally.The dc resultsfortheperiodbeforetheE OC drop

indicatedslightdependenceofthepotentialalongthemetalsurfacewiththe

σvaluesevaluatedandthelargestcorrosionratesattheexposedsteel.At

morenegativeE OC valuesandforthelargestσ,corrosionratesatthesteel

weresmallest,consistentwitheffectivecathodicprotection.However,

increasinglylargercorrosionratesatthesteelwerenotedfordecreasing

valuesofσ,suggestinglimitedcathodicprotection.Inthosecases,the

corrosionratesatthecentralsteelportionweredistinctlylargerthanatthe

steelperimeter,inagreementwithexperiments.BeforeE OC drop,the

computedmacrocellcurrentsweresmallerthanthosecomputedafterE OC

drop,consistentwithactivationofthealuminizedsurfaceandnearlyfull

cathodicprotectionoftheexposedsteel.

10. The ac modelresultsindicatedthattheexposedsteelreceivedrelatively

lower ac currentatthehighfrequencies,whichledtotheappearanceofan

additionalloopintheimpedancediagram.However,theeffectwasrelatively

220 smallandnormallynotevidentinthepresentexperimentalresults.

Nevertheless,thispossibleeffectshouldbeconsideredwhenexploringother

systemconditions.

11. Testsconductedtostudythecathodicbehaviorofunblemishedaluminized

steelType2showednoconclusiveevidenceonthedominantcathodic

reactiontakingplaceattheFerichinclusions.However,experimentalresults

(e.g.changeinopencircuitpotentialsuponsolutiondeaeration)permittedto

speculatethatO 2reductionwasthemainreactionatpotentialof~900mV

andH 2evolutionreactiontookoveratmorenegativepotentials.Testsalso

showedthatforthesmallestscanrateexamined(0.05mV/sec)asignificant

hysteresisexistedbetweenthecathodiccurrentdensitiesfortheforwardand

reversescans.Theamountofhysteresisdecreasedforincreasingscan

rates(0.5and1mV/sec)associatedtotheamountofFe +2 ionsbeing

depositedduringpolarization.Theresultsobtainedfromasimplified

quantitativemodelwereinreasonableagreementwiththeexperimental

results.

221

References

AnJ.,LiuY.B.,SunD.R.(2001),MechanismofBondingofAl–PbAlloyStripand Hot Dip Aluminised Steel Sheet by Hot Rolling, Materials Science Technology 17,pp.451454. ArmstrongR.D.,EdmondsonK.(1973),ImpedanceofMetalsinthePassiveand TranspassiveRegions,ElectrochimicaActa18,pp.937943. ArmstrongR.D.,BrahamV.J.(1996),TheMechanismofAluminumCorrosionin AlkalineSolutions,CorrosionScience38,pp.14631471. ASMMetalsHandbook(1972),Vol.7:AtlasofMicrostructuresofIndustrial Alloys,8 th Ed.MetalsPark,OH,p.12. AugustynskiJ.,FrankenthalR.P.,KrugerJ.(Eds.)(1978),Proceedingsofthe FourthInternationalSymposiumonPassivity,TheElectrochemicalSociety, Pennington,NJ. AultJ.P.,EllorJ.A.(1996),DurabilityAnalysisofAluminizedType2Corrugated MetalPipe,FHWARD97140,FederalHighwayAdministration. BarchicheC.,DeslouisC.,FestyD.,Gil,O.,RefaitP.,TouzainS.,Tribollet B.(2003), CharacterizationofCalcareousDepositsinArtificialSeawaterby ImpedanceTechniques3DepositofCaCO 3inthePresenceofMg(II) , ElectrochimicaActa48,pp.16451654. BardJ.,FaulknerR.(2000),ElectrochemicalMethods,Fundamentalsand Applications,Wiley,NewYork. BeatonJ.L.,StratfullR.F.(1962),FieldTestforEstimatingtheServiceLifeof CorrugatedMetalPipeCulverts,StateofCalifornia,DepartmentofPublicWorks. BednarL.(1989),GalvanizedSteelDrainagePipeDurabilityEstimationwitha ModifiedCaliforniaChart,PaperNo.880341,68thAnnualmeeting, TransportationResearchboard,Washington,D.C. BednarL.(1993),UpdatedEnvironmentalLimitsforAluminizedSteelType2 PipeApplication,TransportationResearchRecord1393,pp.193198.

222 BednarL.(1998),UpdateoftheStatusoffieldDurabilityStudiesonAluminized Type2DrainagePipe:QualifyingDurabilityofAluminizedType2andClarifying RelatedIssues,AKSteelresearchinterimdocument. BerzinsA.,LowsonR.T.,MiransK.J.(1977),AluminumCorrosionStudies. III.ChlorideAdsorptionIsothermsonCorrodingAluminum , AustralianJournalof Chemistry30,pp.18911903. BessoneJ.,MayerC.,JuttnerK.,LorenzW.J.(1983),acImpedance MeasurementsonAluminumBarrierTypeOxideFilms,ElectrochimicaActa28, pp.171. BessoneJ.B.,SalinasD.R.,MayerC.E.,EbertM.,LorenzW.J.(1992),AnEIS StudyofBarrierTypeOxideFilms FormedinDifferentMedia, ElectrochimicaActa37,pp.2283. BjoergumA.,SigurdssonH.,NisanciogluK.(1995),CorrosionofCommercially PureAl99.5inChlorideSolutionsContainingCarbonDioxide,Bicarbonate,and CopperIons,Corrosion51,pp.544557. BockrisJ.O’.M.,KangY.(1997),JournalSolidSateElectrochemistry1,pp.17.

BockrisJ.O’M.,ReddyA.K.N.(1970),ModernElectrochemistry,Plenum,New York. BohniH.,UhligH.H.(1969),EnvironmentalFactorsAffectingtheCriticalPitting PotentialofAluminum,JournalofElectrochemicalSociety116,pp.906. BoucheK.,BarbierF.,CouletA.(1998),IntermetallicCompoundLayerGrowth BetweenSolidIron,MaterialsScienceandEngineeringA249,pp.167175. BurdenR.,FairesJ.(1985),NumericalAnalysis,PWSKENTPub,Boston, pp.402403. CaliforniaTest643(1999),MethodforEstimatingtheServiceLifeofSteel Culverts,DepartmentofTransportation,StateofCalifornia,Business, TransportationandHousingAgency. CaseresL.,SagüésA.A.(2005),CorrosionofAluminizedSteelinScaleForming Waters,Corrosion/05,Paperno.05348. CastroP.,SagüésA.A.,MorenoE.I.,MaldonadoL.,GenescaJ.(1996), CharacterizationofActivatedTitaniumSolidReferenceElectrodesforCorrosion TestingofSteelinConcrete,Corrosion52,p.609.

223 CerlanekW.D.,PowersR.G.(1993),DrainageCulvertServiceLifePerformance andEstimation,StateofFloridaDepartmentofTransportationReportNo.934A. ChaoC.Y.,LinL.F.,MacDonaldD.D.(1981),APointDefectModelforAnodic PassiveFilms,JournalofElectrochemicalSociety128,pp.11871194. NatishanP.M.,McCaffertyE.(1989),TheMechanismofBlisterFormationand RuptureinthePittingofIonImplantedAluminum,JournalofElectrochemical Society136,pp.5358. ChuD.,SavinellR.(1991),ExperimentalDataonAluminumDissolutioninKOH Electrolytes,ElectrochimicaActa36,pp.16311638. CreusJ.,MazilleH.,IdrissiH.(2000),PorosityEvaluationofProtectiveCoatings ElectrodepositedonSteel,SurfaceandCoatingsTechnology130,pp.224232. CuiF.(2003),CorrosionBehaviorofStainlessSteelCladRebar,Ph.D. Dissertation,UniversityofSouthFlorida. DavisJ.R.(1999),CorrosionofAluminumandAluminumAlloys,ASM InternationalMaterialsPark,OH. DeGryseR.,GomesW.P.,CardonF.,VennikJ.(1975),OntheInterpretationof MottSchottkyPlotsDeterminedatSemiconductor/ElectrolyteSystems,Journal ofElectrochemicalSociety122,pp.711712.

DeLevieR.(1967),ElectrochemicalResponseofPorousandRoughElectrodes, in:P.Delaney,Ch.W.Tobias(Eds.),AdvancesinElectrochemicalEngineering6, Wiley,NewYork. DeWitJ.H.W.,LenderinkH.J.W.(1996),ElectrochemicalImpedance SpectroscopyasaTooltoObtainMechanisticInformationonthePassive BehaviourofAluminum,ElectrochimicaActa41,pp.11111119. DiggleJ.W.(1972),OxidesandOxideFilms,Vol.1,Dekker,NewYork. DocheM.L.,RameauJ.J.,DurandR.,NovelCattinF.(1999),Electrochemical BehaviourofAluminuminConcentratedNaOHSolutions,CorrosionScience41, pp.805826. EmregulK.C.,AbbasAksutA.(2000),TheBehaviorofAluminuminAlkaline Media,CorrosionScience42,pp.20512067. EpelboinI.,KeddamM.(1970),FaradaicImpedances:DiffusionImpedanceand ReactionImpedance,JournalofElectrochemicalSociety117,pp.10521056. EvansU.R.(1926),MetalInd.B,p.481. 224 MorrisonS.R.(1980),ElectrochemistryatSemiconductorandOxidizedMetal Electrodes,PlenumPress,NewYork. FernandesJ.C.S.,PicciochiR.,DaCunhaBeloM.,MouraeSilvaT.,Ferreira M.G.S.,FonsecaI.T.E.(2004),CapacitanceandPhotoelectrochemicalStudies fortheAssessmentofAnodicOxideFilmsonAluminium,ElectrochimicaActa 49,pp.47014707.

Foley R.T. (1986), Localized Corrosion of Aluminum Alloys—A Review, Corrosion42,p.277. FrankelG.S.(1998),PittingCorrosionofMetalsAReviewoftheCriticalFactors JournalofElectrochemicalSociety145,pp.21862198. FuruyaS.,SogaN.(1990),MethodforthePittingPotentialandRepassivation PotentialinCreviceCorrosion ofAluminumAlloys,Corrosion46,pp.989993. Gartland P.O. (1987), Cathodic Protection of Aluminum–Coated Steel in Sea Water,MaterialsPerformance26,pp.2936. GodardH.P.,JepsonW.B.,BothwellM.R.,KaneR.L.(1967),TheCorrosionof LightMetals,JohnWiley&Sons,Inc.,NewYork. GundensenR.,NisanciogluK.(1990),CathodicProtectionofAluminumin Seawater,Corrosion46,pp.279285. HoarT.P.,Mears,D.C.,Rothwell,G.P. (1965),TheRelationshipsbetween AnodicPassivity,BrighteningandPitting,CorrosionScience5,pp.279289. HandbookofSteelDrainage&HighwayConstructionProducts(1994),American IronandSteelInstitute(AISI),Washington,DC. HighwayDesignManual,Section85013(2006),CaliforniaDepartmentof Transportation,StateofCalifornia. HochG.M.(1974),LocalizedCorrosion,in:R.Staehle,B.Brown,J.Kruger,A. Agrawal(Eds.),NACE,Houston,Texas,pp.134. HsuC.H.,MansfeldF.(2001),TechnicalNote:ConcerningtheConversionofthe ConstantPhaseElementParameterY 0intoaCapacitance,Corrosion57,pp. 747748. HunterM.S.,FowleP.(1956),NaturalandThermallyFormedOxideFilmson Aluminum,JournalofElectrochemicalSociety103,pp.482485.

225 JakabM.A.,LittleD.A.,ScullyJ.R.(2005),ExperimentalandModelingStudiesof theOxygenReductionReactiononAA2024T3,JournalofElectrochemical Society152,B311B320. JohnssonT.,NordhagL.(1984),CorrosionResistanceofCoatingsofAluminum, ZincandtheirAlloys:ResultsoffourYears’Exposure,Interfinish. JohnsonW.K.(1971),RecentDevelopmentsinPittingCorrosionofAluminum, BritishCorrosionJournal6,pp.200204. KaescheH.(1962),Z.Phys.Chem.,NeueFolge34,pp.87. KaescheH.(1985),inMetallicCorrosion,pp.166,NationalAssociationof CorrosionEngineers,Houston. KaescheH.(1974),LocalizedCorrosion,in:R.Staehle,B.Brown,J.Kruger,A. Agrawal(Eds.),NACE,Houston,Texas,pp.516. KepaptsoglouD.M.,SvecP.,JanickovicD.,HristoforouE.(2007),Evolutionof LatticeParameterandProcessRatesduringNanocrystallizationofAmorphous Fe–Co–Si–BAlloy,JournalofAlloysandCompounds,Volumes434435,pp. 211214. KetterR.L.,PrawelS.P.(1969),ModernMethodsofEngineeringComputation, McGrawHill,Inc.,NewYork. KimotoH.(1999),CorrosionEngineering48,p.579. Kolics,A.,BesingS.,BaradlaiP.,HaaschR.,WieckowskiA.(2001),Interaction ofChromateIonswithSurfaceIntermetallicsonAluminumAlloy2024T3inNaCl Solutions,JournalofElectrochemicalSociety148,pp.B251B259. KrancS.C.,SagüésA.A.(1993),CalculationofExtendedCounterElectrode PolarizationEffectsontheElectrochemicalImpedanceResponseofSteelin Concrete,inElectrochemicalImpedance:InterpretationandAnalysis,ASTMSTP 1188,D.C.Silverman,J.R.ScullyandM.W.Kendig,Eds.,p.365,American SocietyforTestingandMaterials,Philadelphia. KrancS.C.,SagüésA.A.(1993),PolarizationCurrentDistributionand ElectrochemicalImpedanceResponseofReinforcedConcreteWhenUsing GuardRingElectrodes,ElectrochimicaActa38,pp.20552061. LasiaA.(1999),in:ModernAspectsofElectrochemistry,32,R.E.White,B.E. Conway,J.O’M.BockrisEds.,KluwerAcademic/PlenumPublishers,NewYork.

226 LeeW.,PyunS.(1999),EffectsofHydroxideIonAdditiononAnodicDissolution ofPureAluminuminChlorideIonContainingSolution,ElectrochimicaActa44, pp.40414049. Legault R.A., Pearson V.P. (1978), Kinetics of the Atmospheric Corrosion of AluminizedSteel,Corrosion34,pp.344348. LiW.,LiuS.,HuangQ.,GuM.(2003),HotDippedAluminising(HDA)ofaLow CarbonSteelWire,MaterialsScienceandTechnology19,pp.10251028. LorenzW.J.,MansfeldF.(1981),DeterminationofCorrosionRatesby ElectrochemicalDCandACMethods,CorrosionScience21,pp.647672. MacDonaldD.D.,RealS.,SmedleyS.I.,UrquidiMacDonaldM.(1988), EvaluationofAluminumAirBatteries,JournalofElectrochemicalSociety135, pp.2410. MansfeldF.,LinS.,KimS.,ShihH.(1990),PittingandPassivationofAlAlloys andAlBasedMetalMatrixComposites,JournalofElectrochemicalSociety137, pp.7882. McCaffertyE.(1995),TheElectrodeKineticsofPitInitiationonAluminum, CorrosionScience37,pp.481. McCaffertyE.(2003),SequenceofStepsinthePittingofAluminumbyChloride Ions,CorrosionScience45,pp.14211438. McCaffertyE.(1974),Electrochemical BehaviorofIronwithinCrevicesinNearly NeutralChlorideSolutions,JournalofElectrochemicalSociety121,pp.1007. MoonS.,PyunS.(1998),FaradaicReactionsandTheirEffectsonDissolutionof theNaturalOxideFilmonPureAluminumduringCathodicPolarizationin AqueousSolutions,Corrosion54,pp.546552. MorrisG.E.,BednarL.(1998),ComprehensiveEvaluationofAluminizedSteel Type2PipeFieldPerformance,PublishedbyAKSteelCorporation,Middletown, Ohio. NewmanJ.(1966),ResistanceforFlowofCurrenttoaDisk,Journalof ElectrochemicalSociety113,pp.12351241. NguyenT.H.,FoleyR.T.(1979),OntheMechanismofPittingofAluminum, JournalofElectrochemicalSociety126,pp.1855. NisanciogluK.,DavangerK.Y.,StrandmyrO.,HoltanH.(1981),Cathodic BehaviorofImpureAluminuminAqueousMedia, JournalofElectrochemical Society128,pp.15231526. 227 NisanciogluK.,HoltanH.(1979),CathodicPolarizationofCommerciallyPure Aluminum,CorrosionScience19,pp.537552. NisanciogluK.,HoltanH.(1979),CathodicPolarizationofAluminuminAcetate BufferedChlorideMedia,ElectrochimicaActa24,pp.12291239. NisanciogluK.(1990),ElectrochemicalBehaviorofAluminum ‐Base IntermetallicsContainingIron,JournalofElectrochemicalSociety137,pp.6977. OhS.J.,CookD.C.,TownsendH.E.(1999),AtmosphericCorrosion ofDifferent SteelsinMarine,RuralandIndustrialEnvironments,CorrosionScience41,pp. 16871702. OltraR.,KeddamM.(1988),ApplicationofImpedanceTechniquetoLocalized Corrosion , CorrosionScience28,pp.118. ParkJ.O.,PaikC.H.,HuangY.H.,AlkireR.C.(1999),InfluenceofFeRich IntermetallicInclusionsonPitInitiationonAluminumAlloysinAeratedNaCl, JournalofElectrochemicalSociety146,pp.517523. PerkinsJ.,CummingsJ.R.,GrahamK.J.(1982),MorphologicalStudiesof OccludedCellsinthePittingofDiluteAluminumAlloysinSeawater,Journalof ElectrochemicalSociety129,pp.137141. PickeringH.W.(2003),ImportantEarlyDevelopmentsandCurrent UnderstandingoftheIRMechanismofLocalizedCorrosion,Journalof ElectrochemicalSociety150,K1. PorterF.C.,HaddenS.E.(1953),CorrosionofAluminumAlloysinSupply Waters,JournalofAppliedChemistry3,pp.385409. PotterJ.C.,LewandowskiL.,WhiteD.W.(1991),DurabilityofSpecialCoatings forCorrugatedMetalPipe,FHWAFLP91006,FederalHighwayAdministration. PourbaixM.(1974),AtlasofElectrochemicalEquilibriainAqueousSolutions, NACE,p.389. PyskadloR.,EwingJ.(1987),EngineeringResearchandDevelopmentBureau, NewYorkStateDOT,NewYork. 2 PyunS.I,MoonS.M.,AhnS.H,KimS.S(1999),EffectsofCl ,NO 3 andSO 4 IonsonAnodicDissolutionofPureAluminuminAlkalineSolution,Corrosion Science41,pp.653667. RichardsonJ.A.,WoodG.C.(1970),AStudyofThePittingCorrosionofA1by ScanningElectronMicroscopy,CorrosionScience10,pp.313323.

228 RyndersR.,PaikC.,KeR.,AlkireR.C.(1994),UseofInSituAtomicForce MicroscopytoImageCorrosionatInclusions,JournalofElectrochemicalSociety 141,pp.14391445. SagüésA.A.(2006),LecturesonElectrochemicalImpedanceDiagnostic Technique,DepartmentofCivilandEnvironmentalEngineering,Universityof SouthFlorida. SanderA.,BerghultB.,ElftronBrooA.,LindJohanssonE.,HedbergT.(1996), IronCorrosioninDrinkingWaterDistributionSystems—TheeffectofpH,Calcium andHydrogenCarbonate,CorrosionScience38,pp.443455. SasakiK.,IsaacsH.S.(1990),OriginsofElectrochemical NoiseduringPitting CorrosionofAluminum,JournalofElectrochemicalSociety151,pp.7882. SasakiK.,IsaacsH.S.(2004),OriginsofElectrochemicalNoiseDuringPitting CorrosionofAluminum,JournalofElectrochemicalSociety151,B124B133. Sato N. (1971), A Theory for Breakdown of Anodic Oxide Films on Metals, ElectrochimicaActa16,pp.16831692. SeriO.,FurumataK.(2002),EffectofAlFeSiIntermetallicCompoundPhases onInitiationandPropagationofPittingAttacksforAluminum1100,Materialsand Corrosion53,pp.111120. SeriO.,MasukoN.(1985),JournalofJapanInstituteofLightMetals35,pp.98. Serra E., Glasbrennner H., Perujo A. (1998), HotDip Aluminum Deposit as Permeation Barrier for MANET Steel, Fusion Engineering and Design 41, pp. 149155. ShaoH.B.,WangJ.M.,ZhangZ.,ZhangJ.Q.,CaoC.N.(2003),Electrochemical ImpedanceSpectroscopyAnalysisontheElectrochemicalDissolutionof AluminuminanAlkalineSolution,JournalofElectroanalyticalChemistry549,pp. 145150. ShawB.A.,MoranP.J.(1985),CharacteristicsoftheBehaviorofZincAluminum ThermalSprayCoatings,MaterialsPerformance24,pp.2231. SherifE.M.,ParkSuMoon(2005),Effectsof1,5NaphthalenediolonAluminum CorrosionasaCorrosionInhibitorin0.50MNaCl,JournalofElectrochemical Society152,pp.B205B211. SnoeyinkV.L.,JenkinsD.(1980),WaterChemistry,JohnWiley&SonsInc.,New York. 229 SoutheasternCorrugatedSteelPipeAssociation(1977),PerformanceEvaluation ofCorrugatedMetalCulvertsinGeorgia. StandardMethodsfortheExaminationofWaterandWastewater(1992). StavrosA.J.(1984),GalvalumeCorrugatedSteelPipe:aPerformanceSummary. SternM.,GearyA.L.(1957),ElectrochemicalPolarization,I.ATheoretical Analysis,JournalofElectrochemicalSociety104,pp.56. SullivanJ.P.,DunnR.G.,BarbourJ.C.,WallF.D.,MissertN.,BuchheitR.G. (2000),Abstract137,TheElectrochemicalSocietyMeetingAbstracts,20001, Ontario,Canada. SuterT.,AlkireR.C.(2001),MicroelectrochemicalStudiesofPitInitiationat SingleInclusionsinAl2024T3,JournalofElectrochemicalSociety148,pp.B36 B42. SuzukiI.(1989),CorrosionResistantCoatingsTechnology,MarcelDekker,Inc., NewYork. SzklarskaSmialowskaZ.(1999),PittingCorrosionofAluminum,Corrosion Science41,pp.17431767. TownsendH.E.,ZoccolaJ.C.(1979),AtmosphericCorrosionResistanceof55% Al–ZnCoatedSheetSteel:13YearTestResults,MaterialsPerformance18,pp. 1320. TownsendH.E.,BorzilloA.R.(1987),TwentyYearAtmosphericCorrosionTests ofHotdipCoatedSheetSteel,MaterialsPerformance26,pp.3741. VandeVenE.P.G.T.,KoelmansH.(1976),TheCathodicCorrosionof Aluminum, JournalofElectrochemicalSociety123,pp.143. VerhoffM.,AlkireR.C.(2000),ExperimentalandModelingStudiesofSingle CorrosionPitsonPureAluminuminpH11NaClSolutionsII.PitStability,Journal ofElectrochemicalSociety147,pp.13591365. VermilyeaD.A.(1971),ConcerningtheCriticalPittingPotential,Journalof ElectrochemicalSociety118,pp.529531. VijhA.K.(1973),PittingPotentialsofMetals,CorrosionScience13,pp.805806. VukmirovicM.B.,DimitrovN.,SieradzkiK.(2002),DealloyingandCorrosionofAl Alloy2024T3,JournalofElectrochemicalSociety149,pp.B428B439. 230 WestA.C.,NewmanJ.(1992),ModernAspectsofElectrochemistry,23,B.E. ConwayetalEds.,PlenumPress,NewYork. WiersmaB.J.,HerbertK.R.(1991),ObservationsoftheEarlyStagesofthe PittingCorrosionofAluminum,JournalofElectrochemicalSociety138,pp.48. WoodG.C.,RichardsonJ.A.,AbdM.F.,MapaL.M.,SuttonW.H.(1978), PassivityofMetals,in:R.P.Frankenthal,J.Kruger(Eds.),Proceedingsofthe FourthInternationalSymposiumonPassivity,TheElectrochemicalSociety, Pennington,NJ. WongK.P.,AlkireR.C.(1990),LocalChemistryandGrowthofSingleCorrosion PitsinAluminum,JournalofElectrochemicalSociety137,pp.30103015. YuS.Y.,O’GradyW.E.,RamakerD.E.,NatishanP.M.(2000), Investigationof ChlorideInteractionsonAluminumwithXrayAbsorptionnearEdge Structure, JournalofElectrochemicalSociety147,pp.29522958.

231

Appendices

232 AppendixA:ResultsfromReplicateUnblemishedSpecimens

6.E+06

5.E+06

2 4.E+06 cm 3.E+06 48hr

Im(Z)/ 360hr 2.E+06 624hr 864hr 1.E+06 1368hr 2376hr 3072hr 0.E+00 0.E+00 1.E+06 2.E+06 3.E+06 4.E+06 5.E+06 6.E+06 7.E+06 8.E+06

2 Re(Z)/ cm FigureA.1:EISbehavioroftheunblemishedspecimen#2insolutionNP(100 KHz1mHz5points/decadeunlessindicatedotherwise). 1.E+07

8.E+06 48hr 216hr

2 312hr 6.E+06 360hr cm

480hr 504hr 624hr 4.E+06 Im(Z)/ 1224hr 2400hr 3144hr 2.E+06

0.E+00 0.0E+00 2.0E+06 4.0E+06 6.0E+06 8.0E+06 1.0E+07 1.2E+07

2 Re(Z)/ cm FigureA.2:EISbehavioroftheunblemishedspecimen#2insolutionP(100KHz 1mHz5points/decade). 233 AppendixA:(Continued)

2.0E+05 384hr 504hr 648hr 864hr 1.5E+05 1200hr

2 1464hr 1680hr

cm 1896hr

2424hr 2760hr 1.0E+05 Im(Z)/

5.0E+04

0.0E+00 0.0E+00 5.0E+04 1.0E+05 1.5E+05 2.0E+05 2.5E+05 3.0E+05 3.5E+05 4.0E+05 Re(Z)/ cm 2

FigureA.3:EISbehavioroftheunblemishedspecimen#2insolutionSW(100 KHz1mHz5points/decade). 3.E+05 24hr 360hr 2 2.E+05 504hr cm

648hr 864hr 1.E+05 1392hr Im(Z)/ 2400hr 3048hr 0.E+00 0.E+00 1.E+05 2.E+05 3.E+05 4.E+05 5.E+05 6.E+05 7.E+05

2 Re(Z)/ cm

FigureA.4:EISbehavioroftheunblemishedspecimen#2insolutionC(100KHz 1mHz5points/decadeunlessindicatedotherwise).

234 AppendixA:(Continued)

1.E03

1.E04 2 cm n sec

1 1.E05 / 2 ,Y F Y 1.E06

1.E07 0 500 1000 1500 2000 2500 3000 3500 Time/hr FigureA.5:Evolutionoftheadmittanceparameterasafunctionoftimeforthe unblemishedspecimens#2insolutionsNP(circles),P(squares),C(triangles), __ andSW(diamonds)(Y F, YAL2 ).ArrowsindicateCaCO 3 additionstosolution P(#2). 1.E+08

1.E+07 2 1.E+06 cm / 1.E+05 AL2 ,R

AL1 1.E+04 R

1.E+03

1.E+02 0 500 1000 1500 2000 2500 3000 3500 Time/hr

FigureA.6:Evolutionoftheresistivecomponentsasafunctionofexposuretime fortheunblemishedspecimens#2insolutionsNP(circles),P(squares),C

(triangles),andSW(diamonds)(R AL1 ,— RAL2 ).ArrowsindicateCaCO 3 additionstosolutionP(#2). 235 AppendixA:(Continued)

1

2 0.1 P NP Acm

C / SW corr

i 0.01

0.001 0 500 1000 1500 2000 2500 3000 3500

Time/hr

FigureA.7:Nominalcorrosioncurrentdensityevolutionfortheunblemished specimens#2.

236 AppendixA:(Continued) TableA.1:ValuesoftheequivalentcircuitcomponentsinFigure2.16estimated fromEISdatafitfortheunblemishedspecimen#2exposedtosolutionP. Time R R Y R Y i S AL1 F n AL2 AL2 n corrAL hr k snF/ F k snAL2 / AL2 Acm 2 48 18.9 21.3 3.17E04 0.94 24.1 6.37E03 0.97 0.043 216 18.8 25.4 3.48E04 0.94 18.3 6.39E03 1.00 0.036 312 19.3 71.6 3.55E04 0.94 65.9 2.27E03 0.86 0.013 360 20.4 12.2 4.20E04 0.94 11.8 1.13E02 1.00 0.075 480 20.0 17.6 4.29E04 0.94 21.9 5.42E03 0.97 0.052 504 20.6 10.8 4.41E04 0.94 9.0 8.46E03 1.00 0.085 624 21.7 15.9 4.58E04 0.94 15.9 6.37E03 0.99 0.057 1224 21.6 23.3 5.24E04 0.93 24.1 2.50E03 0.97 0.039 2400 24.8 115.4 5.45E04 0.93 47.4 1.44E03 1.00 0.008 3144 25.0 156.8 5.45E04 0.93 27.5 2.05E03 1.00 0.006 2 NominalspecimenareaAAL =95cm

TableA.2:ValuesoftheequivalentcircuitcomponentsinFigure2.16estimated fromEISdatafitfortheunblemishedspecimen#2exposedtosolutionSW. Time R R Y R Y i S AL1 F n AL2 AL2 n corrAL hr k snF / F k snAL2 / AL2 Acm 2 48 0.49 2.6 5.07E04 0.90 2.8 1.09E02 1.00 0.16 264 0.43 3.1 6.53E04 0.91 2.4 7.01E03 1.00 0.19 648 0.44 2.6 8.96E04 0.92 2.8 5.86E03 1.00 0.16 1344 0.52 2.5 1.05E03 0.91 2.7 7.39E03 1.00 0.17 1680 0.54 2.7 1.02E03 0.92 2.1 6.29E03 1.00 0.22 2448 0.51 2.6 1.32E03 0.93 1.8 1.69E02 1.00 0.26 2808 0.50 2.6 1.72E03 0.92 1.5 2.65E02 1.00 0.30 2 NominalspecimenareaAAL =95cm

TableA.3:ValuesoftheequivalentcircuitcomponentsinFigure2.16estimated fromEISdatafitfortheunblemishedspecimen#2exposedtosolutionNP. Time R R Y R Y i S AL1 F n AL2 AL2 n corrAL hr k snF / F k snAL2 / AL2 A/cm 2 48 14.1 5.7 4.48E04 0.94 9.9 4.33E03 0.92 0.16 192 13.4 7.6 4.77E04 0.93 17.7 1.92E03 0.93 0.12 360 13.1 17.5 5.38E04 0.93 37.9 7.78E04 0.85 0.05 624 12.9 22.6 5.42E04 0.93 62.8 5.04E04 0.85 0.040 960 13.1 23.9 5.49E04 0.93 63.8 7.05E04 0.94 0.038 1224 13.5 13.6 6.15E04 0.93 16.9 1.75E03 1.00 0.067 2376 13.1 14.2 7.43E04 0.94 11.3 1.69E03 1.00 0.064 3072 12.6 2.7 1.15E03 0.94 2.4 8.48E03 1.00 0.19 2 NominalspecimenareaAAL =95cm 237 AppendixA:(Continued)

TableA.4:ValuesoftheequivalentcircuitcomponentsinFigure2.16estimated fromEISdatafitfortheunblemishedspecimen#2exposedtosolutionC. Time R R Y R Y i S AL1 F n AL2 AL2 n corrAL hr k snF / F k snAL2 / AL2 A/cm 2 24 17.6 1.7 4.53E04 0.91 5.9 1.57E03 0.91 0.08 360 15.3 0.020 1.24E04 0.61 0.43 6.01E03 0.71 1.05 504 16.4 0.026 1.35E04 0.62 1.0 5.15E03 0.73 0.44 648 17.5 0.030 1.34E04 0.62 1.3 4.68E03 0.73 0.37 864 18.4 0.036 1.26E04 0.65 1.5 4.00E03 0.75 0.31 960 18.2 0.036 1.22E04 0.66 1.6 3.54E03 0.76 0.29 1392 17.9 0.042 1.09E04 0.64 2.0 3.12E03 0.77 0.22 2400 17.4 0.043 9.38E05 0.65 3.4 2.67E03 0.80 0.14 3048 17.8 0.042 6.75E05 0.66 3.6 2.29E03 0.81 0.13 2 NominalspecimenareaAAL =95cm

238 AppendixB:ReplicateResultsoftheBlemishedSpecimens

2000 120hr 216hr 408hr 624hr 1500 960hr 1296hr

1000 Im(Z)/

500

0 0 500 1000 1500 2000

Re(Z)/

FigureB.1:NyquistplotoftheEISresponseoftheLCBspecimen#2insolution NP(100KHz1mHz5points/decade).

239 AppendixB:(Continued)

2000 200

150

100

1500 50 0 0 100 200 300

1000

Im(Z)/ 24hr 96hr 144hr 500 336hr 552hr 816hr 1032hr 1560hr 2040hr 0 0 500 1000 1500 2000 2500

Re(Z)/

FigureB.2:NyquistplotoftheEISresponseoftheLCBspecimen#3insolution NP(100KHz1mHz5points/decade).

240 AppendixB:(Continued)

2500 72hr 216hr 384hr 624hr 2000 960hr 1296hr 1920hr 2400hr 1500 Im(Z)/ 1000

500

0 0 500 1000 1500 2000 2500

Re(Z)/

FigureB.3:NyquistplotoftheEISresponseoftheLCBspecimen#2insolution P(100KHz1mHz5points/decade).

241 AppendixB:(Continued)

1000 24hr 96hr 144hr 800 336hr 576hr 816hr 1032hr 1560hr 600

2064hr 2544hr Im(Z)/ 400

200

0 0 200 400 600 800 1000 1200 1400 1600

Re(Z)/ FigureB.4:NyquistplotoftheEISresponseoftheLCBspecimen#3insolution P(100KHz1mHz5points/decade). 2000 192hr 240hr 360hr 528hr

720hr 1000 840hr 1008hr Im(Z)/ 1248hr 1536hr 1752hr 2256hr

0 0 1000 2000 3000 4000 5000 Re(Z)/

FigureB.5:NyquistplotoftheEISresponseoftheLCBspecimen#2insolution SW(100KHz1mHz5points/decade).

242 AppendixB:(Continued) TableB.1:Evolutionofthenominalcorrosioncurrentdensityofthesteeland aluminizedportionsforthereplicateLCBspecimensexposedtosolutionP.The parametersofthesimplifiedequivalentcircuitsshowninFigure4.41arealso included.Immuneconditionfortheexposedsteelwasassumedwhenthesystem EOC reached<800mV.Passiveconditionfortheouteraluminizedcoatingwas assumedwhenthealuminizedsurfacewasbrightwithnovisiblepits. Time R W R R Y* i i S 1 C1 a1 n* corrFE corrAL hr sec n* 1 Acm 2 Acm 2 72 8.8 49.8 3,540 856 9.01E04 0.78 8.0 216 9.0 205.6 3,188 987 8.52E04 0.80 7.4 passive 960 9.3 26.7 2,642 1,731 7.78E04 0.80 5.3 1296 9.7 141.9 6,664 2,984 6.68E04 0.83 2.7

ValuesobtainedforsolutionP(#2)beforetheE OC drop.

Time RS W1 RC1 RAL2 Y** icorrFE icorrAL n** 1 n** 2 2 hr sec Acm Acm 1920 9.9 3.2 361.9 801.4 3.61E03 0.85 0.6 immune 2400 10.1 3.2 147.2 150.1 6.71E03 0.87 3.2

ValuesobtainedforsolutionP(#2)beforetheE OC drop. Time R W R R Y* i i S 1 C1 a1 n* corrFE corrAL hr sec n* 1 Acm 2 Acm 2 24 10.2 3.6 2,448 692 9.57E04 0.75 10.3 96 10.8 7.5 3,370 846 1.02E03 0.76 8.2 144 10.7 55.0 2,439 841 1.07E03 0.76 8.9 passive 576 11.9 354.1 531 1,191 8.15E04 0.83 15.1 1344 11.8 292.3 557 1,452 1.02E03 0.83 13.8

ValuesobtainedforsolutionP(#3)beforetheE OC drop.

Time RS W1 RC1 RAL2 Y** icorrFE icorrAL n** 1 n** 2 2 hr sec Acm Acm 2064 12.9 3.2 361.9 1,007 1.52E03 0.89 0.5 immune 2544 13.1 1.6 147.2 288 4.55E03 0.88 1.7

ValuesobtainedforsolutionP(#3)aftertheE OC drop. 243 AppendixB:(Continued)

TableB.2:Evolutionofthenominalcorrosioncurrentdensityofthesteeland aluminizedportionsforthereplicateLCBspecimensexposedtosolutionNP.The parametersofthesimplifiedequivalentcircuitsshowninFigure4.41arealso included.Immuneconditionfortheexposedsteelwasassumedwhenthesystem EOC reached<800mV.Passiveconditionfortheouteraluminizedcoatingwas assumedwhenthealuminizedsurfacewasbrightwithnovisiblepits. Time R W R R Y* i i S 1 C1 a1 n* corrFE corrAL hr sec n* 1 Acm 2 Acm 2 120 11.1 9.0 1,203 1,343 1.54E03 0.71 8.7 216 10.5 8.9 1,142 1,229 1.73E03 0.70 9.4 passive 960 10.9 3.2 308.4 1,022 1.60E03 0.72 23.4 1296 9.5 2.2 333.3 1,640 2.20E03 0.67 20.0

ValuesobtainedforsolutionNP(#2)beforetheE OC drop. Time R W R R Y* i i S 1 C1 a1 n* corrFE corrAL hr sec n* 1 Acm 2 Acm 2 24 6.8 15.4 732.3 263 1.01E03 0.82 28.7 96 7.1 30.7 913.9 429.7 1.44E03 0.81 18.9 passive 144 6.8 268.9 388.7 555.5 1.41E03 0.82 24.2 552 6.5 48.1 533.6 2,243 3.18E03 0.69 12.8

ValuesobtainedforsolutionNP(#3)beforetheE OC drop.

Time RS W1 RC1 RAL2 Y** icorrFE icorrAL n** 1 n** 2 2 hr sec Acm Acm 816 7.0 5.2 226 2,940 2.72E03 0.78 0.2 1032 7.2 8.2 232 1,817 2.95E03 0.80 0.3 immune 1560 7.6 5.7 166 400.8 5.17E03 0.83 1.2 2040 7.9 9.4 102 125 1.31E02 0.78 3.8

ValuesobtainedforsolutionNP(#3)aftertheE OC drop.

244 AppendixB:(Continued)

TableB.3:Evolutionofthenominalcorrosioncurrentdensityofthealuminized portionforthereplicateLCBspecimensexposedtosolutionSW.Theparameters ofthesimplifiedequivalentcircuitsshowninFigure4.41arealsoincluded. ImmuneconditionfortheexposedsteelwasassumedwhenthesystemE OC reached<800mV.

Time RS W1 RC1 RAL2 Y** icorrFE icorrAL n** 1 n** 2 2 hr sec Acm Acm 192 0.38 6.9 4,910 4,667 3.38E03 0.81 0.10 240 0.38 5.5 3,028 4,222 2.37E03 0.84 0.11 360 0.38 5.3 3,112 4,061 1.59E03 0.90 0.12 528 0.36 5.4 2,980 2,981 1.66E03 0.91 0.16 720 0.38 5.8 3,646 3,282 1.65E03 0.91 0.14 840 0.38 18.8 3,963 3,289 1.66E03 0.91immune 0.14 1008 0.40 15.0 5,042 4,277 1.63E03 0.91 0.11 1248 0.38 9.5 4,850 4,246 1.65E03 0.91 0.11 1536 0.39 10.0 5,410 4,148 1.66E03 0.91 0.11 1752 0.38 10.3 5,534 4,168 1.67E03 0.91 0.11 2256 0.38 11.3 6,861 4,782 1.62E03 0.91 0.10

ValuesobtainedforsolutionSW(#2)aftertheE OC drop.

245 AppendixB:(Continued)

6000 1000

500

4000

0 0 500 1000 168hr Im(Z)/ 360hr 2000 624hr 888hr 1080hr 1464hr 2088hr 0 0 4000 8000 12000 Re(Z)/

FigureB.6:NyquistplotoftheEISresponseoftheSCBspecimen#2insolution NP(100KHz1mHz5points/decade).

246 AppendixB:(Continued)

200000

160000

120000 Im(Z)/ 80000 96hr 288hr 648hr 840hr 1008hr 40000 1440hr 1704hr 1968hr 2160hr 2496hr 0 0 40000 80000 120000 160000 200000 Re(Z)/

FigureB.7:NyquistplotoftheEISresponseoftheSCBspecimen#2insolution P(100KHz1mHz5points/decade).

247 AppendixB:(Continued)

3000 168hr 288hr 432hr 624hr 840hr 2000 1008hr

1272hr 1440hr 1944hr

Im(Z)/ 2688hr

1000

0 0 1000 2000 3000 4000 5000 6000 Re(Z)/

FigureB.8:NyquistplotoftheEISresponseoftheSCBspecimen#2insolution SW(100KHz1mHz5points/decade).

248 AppendixB:(Continued)

50000 192hr 1500 360hr 624hr 1000 888hr 40000 500 1080hr 1464hr 0 2088hr 0 1000 2000 3000 4000 30000 Im(Z)/ 20000

10000

0 0 10000 20000 30000 40000 50000 60000 70000 80000 Re(Z)/

FigureB.9:NyquistplotoftheEISresponseoftheSCBspecimen#3insolution C(100KHz1mHz5points/decade).

249 AppendixB:(Continued)

TableB.4:Evolutionofthenominalcorrosioncurrentdensityofthealuminized portionforthereplicateSCBspecimensexposedtosolutionNP.Theparameters ofthesimplifiedequivalentcircuitsshowninFigure4.41arealsoincluded. ImmuneconditionfortheexposedsteelwasassumedwhenthesystemE OC reached<800mV.

Time RS W1 RC1 RAL2 Y** icorrFE icorrAL n** 1 n** 2 2 hr sec Acm Acm 72 6.6 170 5,363 6,542 5.32E04 0.92 0.07 168 6.4 242 3,410 4,974 7.03E04 0.92 0.09 360 6.5 92 3,299 3,613 7.91E04 0.92 0.13 624 6.5 174 9,270 8,835 8.20E04 0.92 0.05 immune 888 6.6 254 11,140 8,408 8.93E04 0.92 0.05 1080 6.5 229 6,878 5,508 9.76E04 0.92 0.08 1464 6.2 66 627 822 1.57E03 0.92 0.56 2088 6.9 38 435 522 3.04E03 0.89 0.88

ValuesobtainedforsolutionNP(#2)aftertheE OC drop. TableB.5:Evolutionofthenominalcorrosioncurrentdensityofthealuminized portionforthereplicateSCBspecimensexposedtosolutionP.Theparameters ofthesimplifiedequivalentcircuitsshowninFigure4.41arealsoincluded. ImmuneconditionfortheexposedsteelwasassumedwhenthesystemE OC reached<800mV.

Time RS W1 RC1 RAL2 Y** icorrFE icorrAL n** 1 n** 2 2 hr k sec Acm Acm 96 7.1 74.5 44.5 55,350 3.59E04 0.92 0.017 168 7.5 62.2 16.1 15,800 4.25E04 0.92 0.058 288 7.9 121.1 38.7 35,080 4.67E04 0.93 0.026 432 7.9 64.7 27.2 20,280 5.03E04 0.92 0.045 648 8.2 100.6 79.7 43,640 5.15E04 0.91 0.021 840 8.1 170.4 288.9 71,990 5.18E04 0.92immune 0.013 1008 8.1 157.4 533.4 86,920 5.09E04 0.92 0.011 1272 8.3 291.3 2E3 112,500 5.06E04 0.92 0.008 1440 8.5 539.1 2E3 189,100 4.94E04 0.92 0.005 1704 7.9 292.6 3E3 156,400 4.98E04 0.92 0.006 2160 8.2 335.2 5E3 372,200 4.83E04 0.93 0.002

ValuesobtainedforsolutionP(#2)aftertheE OC drop.

250 AppendixB:(Continued) TableB.6:Evolutionofthenominalcorrosioncurrentdensityofthealuminized portionforthereplicateSCBspecimensexposedtosolutionSW.The parametersofthesimplifiedequivalentcircuitsshowninFigure4.41arealso included.Immuneconditionfortheexposedsteelwasassumedwhenthesystem EOC reached<800mV. Time RS W1 RC1 RAL2 Y** icorrFE icorrAL n** 1 n** 2 2 hr sec Acm Acm 96 0.29 3.3 3,295 3,746 6.55E04 0.91 0.12 168 0.31 3.3 3,952 6,128 7.64E04 0.91 0.07 288 0.29 2.8 3,776 6,344 9.95E04 0.91 0.07 432 0.29 1.7 4,474 3,344 1.33E03 0.90 0.14 624 0.29 1.2 4,428 2,903 1.53E03 0.90 0.16 840 0.30 1.7 5,870 3,429 1.63E03 0.89 0.13 1008 0.30 2.9 5,665 3,210 1.65E03 0.89 0.14 immune 1272 0.30 2.5 7,012 3,683 1.65E03 0.90 0.12 1440 0.30 3.0 7,503 3,772 1.64E03 0.89 0.12 1536 0.30 1.6 6,572 3,213 1.65E03 0.90 0.14 1680 0.30 1.8 6,538 3,412 1.63E03 0.90 0.13 2112 0.30 2.1 7,654 3,617 1.58E03 0.90 0.13 2496 0.31 3.3 10,280 4,496 1.53E03 0.90 0.10 2688 0.30 1.9 8,598 3,962 1.54E03 0.90 0.12

ValuesobtainedforsolutionSW(#2)aftertheE OC drop.

TableB.7:Evolutionofthenominalcorrosioncurrentdensityofthealuminized portionforthereplicateSCBspecimensexposedtosolutionC.Theparameters ofthesimplifiedequivalentcircuitsshowninFigure4.41arealsoincluded. ImmuneconditionfortheexposedsteelwasassumedwhenthesystemE OC reached<800mV.

Time RS W1 RC1 RAL2 Y** icorrFE icorrAL n** 1 n** 2 2 hr sec Acm Acm 192 9.2 343.1 90,530 76,610 3.88E04 0.89 0.01 360 8.1 143.8 33,170 41,050 4.20E04 0.90 0.01 624 8.7 66.4 7,444 10,290 5.69E04 0.91 0.04 888 8.8 42.2 4,119 5,574 8.30E04 0.92immune 0.08 1080 8.4 15.0 3,090 3,570 1.01E03 0.93 0.13 1464 8.5 18.0 1,276 1,343 1.55E03 0.94 0.34 2088 9.8 16.4 1,798 1,121 2.40E03 0.91 0.41

251 AppendixB:(Continued)

10 LCBNP LCBP LCBSW MacrocellP 2 1 MacrocellNP Acm / corrAL

i 0.1

0.01 0 500 1000 1500 2000 2500 3000 Time/hr

FigureB.10:Evolutionofi corrAL ofthealuminizedportionforthereplicateLCBand macrocellassemblies. 1 SCBC SCBNP SCBP

2 0.1 SCBSW Acm / corrAL

i 0.01

0.001 0 500 1000 1500 2000 2500 3000 3500 4000 Time/hr

FigureB.11:Evolutionofi corrAL ofthealuminizedportionforthereplicateSCB specimens.

252 AppendixB:(Continued)

100 2 Acm

10 / corrFE i LCBNP LCBP MacrocellP MacrocellNP 1 0 200 400 600 800 1000 1200 1400 1600 Time/hr

FigureB.12:Evolutionofi corrFE oftheexposedsteelportionforthereplicateLCB specimensinsolutionsNPandPobtainedperequivalentcircuitshowninFigure 4.41A.

253 AppendixC:InterpretationoftheTwoStepReactionMechanism

ThisAppendixdealswithsystemswherethesurfacecompositionor arrangementofphaseschangesasaresultofthe ac excitationpolarization.This treatmentisadaptedfromSagüés(2006)whichfollowsalonggenerallines establishedbyEpelboin(1970).Thegeneralizedconceptualinterpretationofthe systemtobemodeledisasfollows.SpeciesAreactsatthemetalsurface yieldinganintermediatespeciesBthatresidesonafractionθofthesurfacearea asanadsorbateformerlysuitableforreactionofspeciesAwhichcanreactonly onanareafraction(1θ).SpeciesBundergoesfurtherreductiontobecome speciesC,whichthendetachesfromthemetalsurface.Asthepotentialisvaried fromtheE OC ,theratesofformationanddecompositionofspeciesBchange, leadingingeneraltochangeincoveragefromthesteadystatecondition.

AssumingthatthesystemisatasteadystatepotentialE 0andthatthe decompositionofspeciesBtoyieldspeciesAisneglectednearE 0,thus:

A+n A e B adsorbed (C.1) Badsorbed +nB e C (C.2) wherenAandn Bareelectronsinvolvedineachreactionstep.

Thereactionratesperunitareaareassumedtobepotentialdependent suchas: rA=a1k 1(1θ) (C.3) rB=a2k 2θ (C.4)

254 AppendixC:(Continued) wherek 1andk 2aretherateconstantsforthereactions(C.1)and(C.2)ofthe formk=k 0exp(2.3(EE0)/β),respectivelyexpressedinmolesperunittime,a 1 istheactivityofspeciesAassumedtobeconstantwithappliedpotential,anda2 representsthenumberofmolesperunitareaoftheareacoveredbyspeciesB.

Theparametersk 0andβaretherateconstantsatthesteadystate(r A0=r B0)and thecathodicTafelslope,respectively.Thedifferencebetweenr Aandr Bisequal to(r 1r2)=dm/dt=a 2dθ/dt=a 1k 1(1θ)–a 2k 2θwheremisnumberofmolesof speciesBperunitarea.

Thecorrespondingcathodiccurrentperunitarea(negativebyconvention) isafunctionofthepotentialandθsuchas:

IC=F(n Aa 1k 1(1θ)+n Ba 2k 2θ) (C.5) TakingthetotalderivativeofthecathodiccurrenttoEq.(C.5),onegets: d(I C)=(∂I C/∂θ)Edθ+(∂I C/∂E) θdE (C.6) DifferencingrespecttothepotentialE,onefindstheoveralladmittanceY ofthecoupledreactions:

Y=(∂I C/∂θ)Edθ/dE(∂I C/∂E) θ (C.7) Now,takingthederivativeofEq.(C.5)ofI CwithrespecttoθaroundE 0,onegets thefirsttermofEq.(C.7):

(∂I C/∂θ)E0 =F(n Ak 10 a 1–n Bk 20 a 2) (C.8) wherek 10andk 20arethereactionrateconstantsatthesteadystatepotentialfor eachcoupledreaction.

255 AppendixC:(Continued)

Theterm(∂I C/∂E) θisobtainedbydifferentiatingEq.(C.5)withrespecttoE:

(∂I C/∂E) θ=F(n Aa 1(1θ)∂k 10 /∂E–n Ba 2 θ∂k 20 /∂E) (C.9) Recallingthatk=k 0exp(2.3(EE0)/β),thenitsderivativewithrespectto

Eforeachreactionis:

(∂k/∂E) θ=k0exp(2.3(EE0)/β)(2.3/β)=2.3k/β (C.10) ReplacingEq.(C.10)intoEq.(C.9),oneobtains:

1 1 (∂I C/∂E) θ=F(2.3n Aa 1(1θ)β1 +2.3n Ba 2 θβ2 ) (C.11) Aroundthesteadystateconditionθ 0=a 1k 10 /(a 1k 10 +a 2k 20 )sothatEq.

(C.11)canthenbewrittenas:

1 1 (∂I C/∂E) θ0=2.3a 1 a2 Fk 10 k 20 (n Aβ1 +n Bβ2 )/(a1k 10 +a 2k 20 ) (C.12) ForEISmeasurements,thesmallamplitude ac potentialvaries harmonicallywiththeexcitationfrequencyω,andasaresulttheareacoverage fractionθdeviatesfromθ 0followingatimedependentsinusoidalexcitation.

Thus,

θ–θ 0=A0exp(jωt) (C.13) whereA 0isacomplexnumberthataccountsforthephasedifferencebetween

(θθ0)andtheexcitationpotential.Hence, d(θ–θ0)/dt=dθ/dt=jω(θ–θ0) (C.14) Recallingthatdθ/dt=a 1/a 2k 1(1θ)–k 2θandreplacingintoEq.(C.14), oneobtains: jω(θ–θ0)=(a 1/a 2)k 1(1θ)–k 2θ (C.15) 256 AppendixC:(Continued)

TakingthederivativeofbothsideswithrespecttoE: jωdθ/dE=(dθ/dE)(a 1/a 2 k1+k 2)θ(a 1/a 2 dk 1/dE+dk 2/dE)+a 1/a 2 dk 1/dE (C.16) whichataroundθ 0yields:

1 1 (dθ/dE) θ0=(2.3a 1a 2k 10 k 20 /(a 1k 10 +a 2k 20 ))(β1 β2 )/(ja 2ω+(a 1k 10 +a 2k 20 )) (C.17) ReplacingEqs.(C.8),(C.12),and(C.17)intoEq.(C.7),theoverall admittanceforexcitationpotentialsaroundE0is:

1 1 1 1 1 Y=2.3I C(n A+n B) (n Aβ1 +n Bβ2 +(n BI 2nAI 1)(β1 β2 )/(jFa 2ω(n A+n B)+I 1+I 2) (C.18) whereI1=Fa1k10(nA+nB)andI 2=Fa2k20(nA+nB).

Inthesimplestcaseofβ 1=β2=βorn Aa 1k10=nBa2k 20,theadmittance reducestothesocalledfrozenpolarizationresistanceorchargetransfer

1 resistance(R CT =β(2.3I C) )inthetimedomain.Underthiscondition,thearea coveragefractionθremainsconstantandnophasedifferencebetween(θθ0) andtheexcitationpotentialexistssinceatthehighfrequencylimitthesurface coveragedoesnothavetimetorespondtotheexcitationsignal.

Fortheusualcaseofβ 1≠β2anddependingonthesignof(β1β2)and(nBI2 nAI1),thesystemmayhaveacapacitiveorinductivebehaviorreachingatthelow frequencylimitasocalledrelaxedpolarizationresistanceorsimplypolarization resistanceR Poftheform:

1 1 1 1 1 1 RP=(2.3I C(n A+n B) (n Aβ1 +n Bβ2 +(n BI 2nAI 1)(β1 β2 )/(I 1+I 2)) (C.19) Whentheproduct(β1β2)(nBI2nAI1)ispositive,thenR CT

Inputtingtypicalvaluesofβ1,β2,nB,I2,nA,I1,anda2,valuesofR CT andR Pwere

~10 6cm 2comparabletothoseobtainedexperimentallyforpassive unblemishedaluminizedsteelinNPandPsolutions.

258

AbouttheAuthor

LeonardoCaseresearnedhisB.S.degreeinChemicalEngineeringin

1998fromtheUniversidadNacionaldelCentrodelaProvinciadeBuenosAires

(Olavarriacampus),BuenosAires,Argentina.From1997to1998,heworkedas ajuniorresearcherattheUniversidadNacionaldelCentrodelaProvinciade

BuenosAiresworkingunderthedirectionofDr.MirtaBarbosa.

HecametoUnitedStatesin1999topursuehisM.S.inCiviland

EnvironmentalEngineeringattheUniversityofSouthFlorida.Hecompletedhis

M.S.degreeinCivilandEnvironmentalEngineeringin2002andembarkedon thePh.D.programin2003.From1999to2007,heworkedasagraduate assistantunderthedirectionofDr.AlbertoSagüésattheCorrosionEngineering

Laboratory.Hisresearchinterestsareintheareasofcorrosionofreinforcing steelinconcrete,corrosioninhibitors,corrosionofmetals,corrosion electrochemistry,andperformanceofmetalliccoatings.Duringthepastfew years,hehaspublishedonereferredjournalpaperandanotherunderrevisionat present,fourinternationalconferencepapers,andparticipatedinthepreparation ofareport.HereceivedtheThirdPlaceintheMarsFontanaCorrosion

Engineeringcategoryinthestudentpostersessionattheannualmeetingof

NACEInternationalinDenver,2002.HeiscurrentlyastudentmemberofNACE

InternationalandtheElectrochemicalSociety.

259