Correlation-Based Feature Selection for Machine Learning

Total Page:16

File Type:pdf, Size:1020Kb

Correlation-Based Feature Selection for Machine Learning Department of Computer Science Hamilton, NewZealand Correlation-based Feature Selection for Machine Learning Mark A. Hall This thesis is submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at The University of Waikato. April 1999 c 1999 Mark A. Hall ii Abstract A central problem in machine learning is identifying a representative set of features from which to construct a classification model for a particular task. This thesis addresses the problem of feature selection for machine learning through a correlation based approach. The central hypothesis is that good feature sets contain features that are highly correlated with the class, yet uncorrelated with each other. A feature evaluation formula, based on ideas from test theory, provides an operational definition of this hypothesis. CFS (Correlation based Feature Selection) is an algorithm that couples this evaluation formula with an appropriate correlation measure and a heuristic search strategy. CFS was evaluated by experiments on artificial and natural datasets. Three machine learn- ing algorithms were used: C4.5 (a decision tree learner), IB1 (an instance based learner), and naive Bayes. Experiments on artificial datasets showed that CFS quickly identifies and screens irrelevant, redundant, and noisy features, and identifies relevant features as long as their relevance does not strongly depend on other features. On natural domains, CFS typically eliminated well over half the features. In most cases, classification accuracy using the reduced feature set equaled or bettered accuracy using the complete feature set. Feature selection degraded machine learning performance in cases where some features were eliminated which were highly predictive of very small areas of the instance space. Further experiments compared CFS with a wrapper—a well known approach to feature selection that employs the target learning algorithm to evaluate feature sets. In many cases CFS gave comparable results to the wrapper, and in general, outperformed the wrapper on small datasets. CFS executes many times faster than the wrapper, which allows it to scale to larger datasets. Two methods of extending CFS to handle feature interaction are presented and exper- imentally evaluated. The first considers pairs of features and the second incorporates iii feature weights calculated by the RELIEF algorithm. Experiments on artificial domains showed that both methods were able to identify interacting features. On natural domains, the pairwise method gave more reliable results than using weights provided by RELIEF. iv Acknowledgements First and foremost I would like to acknowledge the tireless and prompt help of my super- visor, Lloyd Smith. Lloyd has always allowed me complete freedom to define and explore my own directions in research. While this proved difficult and somewhat bewildering to begin with, I have come to appreciate the wisdom of his way—it encouraged me to think for myself, something that is unfortunately all to easy to avoid as an undergraduate. Lloyd and the Department of Computer Science have provided me with much appreciated financial support during my degree. They have kindly provided teaching assistantship positions and travel funds to attend conferences. I thank Geoff Holmes, Ian Witten and Bill Teahan for providing valuable feedback and reading parts of this thesis. Stuart Inglis (super-combo!), Len Trigg, and Eibe Frank deserve thanks for their technical assistance and helpful comments. Len convinced me (rather emphatically) not to use MS Word for writing a thesis. Thanks go to Richard Littin and David McWha for kindly providing the University of Waikato thesis style and assistance with LATEX. Special thanks must also go to my family and my partner Bernadette. They have provided unconditional support and encouragement through both the highs and lows of my time in graduate school. v vi Contents Abstract iii Acknowledgements v List of Figures xv List of Tables xx 1 Introduction 1 1.1 Motivation . 1 1.2 Thesis statement . 4 1.3 Thesis Overview . 5 2 Supervised Machine Learning: Concepts and Definitions 7 2.1 The Classification Task . 7 2.2 Data Representation . 8 2.3 Learning Algorithms . 9 2.3.1 Naive Bayes . 10 2.3.2 C4.5 Decision Tree Generator . 12 2.3.3 IB1-Instance Based Learner . 14 2.4 Performance Evaluation . 16 2.5 Attribute Discretization . 18 2.5.1 Methods of Discretization . 19 3 Feature Selection for Machine Learning 25 3.1 Feature Selection in Statistics and Pattern Recognition . 26 3.2 Characteristics of Feature Selection Algorithms . 27 3.3 Heuristic Search . 28 vii 3.4 Feature Filters . 32 3.4.1 Consistency Driven Filters . 32 3.4.2 Feature Selection Through Discretization . 36 3.4.3 Using One Learning Algorithm as a Filter for Another . 36 3.4.4 An Information Theoretic Feature Filter . 38 3.4.5 An Instance Based Approach to Feature Selection . 39 3.5 Feature Wrappers . 40 3.5.1 Wrappers for Decision Tree Learners . 41 3.5.2 Wrappers for Instance Based Learning . 42 3.5.3 Wrappers for Bayes Classifiers . 45 3.5.4 Methods of Improving the Wrapper . 46 3.6 Feature Weighting Algorithms . 47 3.7 Chapter Summary . 49 4 Correlation-based Feature Selection 51 4.1 Rationale . 51 4.2 Correlating Nominal Features . 55 4.2.1 Symmetrical Uncertainty . 56 4.2.2 Relief . 57 4.2.3 MDL . 59 4.3 Bias in Correlation Measures between Nominal Features . 61 4.3.1 Experimental Measurement of Bias . 62 4.3.2 Varying the Level of Attributes . 64 4.3.3 Varying the Sample Size . 66 4.3.4 Discussion . 67 4.4 A Correlation-based Feature Selector . 69 4.5 Chapter Summary . 74 5 Datasets Used in Experiments 75 5.1 Domains . 75 5.2 Experimental Methodology . 80 viii 6 Evaluating CFS with 3 ML Algorithms 85 6.1 Artificial Domains . 85 6.1.1 Irrelevant Attributes . 86 6.1.2 Redundant Attributes . 95 6.1.3 Monk’s problems . 104 6.1.4 Discussion . 106 6.2 Natural Domains . 107 6.3 Chapter Summary . 119 7 Comparing CFS to the Wrapper 121 7.1 Wrapper Feature Selection . 121 7.2 Comparison . 123 7.3 Chapter Summary . 128 8 Extending CFS: Higher Order Dependencies 131 8.1 Related Work . 131 8.2 Joining Features . 133 8.3 Incorporating RELIEF into CFS . 135 8.4 Evaluation . 136 8.5 Discussion . 143 9 Conclusions 145 9.1 Summary . 145 9.2 Conclusions . 147 9.3 Future Work . 147 Appendices A Graphs for Chapter 4 151 B Curves for Concept A3 with Added Redundant Attributes 153 C Results for CFS-UC, CFS-MDL, and CFS-Relief on 12 Natural Domains 157 D 5 2cv Paired t test Results 159 ix E CFS Merit Versus Accuracy 163 F CFS Applied to 37 UCI Domains 167 Bibliography 171 x List of Figures 2.1 A decision tree for the “Golf” dataset. Branches correspond to the values of attributes; leaves indicate classifications. 13 3.1 Filter and wrapper feature selectors. 29 3.2 Feature subset space for the “golf” dataset. 30 4.1 The effects on the correlation between an outside variable and a compos- © § ite variable ¢¡¤£¦¥¨§ of the number of components , the inter-correlations ¡ § among the components , and the correlations between the compo- ¡ £ § nents and the outside variable . 54 4.2 The effects of varying the attribute and class level on symmetrical uncer- tainty (a & b), symmetrical relief (c & d), and normalized symmetrical MDL (e & f) when attributes are informative (graphs on the left) and non- ¤ informative (graphs on the right). Curves are shown for , , and classes. 65 4.3 The effect of varying the training set size on symmetrical uncertainty (a & b), symmetrical relief (c & d), and normalized symmetrical MDL (e & f) when attributes are informative and non-informative. The number of classes is ; curves are shown for , , and valued attributes. 68 4.4 The components of CFS. Training and testing data is reduced to contain only the features selected by CFS. The dimensionally reduced data can then be passed to a machine learning algorithm for induction and prediction. 71 5.1 Effect of CFS feature selection on accuracy of naive Bayes classification. Dots show results that are statistically significant . 82 5.2 The learning curve for IB1 on the dataset A with added irrelevant attributes. 83 xi 6.1 Number of irrelevant attributes selected on concept A1 (with added irrel- evant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of training set size. 87 6.2 Number of relevant attributes selected on concept A1 (with added irrel- evant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of training set size. 88 6.3 Learning curves for IB1, CFS-UC-IB1, CFS-MDL-IB1, and CFS-Relief- IB1 on concept A1 (with added irrelevant features) . 90 6.4 Number of irrelevant attributes selected on concept A2 (with added irrel- evant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of training set size. Note: CFS-UC and CFS-Relief produce the same result. 90 6.5 Number of relevant attributes selected on concept A (with added irrel- evant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of training set size. 93 6.6 Learning curves for IB1, CFS-UC-IB1, CFS-MDL-IB1, and CFS-Relief- IB1 on concept A (with added irrelevant features). 93 6.7 Number of irrelevant attributes selected on concept A (with added irrel- evant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of training set size. 94 6.8 Number of relevant attributes selected on concept A (with added irrel- evant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of training set size. 94 6.9 Number of irrelevant multi-valued attributes selected on concept A (with added irrelevant features) by CFS-UC, CFS-MDL, and CFS-Relief as a function of training set size.
Recommended publications
  • A New Wrapper Feature Selection Approach Using Neural Network
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Community Repository of Fukui Neurocomputing 73 (2010) 3273–3283 Contents lists available at ScienceDirect Neurocomputing journal homepage: www.elsevier.com/locate/neucom A new wrapper feature selection approach using neural network Md. Monirul Kabir a, Md. Monirul Islam b, Kazuyuki Murase c,n a Department of System Design Engineering, University of Fukui, Fukui 910-8507, Japan b Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh c Department of Human and Artificial Intelligence Systems, Graduate School of Engineering, and Research and Education Program for Life Science, University of Fukui, Fukui 910-8507, Japan article info abstract Article history: This paper presents a new feature selection (FS) algorithm based on the wrapper approach using neural Received 5 December 2008 networks (NNs). The vital aspect of this algorithm is the automatic determination of NN architectures Received in revised form during the FS process. Our algorithm uses a constructive approach involving correlation information in 9 November 2009 selecting features and determining NN architectures. We call this algorithm as constructive approach Accepted 2 April 2010 for FS (CAFS). The aim of using correlation information in CAFS is to encourage the search strategy for Communicated by M.T. Manry Available online 21 May 2010 selecting less correlated (distinct) features if they enhance accuracy of NNs. Such an encouragement will reduce redundancy of information resulting in compact NN architectures. We evaluate the Keywords: performance of CAFS on eight benchmark classification problems. The experimental results show the Feature selection essence of CAFS in selecting features with compact NN architectures.
    [Show full text]
  • ``Preconditioning'' for Feature Selection and Regression in High-Dimensional Problems
    The Annals of Statistics 2008, Vol. 36, No. 4, 1595–1618 DOI: 10.1214/009053607000000578 © Institute of Mathematical Statistics, 2008 “PRECONDITIONING” FOR FEATURE SELECTION AND REGRESSION IN HIGH-DIMENSIONAL PROBLEMS1 BY DEBASHIS PAUL,ERIC BAIR,TREVOR HASTIE1 AND ROBERT TIBSHIRANI2 University of California, Davis, Stanford University, Stanford University and Stanford University We consider regression problems where the number of predictors greatly exceeds the number of observations. We propose a method for variable selec- tion that first estimates the regression function, yielding a “preconditioned” response variable. The primary method used for this initial regression is su- pervised principal components. Then we apply a standard procedure such as forward stepwise selection or the LASSO to the preconditioned response variable. In a number of simulated and real data examples, this two-step pro- cedure outperforms forward stepwise selection or the usual LASSO (applied directly to the raw outcome). We also show that under a certain Gaussian la- tent variable model, application of the LASSO to the preconditioned response variable is consistent as the number of predictors and observations increases. Moreover, when the observational noise is rather large, the suggested proce- dure can give a more accurate estimate than LASSO. We illustrate our method on some real problems, including survival analysis with microarray data. 1. Introduction. In this paper, we consider the problem of fitting linear (and other related) models to data for which the number of features p greatly exceeds the number of samples n. This problem occurs frequently in genomics, for exam- ple, in microarray studies in which p genes are measured on n biological samples.
    [Show full text]
  • Feature Selection Via Dependence Maximization
    JournalofMachineLearningResearch13(2012)1393-1434 Submitted 5/07; Revised 6/11; Published 5/12 Feature Selection via Dependence Maximization Le Song [email protected] Computational Science and Engineering Georgia Institute of Technology 266 Ferst Drive Atlanta, GA 30332, USA Alex Smola [email protected] Yahoo! Research 4301 Great America Pky Santa Clara, CA 95053, USA Arthur Gretton∗ [email protected] Gatsby Computational Neuroscience Unit 17 Queen Square London WC1N 3AR, UK Justin Bedo† [email protected] Statistical Machine Learning Program National ICT Australia Canberra, ACT 0200, Australia Karsten Borgwardt [email protected] Machine Learning and Computational Biology Research Group Max Planck Institutes Spemannstr. 38 72076 Tubingen,¨ Germany Editor: Aapo Hyvarinen¨ Abstract We introduce a framework for feature selection based on dependence maximization between the selected features and the labels of an estimation problem, using the Hilbert-Schmidt Independence Criterion. The key idea is that good features should be highly dependent on the labels. Our ap- proach leads to a greedy procedure for feature selection. We show that a number of existing feature selectors are special cases of this framework. Experiments on both artificial and real-world data show that our feature selector works well in practice. Keywords: kernel methods, feature selection, independence measure, Hilbert-Schmidt indepen- dence criterion, Hilbert space embedding of distribution 1. Introduction In data analysis we are typically given a set of observations X = x1,...,xm X which can be { } used for a number of tasks, such as novelty detection, low-dimensional representation,⊆ or a range of . Also at Intelligent Systems Group, Max Planck Institutes, Spemannstr.
    [Show full text]
  • Feature Selection in Convolutional Neural Network with MNIST Handwritten Digits
    Feature Selection in Convolutional Neural Network with MNIST Handwritten Digits Zhuochen Wu College of Engineering and Computer Science, Australian National University [email protected] Abstract. Feature selection is an important technique to improve neural network performances due to the redundant attributes and the massive amount in original data sets. In this paper, a CNN with two convolutional layers followed by a dropout, then two fully connected layers, is equipped with a feature selection algorithm. Accuracy rate of the networks with different attribute input weight as zero are calculated and ranked so that the machine can decide which attribute is the least important for each run of the algorithm. The algorithm repeats itself to remove multiple attributes. When the network will not achieve a satisfying accuracy rate as defined in the algorithm, the process terminates and no more attributes to be removed. A CNN is chosen the image recognition task and one dropout is applied to reduce the overfitting of training data. This implementation of deep learning method proves its ability to rise accuracy and neural network performance with up to 80% less attributes fed in. This paper also compares the technique with other the result of LeNet-5 to see the differences and common facts. Keywords: CNN, Feature selection, Classification, Real world problem, Deep learning 1. Introduction Feature selection has been a focus in many study domains like econometrics, statistics and pattern recognition. It is a process to select a subset of attributes in given data and improve the algorithm performance in efficient and accuracy, etc. It is commonly understood that the more features being fed into a neural network, the more information machine could learn from in order to achieve a better outcome.
    [Show full text]
  • Classification with Costly Features Using Deep Reinforcement Learning
    Classification with Costly Features using Deep Reinforcement Learning Jarom´ır Janisch and Toma´sˇ Pevny´ and Viliam Lisy´ Artificial Intelligence Center, Department of Computer Science Faculty of Electrical Engineering, Czech Technical University in Prague jaromir.janisch, tomas.pevny, viliam.lisy @fel.cvut.cz f g Abstract y1 We study a classification problem where each feature can be y2 acquired for a cost and the goal is to optimize a trade-off be- af3 af5 af1 ac tween the expected classification error and the feature cost. We y3 revisit a former approach that has framed the problem as a se- ··· quential decision-making problem and solved it by Q-learning . with a linear approximation, where individual actions are ei- . ther requests for feature values or terminate the episode by providing a classification decision. On a set of eight problems, we demonstrate that by replacing the linear approximation Figure 1: Illustrative sequential process of classification. The with neural networks the approach becomes comparable to the agent sequentially asks for different features (actions af ) and state-of-the-art algorithms developed specifically for this prob- finally performs a classification (ac). The particular decisions lem. The approach is flexible, as it can be improved with any are influenced by the observed values. new reinforcement learning enhancement, it allows inclusion of pre-trained high-performance classifier, and unlike prior art, its performance is robust across all evaluated datasets. a different subset of features can be selected for different samples. The goal is to minimize the expected classification Introduction error, while also minimizing the expected incurred cost.
    [Show full text]
  • Feature Selection for Regression Problems
    Feature Selection for Regression Problems M. Karagiannopoulos, D. Anyfantis, S. B. Kotsiantis, P. E. Pintelas unreliable data, then knowledge discovery Abstract-- Feature subset selection is the during the training phase is more difficult. In process of identifying and removing from a real-world data, the representation of data training data set as much irrelevant and often uses too many features, but only a few redundant features as possible. This reduces the of them may be related to the target concept. dimensionality of the data and may enable There may be redundancy, where certain regression algorithms to operate faster and features are correlated so that is not necessary more effectively. In some cases, correlation coefficient can be improved; in others, the result to include all of them in modelling; and is a more compact, easily interpreted interdependence, where two or more features representation of the target concept. This paper between them convey important information compares five well-known wrapper feature that is obscure if any of them is included on selection methods. Experimental results are its own. reported using four well known representative regression algorithms. Generally, features are characterized [2] as: 1. Relevant: These are features which have Index terms: supervised machine learning, an influence on the output and their role feature selection, regression models can not be assumed by the rest 2. Irrelevant: Irrelevant features are defined as those features not having any influence I. INTRODUCTION on the output, and whose values are generated at random for each example. In this paper we consider the following 3. Redundant: A redundancy exists regression setting.
    [Show full text]
  • Gaussian Universal Features, Canonical Correlations, and Common Information
    Gaussian Universal Features, Canonical Correlations, and Common Information Shao-Lun Huang Gregory W. Wornell, Lizhong Zheng DSIT Research Center, TBSI, SZ, China 518055 Dept. EECS, MIT, Cambridge, MA 02139 USA Email: [email protected] Email: {gww, lizhong}@mit.edu Abstract—We address the problem of optimal feature selection we define a rotation-invariant ensemble (RIE) that assigns a for a Gaussian vector pair in the weak dependence regime, uniform prior for the unknown attributes, and formulate a when the inference task is not known in advance. In particular, universal feature selection problem that aims to select optimal we show that multiple formulations all yield the same solution, and correspond to the singular value decomposition (SVD) of features minimizing the averaged MSE over RIE. We show the canonical correlation matrix. Our results reveal key con- that the optimal features can be obtained from the SVD nections between canonical correlation analysis (CCA), principal of a canonical dependence matrix (CDM). In addition, we component analysis (PCA), the Gaussian information bottleneck, demonstrate that in a weak dependence regime, this SVD Wyner’s common information, and the Ky Fan (nuclear) norms. also provides the optimal features and solutions for several problems, such as CCA, information bottleneck, and Wyner’s common information, for jointly Gaussian variables. This I. INTRODUCTION reveals important connections between information theory and Typical applications of machine learning involve data whose machine learning problems. dimension is high relative to the amount of training data that is available. As a consequence, it is necessary to perform di- mensionality reduction before the regression or other inference II.
    [Show full text]
  • Feature Selection for Unsupervised Learning
    Journal of Machine Learning Research 5 (2004) 845–889 Submitted 11/2000; Published 8/04 Feature Selection for Unsupervised Learning Jennifer G. Dy [email protected] Department of Electrical and Computer Engineering Northeastern University Boston, MA 02115, USA Carla E. Brodley [email protected] School of Electrical and Computer Engineering Purdue University West Lafayette, IN 47907, USA Editor: Stefan Wrobel Abstract In this paper, we identify two issues involved in developing an automated feature subset selec- tion algorithm for unlabeled data: the need for finding the number of clusters in conjunction with feature selection, and the need for normalizing the bias of feature selection criteria with respect to dimension. We explore the feature selection problem and these issues through FSSEM (Fea- ture Subset Selection using Expectation-Maximization (EM) clustering) and through two different performance criteria for evaluating candidate feature subsets: scatter separability and maximum likelihood. We present proofs on the dimensionality biases of these feature criteria, and present a cross-projection normalization scheme that can be applied to any criterion to ameliorate these bi- ases. Our experiments show the need for feature selection, the need for addressing these two issues, and the effectiveness of our proposed solutions. Keywords: clustering, feature selection, unsupervised learning, expectation-maximization 1. Introduction In this paper, we explore the issues involved in developing automated feature subset selection algo- rithms for unsupervised learning. By unsupervised learning we mean unsupervised classification, or clustering. Cluster analysis is the process of finding “natural” groupings by grouping “similar” (based on some similarity measure) objects together. For many learning domains, a human defines the features that are potentially useful.
    [Show full text]
  • Feature Selection Convolutional Neural Networks for Visual Tracking Zhiyan Cui, Na Lu*
    1 Feature Selection Convolutional Neural Networks for Visual Tracking Zhiyan Cui, Na Lu* Abstract—Most of the existing tracking methods based on such amount of data for tracking to train a deep network. CNN(convolutional neural networks) are too slow for real-time MDNet [12] is a novel solution for tracking problem with application despite the excellent tracking precision compared detection method. It is trained by learning the shared with the traditional ones. Moreover, neural networks are memory intensive which will take up lots of hardware resources. In this representations of targets from multiple video sequences, paper, a feature selection visual tracking algorithm combining where each video is regarded as a separate domain. There CNN based MDNet(Multi-Domain Network) and RoIAlign was are several branches in the last layer of the network for developed. We find that there is a lot of redundancy in feature binary classification and each of them is corresponding to maps from convolutional layers. So valid feature maps are a video sequence. The preceding layers are in charge of selected by mutual information and others are abandoned which can reduce the complexity and computation of the network and capturing common representations of targets. While tracking, do not affect the precision. The major problem of MDNet also lies the last layer is removed and a new single branch is added in the time efficiency. Considering the computational complexity to the network to compute the scores in the test sequences. of MDNet is mainly caused by the large amount of convolution Parameters in the fully-connected layers are fine-tuned online operations and fine-tuning of the network during tracking, a during tracking.
    [Show full text]
  • Feature Selection
    Feature Selection Suhang Wang, Jiliang Tang and Huan Liu Arizona State University Abstract Data dimensionality is growing exponentially, which poses chal- lenges to the vast majority of existing mining and learning algorithms, such as the curse of dimensionality, large storage requirement, and high computational cost. Feature selection has been proven to be an effec- tive and efficient way to prepare high dimensional data for data mining and machine learning. The recent emergence of novel techniques and new types of data and features not only advances existing feature se- lection research but also makes feature selection evolve more rapidly, becoming applicable to a broader range of applications. In this article, we aim to provide a basic introduction to feature selection including basic concepts, classifications of existing systems, recent development, and applications. Synonyms: Feature subset selection, Feature weighting, Attributes selec- tion Definition (or Synopsis): Feature selection, as a dimensionality reduction technique, aims to choosing a small subset of the relevant features from the original ones by removing irrelevant, redundant or noisy features. Feature selection usually leads to better learning performance, i.e., higher learning accuracy, lower computational cost, and better model interpretability. Generally speaking, irrelevant features are features that cannot discrim- inate samples from different classes(supervised) or clusters(unsupervised). Removing irrelevant features will not affect learning performance. In fact, removal of irrelevant features may help learn a better model, as irrelevant features may confuse the learning system and cause memory and computa- tion inefficiency. For example, in figure 1(a), f1 is a relevant feature because f1 can discriminate class1 and class2.
    [Show full text]
  • Concrete Autoencoders
    Differentiable Feature Selection with Concrete Autoencoders Abubakar Abid★ Muhammed Fatih Balin★ James Zou Poster: Thu Jun 13th 06:30 - 09:00 PM @ Pacific Ballroom #188 Unsupervised Feature Selection (UFS) is Widely Used in Machine Learning ● Identify the subset of most informative features in dataset ● Simplifies the process of training models ● Especially useful if the data is difficult or expensive to collect Differentiable Feature Selection and Reconstruction with Concrete Autoencoders 2 Unsupervised Feature Selection (UFS) is Used Widely in Applied ML ● Example: the L1000 Landmark Genes [Lamb et al., 2006] All Genes L1000 Genes All Genes Samples Samples Samples Recons truction Feature Selection Differentiable Feature Selection and Reconstruction with Concrete Autoencoders 3 UFS Methods Typically Rely on Regularization Unsupervised Discriminative Feature Selection (UDFS) [Yang et al., 2011] Multi-Cluster Feature Selection (MCFS) All based on [Cai et al., 2010] L1 or L21 regularization Autoencoder Feature Selection (AEFS) [Han et al., 2017] Differentiable Feature Selection and Reconstruction with Concrete Autoencoders 4 What about directly backpropagating through discrete “feature selection” nodes? Differentiable Feature Selection and Reconstruction with Concrete Autoencoders 5 What about directly backpropagating through discrete “feature selection” nodes? Replace the weights of the encoder with parameters of a Concrete Random Variable (Maddison, 2016) Differentiable Feature Selection and Reconstruction with Concrete Autoencoders 6
    [Show full text]
  • A Comparative Study on the Effect of Feature Selection on Classification Accuracy
    Available online at www.sciencedirect.com Procedia Technology 1 ( 2012 ) 323 – 327 INSODE 2011 A comparative study on the effect of feature selection on classification accuracy Esra Mahsereci Karabuluta*, Selma Ayşe Özelb, Turgay İbrikçib,c a Gaziantep University, Gaziantep Vocational High School, Şehitkamil/Gaziantep, 27310, Turkey b Çukurova University, Electrical-Electronics Engineering Department, Balcalı/Adana, 01330, Turkey c Çukurova University,Computer Engineering Department, Balcalı/Adana, 01330, Turkey Abstract Feature selection has become interest to many research areas which deal with machine learning and data mining, because it provides the classifiers to be fast, cost-effective, and more accurate. In this paper the effect of feature selection on the accuracy of NaïveBayes, Artificial Neural Network as Multilayer Perceptron, and J48 decision tree classifiers is presented. These classifiers are compared with fifteen real datasets which are pre-processed with feature selection methods. Up to 15.55% improvement in classification accuracy is observed, and Multilayer Perceptron appears to be the most sensitive classifier to feature selection. Keywords: feature selection; classification; accuracy; Naïve Bayes; multilayer perceptron 1. Introduction Feature selection is the process of removing redundant or irrelevant features from the original data set. So the execution time of the classifier that processes the data reduces, also accuracy increases because irrelevant features can include noisy data affecting the classification accuracy negatively [1]. With feature selection the understandability can be improved and cost of data handling becomes smaller [2]. Feature selection algorithms are divided into three categories; filters, wrappers and embedded selectors. Filters evaluate each feature independent from the classifier, rank the features after evaluation and take the superior ones [3].
    [Show full text]