Number Theory Integer Types by Michael Carter Carl Friedrich Gauss

Total Page:16

File Type:pdf, Size:1020Kb

Number Theory Integer Types by Michael Carter Carl Friedrich Gauss Number Theory Integer Types by Michael Carter Carl Friedrich Gauss was known as one of the top ten greatest mathematicians. He was known as the prince of mathematics. Gauss is quoted calling mathematics the "queen of the sciences" and calling number theory the "queen of mathematics. is called "higher arithmetic." Number Theory is the study of whole numbers and sometimes spills over to rational numbers. The whole numbers that is the most fascinating are the primes. We know very little about the primes. Because we know so little about the primes we can make encryption for banks and computer security systems. We also have another fascinating number that we know more about, the composite numbers. The composite numbers are composed of There are approximately 10 fields within Number Theory: Elementary, Analytic, Algebraic, Geometry, Combinatorial, Computational, Arithmetic Algebraic, Arithmetic Topology, Arithmetic Dynamics, and Modular Form. All these fields can take advantage of this maple package. This Maple package is called inttypes, which is short for Integer Types. The inttypes package provides over 160 whole number types for Number Theorists to explore numbers. This package may be used as a tool for an academic course, Maple programming, or for research. It is also fun to play with these types for exploration and developing intuition about numbers. In addition, to these number theory integer types, this package also offers three very important functions: ithcomposite, ithprimorial, and printtypes. Maple have a function called, ithprime; which is used to find a particular prime based on its order. This inttypes package provides a function that gives a particular composite number based on its order, called ithcomposite. There is also an ithprimorial function that provides a particular primordial number based on its order. Finally, we have a function that will search among all the types of this package for a number, 1729, is a good test for printtypes (see below). The number, 3, is also a good test for the printtypes function. On the Number Theory Types Test: Just change the integer on each of the for-loops for larger tests when testing the number theory types. All types return a Boolean value of either true or false. It does not return a number. Note in the testing of the types below we can give input but the outpus is true or false. The input integer is not the output, hence, do not get confused and begin believing that the input is the output. Finally, there is an official website for referencing and testing the http://oeis.org/ I hope you enjoy this package as much as I enjoyed creating it for you. Cheers. ============================================================== =============================== Application Setup Instructions ============================================================= This package was designed on Maple 15. It may work on earlier versions of Maple, however, you would need to make modifications in the maple.ini file to make this happen. If you have not done so already, extract all the files from the file inttypes.zip to the "C:\inttypes" folder. These instructions assume that this location is "C:\inttypes" Place the maple.ini file in the "C:\Program Files\Maple 15\Users folder" Maple will automatically find this package when you load it using the "with" statement. If you do not have permission to place files in the "C:\Program Files\Maple 15\Users" folder then see "Alternate Setup Instructions." Start Maple. type with(inttypes); Alternate Setup Instructions ======================================== If you do not have permission to place files in the "C:\Program Files\Maple 15\Users" folder then To do this inside a worksheet, at the prompt, enter the commands: intlibname := "C:/inttypes": libname := intlibname, libname: with(inttypes); ============================================================== ======================================================== # Number Theory Type Type's Name == =================== ====================== #1) compositenum "Composite Number" #2) prime "Prime Number" (internal to maple) #3) semiprime "Semiprime" #4) almostprime3 "3-Almost Prime" #5) almostprime4 "4-Almost Prime" #6) almostprime5 "5-Almost Prime" #7) almostprime6 "6-Almost Prime" #8) almostprime7 "7-Almost Prime" #9) almostprime8 "8-Almost Prime" #10) almostprime9 "9-Almost Prime" #11) almostprime10 "10-Almost Prime" #12) almostprime11 "11-Almost Prime" #13) almostprime12 "12-Almost Prime" #14) almostprime13 "13-Almost Prime" #15) almostprime14 "14-Almost Prime" #16) almostprime15 "15-Almost Prime" #17) almostprime16 "16-Almost Prime" #18) almostprime17 "17-Almost Prime" #19) almostprime18 "18-Almost Prime" #20) almostprime19 "19-Almost Prime" #21) almostprime20 "20-Almost Prime" #22) perfectnum "Perfect Number" #23) mersennenum "Mersenne Number" #24) mersenneexpprime "Mersenne Exponent Prime" #25) mersenneprime "Mersenne Prime" #26) doublemersenneprime "Double Mersenne Prime" #27) fibonaccinum "Fibonacci Number" #28) fibonacciprime "Fibonacci Prime" #29) permutableprime "Permutable Prime" #30) lessertwinprime "Lesser Twin Prime" #31) greatertwinprime "Greater Twin Prime" #32) isolatedprime "Isolated Prime" #33) lessercousinprime "Lesser Cousin Prime" #34) greatercousinprime "Greater Cousin Prime" #35) lessersexyprime "Lesser Sexy Prime" #36) greatersexyprime "Greater Sexy Prime" #37) eisensteinprime "Eisenstein Prime" #38) gaussianprime "Gaussian Prime" #39) repdigitnum "Rep Digit Number" #40) repunitprime "Rep Unit Prime" #41) woodallnum "Woodall Number" #42) woodallprime "Woodall Prime" #43) palindromicnum "Palindromic Number" #44) beautifulnum "Beautiful Number" #45) squarenum "Square Number" #46) triangularnum "Triangular Number" #47) oblongnum "Oblong Number" #48) hexagonalnum "Hexagonal Number" #49) tetrahedralnum "Tetrahedral Number" #50) decagonalnum "Decagonal Number" #51) abundantnum "Abundant Number" #52) aspiringnum "Aspiring Number" #53) sociablenum "Sociable Number" #54) squarefreenum "Square-free Number" #55) luckynum "Lucky Number" #56) luckyprime "Lucky Prime" #57) pentagonalnum "Pentagonal Number" #58) amicablenum "Amicable Number" #59) deficientnum "Deficient Number" #60) happynum "Happy Number" #61) happyprime "Happy Prime" #62) unhappynum "Unhappy Number" #63) unhappyprime "Unhappy Prime" #64) pseudoperfectnum "Pseudo-perfect Number" #65) automorphicnum "Automorphic Number" #66) duffiniannum "Duffinian Number" #67) cuban1prime "Cuban 1 Prime" #68) cuban2prime "Cuban 2 Prime" #69) prothnum "Proth Number" #70) prothprime "Proth Prime" #71) wilsonprime "Wilson Prime" #72) bellnum "Bell Number" #73) bellprime "Bell Prime" #74) carolnum "Carol Number" #75) carolprime "Carol Prime" #76) cdecagonalnum "Centered Decagonal Number" #77) cdecagonalprime "Centered Decagonal Prime" #78) cheptagonalnum "Centered Heptagonal Number" #79) cheptagonalprime "Centered Heptagonal Prime" #80) csquarenum "Centered Square Number" #81) csquareprime "Centered Square Prime" #82) ctriangularnum "Centered Triangular Number" #83) ctriangularprime "Centered Triangular Prime" #84) chenprime "Chen Prime" #85) superprime "Super Prime" #86) supersingularprime "Super Singular Prime" #87) cullennum "Cullen Number" #88) cullenprime "Cullen Prime" #89) circularprime "Circular Prime" #90) emirps "Reverse Primes (emirps)" #91) primorialnum "Primorial Number" #92) primorialprime "Primorial Prime" #93) euclidnum "Euclid Number" #94) euclidprime "Euclid Prime" #95) evenprime "Even Prime" #96) oddprime "Odd Prime" #97) evennum "Even Number" #98) oddnum "Odd Number" #99) fermatnum "Fermat Number" #100) fermatprime "Fermat Prime" #101) genocchiprime "Genochi Prime" #102) goodprime "Good Prime" #103) kyneanum "Kynea Number" #104) kyneaprime "Kynea Prime" #105) lefttruncatableprime "Left Truncatable Prime" #106) righttruncatableprime "Right Truncatable Prime" #107) twosidedprime "Two Sided Prime" #108) lucasnum "Lucas Number" #109) lucasprime "Lucas Prime" #110) minimalprime "Minimal Prime" #111) padovannum "Padovan Number" #112) padovanprime "Padovan Prime" #113) partitionnum "Partition Number" #114) partitionprime "Partition Prime" #115) pellnum "Pell Number" #116) pellprime "Pell Prime" #117) perrinnum "Perrin Number" #118) perrinprime "Perrin Prime" #119) pierpontprime "Pierpont Prime" #120) pythagoreanprime "Pythagorean Prime" #121) binaryquadraticprime "Binary Quadratic Prime" #122) quartanprime "Quartan Prime" #123) residueclass6nplus1prime "Residue Class 6n + 1 Prime" #124) residueclass6nplus5prime "Residue Class 6n + 5 Prime" #125) residueclass8nplus1prime "Residue Class 8n + 1 Prime" #126) residueclass8nplus3prime "Residue Class 8n + 3 Prime" #127) residueclass8nplus5prime "Residue Class 8n + 5 Prime" #128) residueclass8nplus7prime "Residue Class 8n + 7 Prime" #129) residueclass10nplus1prime "Residue Class 10n + 1 Prime" #130) residueclass10nplus3prime "Residue Class 10n + 3 Prime" #131) residueclass10nplus7prime "Residue Class 10n + 7 Prime" #132) residueclass10nplus9prime "Residue Class 10n + 9 Prime" #133) safeprime "Safe Prime" #134) sophiegermainprime "Sophie Germain Prime" #135) starprime "Star Prime" #136) thabitprime "Thabit Prime" #137) wagstaffformprime "Wagstaff Form of (2p + 1) / 3 Prime" #138) wagstaffvalueprime "Wagstaff Value p Prime" #139) wieferichbase2prime "Wieferich base 2 prime" #140) wieferichbase3prime "Wieferich base 3 prime" #141) wieferichbase5prime "Wieferich base 5 prime" #142) wieferichbase6prime "Wieferich base 6 prime" #143) wieferichbase7prime "Wieferich base 7 prime" #144) wieferichbase10prime
Recommended publications
  • On Untouchable Numbers and Related Problems
    ON UNTOUCHABLE NUMBERS AND RELATED PROBLEMS CARL POMERANCE AND HEE-SUNG YANG Abstract. In 1973, Erd˝os proved that a positive proportion of numbers are untouchable, that is, not of the form σ(n) n, the sum of the proper divisors of n. We investigate the analogous question where σ is− replaced with the sum-of-unitary-divisors function σ∗ (which sums divisors d of n such that (d, n/d) = 1), thus solving a problem of te Riele from 1976. We also describe a fast algorithm for enumerating untouchable numbers and their kin. 1. Introduction If f(n) is an arithmetic function with nonnegative integral values it is interesting to con- sider Vf (x), the number of integers 0 m x for which f(n) = m has a solution. That is, one might consider the distribution≤ of the≤ range of f within the nonnegative integers. For some functions f(n) this is easy, such as the function f(n) = n, where Vf (x) = x , or 2 ⌊ ⌋ f(n) = n , where Vf (x) = √x . For f(n) = ϕ(n), Euler’s ϕ-function, it was proved by ⌊ ⌋ 1+o(1) Erd˝os [Erd35] in 1935 that Vϕ(x) = x/(log x) as x . Actually, the same is true for a number of multiplicative functions f, such as f = σ,→ the ∞ sum-of-divisors function, and f = σ∗, the sum-of-unitary-divisors function, where we say d is a unitary divisor of n if d n, | d > 0, and gcd(d,n/d) = 1. In fact, a more precise estimation of Vf (x) is known in these cases; see Ford [For98].
    [Show full text]
  • Pseudoprime Reductions of Elliptic Curves
    Mathematical Proceedings of the Cambridge Philosophical Society VOL. 146 MAY 2009 PART 3 Math. Proc. Camb. Phil. Soc. (2009), 146, 513 c 2008 Cambridge Philosophical Society 513 doi:10.1017/S0305004108001758 Printed in the United Kingdom First published online 14 July 2008 Pseudoprime reductions of elliptic curves BY ALINA CARMEN COJOCARU Dept. of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, 60607-7045, U.S.A. and The Institute of Mathematics of the Romanian Academy, Bucharest, Romania. e-mail: [email protected] FLORIAN LUCA Instituto de Matematicas,´ Universidad Nacional Autonoma´ de Mexico,´ C.P. 58089, Morelia, Michoacan,´ Mexico.´ e-mail: [email protected] AND IGOR E. SHPARLINSKI Dept. of Computing, Macquarie University, Sydney, NSW 2109, Australia. e-mail: [email protected] (Received 10 April 2007; revised 25 April 2008) Abstract Let b 2 be an integer and let E/Q be a fixed elliptic curve. In this paper, we estimate the number of primes p x such that the number of points n E (p) on the reduction of E modulo p is a base b prime or pseudoprime. In particular, we improve previously known bounds which applied only to prime values of n E (p). 1. Introduction Let b 2 be an integer. Recall that a pseudoprime to base b is a composite positive integer m such that the congruence bm ≡ b (mod m) holds. The question of the distri- bution of pseudoprimes in certain sequences of positive integers has received some in- terest. For example, in [PoRo], van der Poorten and Rotkiewicz show that any arithmetic 514 A.
    [Show full text]
  • Ces`Aro's Integral Formula for the Bell Numbers (Corrected)
    Ces`aro’s Integral Formula for the Bell Numbers (Corrected) DAVID CALLAN Department of Statistics University of Wisconsin-Madison Medical Science Center 1300 University Ave Madison, WI 53706-1532 [email protected] October 3, 2005 In 1885, Ces`aro [1] gave the remarkable formula π 2 cos θ N = ee cos(sin θ)) sin( ecos θ sin(sin θ) ) sin pθ dθ p πe Z0 where (Np)p≥1 = (1, 2, 5, 15, 52, 203,...) are the modern-day Bell numbers. This formula was reproduced verbatim in the Editorial Comment on a 1941 Monthly problem [2] (the notation Np for Bell number was still in use then). I have not seen it in recent works and, while it’s not very profound, I think it deserves to be better known. Unfortunately, it contains a typographical error: a factor of p! is omitted. The correct formula, with n in place of p and using Bn for Bell number, is π 2 n! cos θ B = ee cos(sin θ)) sin( ecos θ sin(sin θ) ) sin nθ dθ n ≥ 1. n πe Z0 eiθ The integrand is the imaginary part of ee sin nθ, and so an equivalent formula is π 2 n! eiθ B = Im ee sin nθ dθ . (1) n πe Z0 The formula (1) is quite simple to prove modulo a few standard facts about set par- n titions. Recall that the Stirling partition number k is the number of partitions of n n [n] = {1, 2,...,n} into k nonempty blocks and the Bell number Bn = k=1 k counts n k n n k k all partitions of [ ].
    [Show full text]
  • On Cullen Numbers Which Are Both Riesel and Sierpiński Numbers
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Number Theory 132 (2012) 2836–2841 Contents lists available at SciVerse ScienceDirect Journal of Number Theory www.elsevier.com/locate/jnt On Cullen numbers which are both Riesel and Sierpinski´ numbers ∗ Pedro Berrizbeitia a, J.G. Fernandes a, ,MarcosJ.Gonzáleza,FlorianLucab, V. Janitzio Mejía Huguet c a Departamento de Matemáticas, Universidad Simón Bolívar, Caracas 1080-A, Venezuela b Instituto de Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Michoacán, Mexico c Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo #180, Col. Reynosa Tamaulipas, Azcapotzalco, 02200, México DF, Mexico article info abstract Article history: We describe an algorithm to determine whether or not a given Received 27 January 2012 system of congruences is satisfied by Cullen numbers. We use Revised 21 May 2012 this algorithm to prove that there are infinitely many Cullen Accepted 21 May 2012 numbers which are both Riesel and Sierpinski.´ (Such numbers Available online 3 August 2012 should be discarded if you are searching prime numbers with Communicated by David Goss Proth’s theorem.) Keywords: © 2012 Elsevier Inc. All rights reserved. Cullen numbers Covering congruences Sierpinski´ numbers Riesel numbers 1. Introduction n The numbers Cn = n2 + 1 where introduced, in 1905, by the Reverend J. Cullen [1] as a particular n n case of the Proth family k2 + 1, where k = n. The analogous numbers Wn = n2 − 1 where intro- duced as far as we know, in 1917, by Cunningham and Woodall [3].
    [Show full text]
  • Recent Progress in Additive Prime Number Theory
    Introduction Arithmetic progressions Other linear patterns Recent progress in additive prime number theory Terence Tao University of California, Los Angeles Mahler Lecture Series Terence Tao Recent progress in additive prime number theory Introduction Arithmetic progressions Other linear patterns Additive prime number theory Additive prime number theory is the study of additive patterns in the prime numbers 2; 3; 5; 7;:::. Examples of additive patterns include twins p; p + 2, arithmetic progressions a; a + r;:::; a + (k − 1)r, and prime gaps pn+1 − pn. Many open problems regarding these patterns still remain, but there has been some recent progress in some directions. Terence Tao Recent progress in additive prime number theory Random models for the primes Introduction Sieve theory Arithmetic progressions Szemerédi’s theorem Other linear patterns Putting it together Long arithmetic progressions in the primes I’ll first discuss a theorem of Ben Green and myself from 2004: Theorem: The primes contain arbitrarily long arithmetic progressions. Terence Tao Recent progress in additive prime number theory Random models for the primes Introduction Sieve theory Arithmetic progressions Szemerédi’s theorem Other linear patterns Putting it together It was previously established by van der Corput (1929) that the primes contained infinitely many progressions of length three. In 1981, Heath-Brown showed that there are infinitely many progressions of length four, in which three elements are prime and the fourth is an almost prime (the product of at most
    [Show full text]
  • Input for Carnival of Math: Number 115, October 2014
    Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144.
    [Show full text]
  • MAT344 Lecture 6
    MAT344 Lecture 6 2019/May/22 1 Announcements 2 This week This week, we are talking about 1. Recursion 2. Induction 3 Recap Last time we talked about 1. Recursion 4 Fibonacci numbers The famous Fibonacci sequence starts like this: 1; 1; 2; 3; 5; 8; 13;::: The rule defining the sequence is F1 = 1;F2 = 1, and for n ≥ 3, Fn = Fn−1 + Fn−2: This is a recursive formula. As you might expect, if certain kinds of numbers have a name, they answer many counting problems. Exercise 4.1 (Example 3.2 in [KT17]). Show that a 2 × n checkerboard can be tiled with 2 × 1 dominoes in Fn+1 many ways. Solution: Denote the number of tilings of a 2 × n rectangle by Tn. We check that T1 = 1 and T2 = 2. We want to prove that they satisfy the recurrence relation Tn = Tn−1 + Tn−2: Consider the domino occupying the rightmost spot in the top row of the tiling. It is either a vertical domino, in which case the rest of the tiling can be interpreted as a tiling of a 2 × (n − 1) rectangle, or it is a horizontal domino, in which case there must be another horizontal domino under it, and the rest of the tiling can be interpreted as a tiling of a 2 × (n − 2) rectangle. Therefore Tn = Tn−1 + Tn−2: Since the number of tilings satisfies the same recurrence relation as the Fibonacci numbers, and T1 = F2 = 1 and T2 = F3 = 2, we may conclude that Tn = Fn+1.
    [Show full text]
  • A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000)
    A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000) 1. INTRODUCTION In 1982, Albert Wilansky, a mathematics professor at Lehigh University wrote a short article in the Two-Year College Mathematics Journal [6]. In that article he identified a new subset of the composite numbers. He defined a Smith number to be a composite number where the sum of the digits in its prime factorization is equal to the digit sum of the number. The set was named in honor of Wi!anskyJs brother-in-law, Dr. Harold Smith, whose telephone number 493-7775 when written as a single number 4,937,775 possessed this interesting characteristic. Adding the digits in the number and the digits of its prime factors 3, 5, 5 and 65,837 resulted in identical sums of42. Wilansky provided two other examples of numbers with this characteristic: 9,985 and 6,036. Since that time, many things have been discovered about Smith numbers including the fact that there are infinitely many Smith numbers [4]. The largest Smith numbers were produced by Samuel Yates. Using a large repunit and large palindromic prime, Yates was able to produce Smith numbers having ten million digits and thirteen million digits. Using the same large repunit and a new large palindromic prime, the author is able to find a Smith number with over thirty-two million digits. 2. NOTATIONS AND BASIC FACTS For any positive integer w, we let S(ri) denote the sum of the digits of n.
    [Show full text]
  • ARTIN-MAZUR ZETA FUNCTIONS in ARITHMETIC DYNAMICS How Should We Define the Zeta Function of a Rational Map F : P 1(K) → P 1(K)
    ARTIN-MAZUR ZETA FUNCTIONS IN ARITHMETIC DYNAMICS EVAN WARNER How should we define the zeta function of a rational map f : P1(k) ! P1(k), k a field? All we need is a sequence of numbers, and it makes sense to consider the sequence jPern(f)j, where 1 n Pern(f) = fx 2 P (k): f (x) = xg: Then we construct a zeta function in the usual way: 1 ! X tn ζ(f; t) = exp jPer (f)j : n n n=1 This is a special case of an Artin-Mazur zeta function, which is defined for certain dynamical systems (and in general counts the number of isolated fixed points). Note that we are, as usual, not counting fixed points with multiplicity, which in this case would be something like the Lefschetz index. In fact, if we did count with n multiplicity and deg f = d, then jPern(f)j = d + 1 for all n, and after summing the geometric series we would get 1 ζ(f; t) = : (1 − t)(1 − dt) n In general, we at least have jPern(f)j ≤ d + 1, so the zeta function is certainly defined as a formal power series and even converges on a positive radius around the origin if k is a normed field. The usual formal manipulations give rise to an Euler product over cycles, and in particular ζ(f; t) 2 Z[[t]]. Over C, these zeta functions aren't too hard to calculate: Theorem 1 (Hinkkanen). If f : P1(C) ! P1(C) has degree d ≥ 2, then ζ(f; t) is a rational function.
    [Show full text]
  • 2020 Chapter Competition Solutions
    2020 Chapter Competition Solutions Are you wondering how we could have possibly thought that a Mathlete® would be able to answer a particular Sprint Round problem without a calculator? Are you wondering how we could have possibly thought that a Mathlete would be able to answer a particular Target Round problem in less 3 minutes? Are you wondering how we could have possibly thought that a particular Team Round problem would be solved by a team of only four Mathletes? The following pages provide solutions to the Sprint, Target and Team Rounds of the 2020 MATHCOUNTS® Chapter Competition. These solutions provide creative and concise ways of solving the problems from the competition. There are certainly numerous other solutions that also lead to the correct answer, some even more creative and more concise! We encourage you to find a variety of approaches to solving these fun and challenging MATHCOUNTS problems. Special thanks to solutions author Howard Ludwig for graciously and voluntarily sharing his solutions with the MATHCOUNTS community. 2020 Chapter Competition Sprint Round 1. Each hour has 60 minutes. Therefore, 4.5 hours has 4.5 × 60 minutes = 45 × 6 minutes = 270 minutes. 2. The ratio of apples to oranges is 5 to 3. Therefore, = , where a represents the number of apples. So, 5 3 = 5 × 9 = 45 = = . Thus, apples. 3 9 45 3 3. Substituting for x and y yields 12 = 12 × × 6 = 6 × 6 = . 1 4. The minimum Category 4 speed is 130 mi/h2. The maximum Category 1 speed is 95 mi/h. Absolute difference is |130 95| mi/h = 35 mi/h.
    [Show full text]
  • FINITENESS of COMMUTABLE MAPS of BOUNDED DEGREE 1. Introduction a Dynamical System (V,F) Consists of a Set V and a Self Map
    Bull. Korean Math. Soc. 52 (2015), No. 1, pp. 45–56 http://dx.doi.org/10.4134/BKMS.2015.52.1.045 FINITENESS OF COMMUTABLE MAPS OF BOUNDED DEGREE Chong Gyu Lee and Hexi Ye Abstract. In this paper, we study the relation between two dynamical systems (V,f) and (V,g) with f◦g = g◦f. As an application, we show that an endomorphism (respectively a polynomial map with Zariski dense, of bounded Preper(f)) has only finitely many endomorphisms (respectively polynomial maps) of bounded degree which are commutable with f. 1. Introduction A dynamical system (V,f) consists of a set V and a self map f : V → V . If V is a subset of a projective space Pn defined over a finitely generated field K over Q, then we have arithmetic height functions on V , which make a huge contribution to the study of (V,f). In this paper, we show the following results by studying arithmetic relations between two dynamical systems (V,f) and (V,g) with f ◦ g = g ◦ f. n n Main Theorem (Theorems 3.3 and 4.2). (1) Let φ : PC → PC be an en- n domorphism on PC, of degree at least 2. Then there are only finitely many endomorphisms of degree d which are commutable with φ: n Com(φ, d) := {ψ ∈ End(PC) | φ ◦ ψ = ψ ◦ φ, deg ψ = d} is a finite set. n n (2) Let f : AC → AC be a quasi-projective endomorphism (i.e., polyno- n mial maps) on AC. Suppose that Preper(f), the set of preperiodic points of f, is of bounded height and Zariski dense.
    [Show full text]
  • Second Grade Unit 1: Extending Base Ten Understanding
    Georgia Standards of Excellence Curriculum Frameworks Mathematics GSE Second Grade Unit 1: Extending Base Ten Understanding These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. Georgia Department of Education Georgia Standards of Excellence Framework GSE Extending Base Ten Understanding Unit 1 Unit 1: Extending Base Ten Understanding TABLE OF CONTENTS Overview……………………………………………………………………………..... 3 Standards for Mathematical Practice …………………………………………………. 5 Standards for Mathematical Content …………………………………………………. 6 Big Ideas ………………………………………………………………………………. 6 Essential Questions ……………………………………………………………………….. 7 Concepts and Skills to Maintain ………………………………………………………. 7 Strategies for Teaching and Learning ……………………………………………. 8 Selected Terms and Symbols ………………………………………………..………… 10 Task Types ………………………………………………………………...………….. 12 Task Descriptions …………………………………………………………………….. 13 Intervention Table………………….………………………………………………….. 15 Straws! Straws! Straws!.........................................................................… 16 Where Am I on the Number Line? …………………………………… 23 I Spy a Number ………………………………………………………. 31 Number Hop …………………………………………………………… 38 Place Value Play …………………………………………………….... 44 The Importance of Zero ………………………………………………. 51 Base Ten Pictures …………………………………………………….. 62 Building Base Ten Numbers …………………………………………. 69 What's My Number? …………………………………………………. 74 Capture the Caterpillar ……………………………………………….. 79 Formative Assessment Lesson ……………………………………….. 88 Fill the Bucket ………………………………………………………..
    [Show full text]