How Do Users and Processes Interact with the Operating System
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
A Microkernel API for Fine-Grained Decomposition
A Microkernel API for Fine-Grained Decomposition Sebastian Reichelt Jan Stoess Frank Bellosa System Architecture Group, University of Karlsruhe, Germany freichelt,stoess,[email protected] ABSTRACT from the microkernel APIs in existence. The need, for in- Microkernel-based operating systems typically require spe- stance, to explicitly pass messages between servers, or the cial attention to issues that otherwise arise only in dis- need to set up threads and address spaces in every server for tributed systems. The resulting extra code degrades per- parallelism or protection require OS developers to adopt the formance and increases development effort, severely limiting mindset of a distributed-system programmer rather than to decomposition granularity. take advantage of their knowledge on traditional OS design. We present a new microkernel design that enables OS devel- Distributed-system paradigms, though well-understood and opers to decompose systems into very fine-grained servers. suited for physically (and, thus, coarsely) partitioned sys- We avoid the typical obstacles by defining servers as light- tems, present obstacles to the fine-grained decomposition weight, passive objects. We replace complex IPC mecha- required to exploit the benefits of microkernels: First, a nisms by a simple function-call approach, and our passive, lot of development effort must be spent into matching the module-like server model obviates the need to create threads OS structure to the architecture of the selected microkernel, in every server. Server code is compiled into small self- which also hinders porting existing code from monolithic sys- contained files, which can be loaded into the same address tems. Second, the more servers exist | a desired property space (for speed) or different address spaces (for safety). -
Kernel Panic
Kernel Panic Connect, Inc. 1701 Quincy Avenue, Suites 5 & 6, Naperville, IL 60540 Ph: (630) 717-7200 Fax: (630) 717-7243 www.connectrf.com Table of Contents SCO Kernel Patches for Panics on Pentium Systems…………………………………..1 Kernel Panic Debug Methodologies..............................................................................3 SCO Kernel Patches for Panics on Pentium Systems SCO Kernel Patches for Panics on Pentium Systems Web Links http://www.sco.com/cgi-bin/ssl_reference?104530 http://www.sco.com/cgi-bin/ssl_reference?105532 Pentium System Panics with Trap Type 6; no dump is saved to /dev/swap. Keywords panic trap kernel invalid opcode pentium querytlb querytbl 386 mpx unix v4 dump swap double type6 no patch /etc/conf/pack.d/kernel/locore.o image locore Release SCO UNIX System V/386 Release 3.2 Operating System Version 4.0, 4.1 and 4.2 SCO Open Desktop Release 2.0 and 3.0 SCO Open Server System Release 2.0 and 3.0 Problem My system panics with a Trap Type 6, but no memory dump gets written. Cause There is a flaw in the kernel querytlb() routine that allows the Pentium to execute a 386-specific instruction which causes it to panic with an invalid opcode. querytlb() is only called when your system is panicking. The fault causes the system to double- panic and it thus fails to write a panic dump to disk. This means that the panic trap type 6 is concealing another type of panic which will show itself after the following patch has been applied. Solution You can apply the following patch, as root, to: /etc/conf/pack.d/kernel/locore.o Use the procedure that follows. -
Chapter 1: Introduction What Is an Operating System?
Chapter 1: Introduction What is an Operating System? Mainframe Systems Desktop Systems Multiprocessor Systems Distributed Systems Clustered System Real -Time Systems Handheld Systems Computing Environments Operating System Concepts 1.1 Silberschatz, Galvin and Gagne 2002 What is an Operating System? A program that acts as an intermediary between a user of a computer and the computer hardware. Operating system goals: ) Execute user programs and make solving user problems easier. ) Make the computer system convenient to use. Use the computer hardware in an efficient manner. Operating System Concepts 1.2 Silberschatz, Galvin and Gagne 2002 1 Computer System Components 1. Hardware – provides basic computing resources (CPU, memory, I/O devices). 2. Operating system – controls and coordinates the use of the hardware among the various application programs for the various users. 3. Applications programs – define the ways in which the system resources are used to solve the computing problems of the users (compilers, database systems, video games, business programs). 4. Users (people, machines, other computers). Operating System Concepts 1.3 Silberschatz, Galvin and Gagne 2002 Abstract View of System Components Operating System Concepts 1.4 Silberschatz, Galvin and Gagne 2002 2 Operating System Definitions Resource allocator – manages and allocates resources. Control program – controls the execution of user programs and operations of I/O devices . Kernel – the one program running at all times (all else being application programs). -
Software User Guide
Software User Guide • For the safe use of your camera, be sure to read the “Safety Precautions” thoroughly before use. • Types of software installed on your computer varies depending on the method of installation from the Caplio Software CD-ROM. For details, see the “Camera User Guide”. Using These Manuals How to Use the The two manuals included are for your Caplio Software User Guide 500SE. Display examples: 1. Understanding How to Use Your The LCD Monitor Display examples may be Camera different from actual display screens. “Camera User Guide” (Printed manual) Terms: This guide explains the usage and functions In this guide, still images, movies, and sounds of the camera. You will also see how to install are all referred to as “images” or “files”. the provided software on your computer. Symbols: This guide uses the following symbols and conventions: Caution Caution This indicates important notices and restrictions for using this camera. 2. Downloading Images to Your Computer “Software User Guide” Note *This manual (this file) This indicates supplementary explanations and useful This guide explains how to download images tips about camera operations. from the camera to your computer using the provided software. Refer to This indicates page(s) relevant to a particular function. “P. xx” is used to refer you to pages in this manual. Term 3. Displaying Images on Your This indicates terms that are useful for understanding Computer the explanations. The provided software “ImageMixer” allows you to display and edit images on your computer. For details on how to use ImageMixer, click the [?] button on the ImageMixer window and see the displayed manual. -
Openvms Record Management Services Reference Manual
OpenVMS Record Management Services Reference Manual Order Number: AA-PV6RD-TK April 2001 This reference manual contains general information intended for use in any OpenVMS programming language, as well as specific information on writing programs that use OpenVMS Record Management Services (OpenVMS RMS). Revision/Update Information: This manual supersedes the OpenVMS Record Management Services Reference Manual, OpenVMS Alpha Version 7.2 and OpenVMS VAX Version 7.2 Software Version: OpenVMS Alpha Version 7.3 OpenVMS VAX Version 7.3 Compaq Computer Corporation Houston, Texas © 2001 Compaq Computer Corporation Compaq, AlphaServer, VAX, VMS, the Compaq logo Registered in U.S. Patent and Trademark Office. Alpha, PATHWORKS, DECnet, DEC, and OpenVMS are trademarks of Compaq Information Technologies Group, L.P. in the United States and other countries. UNIX and X/Open are trademarks of The Open Group in the United States and other countries. All other product names mentioned herein may be the trademarks of their respective companies. Confidential computer software. Valid license from Compaq required for possession, use, or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial license. Compaq shall not be liable for technical or editorial errors or omissions contained herein. The information in this document is provided "as is" without warranty of any kind and is subject to change without notice. The warranties for Compaq products are set forth in the express limited warranty statements accompanying such products. Nothing herein should be construed as constituting an additional warranty. -
End-User Computing Security Guidelines Previous Screen Ron Hale Payoff Providing Effective Security in an End-User Computing Environment Is a Challenge
86-10-10 End-User Computing Security Guidelines Previous screen Ron Hale Payoff Providing effective security in an end-user computing environment is a challenge. First, what is meant by security must be defined, and then the services that are required to meet management's expectations concerning security must be established. This article examines security within the context of an architecture based on quality. Problems Addressed This article examines security within the context of an architecture based on quality. To achieve quality, the elements of continuity, confidentiality, and integrity need to be provided. Confidentiality as it relates to quality can be defined as access control. It includes an authorization process, authentication of users, a management capability, and auditability. This last element, auditability, extends beyond a traditional definition of the term to encompass the ability of management to detect unusual or unauthorized circumstances and actions and to trace events in an historical fashion. Integrity, another element of quality, involves the usual components of validity and accuracy but also includes individual accountability. All information system security implementations need to achieve these components of quality in some fashion. In distributed and end-user computing environments, however, they may be difficult to implement. The Current Security Environment As end-user computing systems have advanced, many of the security and management issues have been addressed. A central administration capability and an effective level of access authorization and authentication generally exist for current systems that are connected to networks. In prior architectures, the network was only a transport mechanism. In many of the systems that are being designed and implemented today, however, the network is the system and provides many of the security services that had been available on the mainframe. -
Introduction to Unix
Introduction to Unix Rob Funk <[email protected]> University Technology Services Workstation Support http://wks.uts.ohio-state.edu/ University Technology Services Course Objectives • basic background in Unix structure • knowledge of getting started • directory navigation and control • file maintenance and display commands • shells • Unix features • text processing University Technology Services Course Objectives Useful commands • working with files • system resources • printing • vi editor University Technology Services In the Introduction to UNIX document 3 • shell programming • Unix command summary tables • short Unix bibliography (also see web site) We will not, however, be covering these topics in the lecture. Numbers on slides indicate page number in book. University Technology Services History of Unix 7–8 1960s multics project (MIT, GE, AT&T) 1970s AT&T Bell Labs 1970s/80s UC Berkeley 1980s DOS imitated many Unix ideas Commercial Unix fragmentation GNU Project 1990s Linux now Unix is widespread and available from many sources, both free and commercial University Technology Services Unix Systems 7–8 SunOS/Solaris Sun Microsystems Digital Unix (Tru64) Digital/Compaq HP-UX Hewlett Packard Irix SGI UNICOS Cray NetBSD, FreeBSD UC Berkeley / the Net Linux Linus Torvalds / the Net University Technology Services Unix Philosophy • Multiuser / Multitasking • Toolbox approach • Flexibility / Freedom • Conciseness • Everything is a file • File system has places, processes have life • Designed by programmers for programmers University Technology Services -
SUMURI Macintosh Forensics Best Practices
! MAC FORENSICS - STEP BY STEP Disclaimer: Before using any new procedure, hardware or software for forensics you must do your own validation and testing before working on true evidence. These best practices are summarized from SUMURI’s Macintosh Forensic Survival Courses which is a vendor- neutral training course taught to law enforcement, government and corporate examiners worldwide. More information about SUMURI can be found at SUMURI.com STEP ACTIONS DESCRIPTION STEP-1: PRE-SEARCH INTELLIGENCE Find out as much as you can about your target: • Number and types of Macs (MacBook, iMac or Mac Pro). • Operating System Versions (for collecting/processing volatile data and Copy Over Procedure). • Type/s and number of ports. • Does it contain a T2 chipset with Secure Boot? • Is FileVault Active? STEP-2: ISOLATE Assign one trained Digital Evidence Collection Specialist to handle the computers to minimize contamination and Chain of Custody. Prohibit anyone else from handling the devices. STEP-3: ALWAYS ASK FOR THE PASSWORD Most newer Macs have enhanced security features such as T2 Security Chipsets, APFS File Systems, Secure Boot, FileVault and more. Any one or combination of these security features can stop you from getting the data. ALWAYS ASK FOR THE PASSWORD. SUMURI.com © SUMURI 2010-2019 ! STEP ACTIONS DESCRIPTION STEP-4: IF COMPUTER IS ON - SCREEN SAVER PASSWORD ACTIVE Options are: • Ask for the Password - Confirm password and proceed to Step-6. • Restart to Image RAM - Connect a RAM Imaging Utility to the Mac such as RECON IMAGER. Conduct a soft-restart (do not power off if possible and image the RAM). -
Student Computer User Agreement
STUDENT COMPUTER USER AGREEMENT GUIDING PRINCIPLE OF THIS AGREEMENT: Lakeside’s technological resources are dedicated to further the school’s mission and to serve the educational pursuits of its students. Students using Lakeside’s technology services are expected to behave in accordance with the Community Expectations documented in the family handbook. Students are expected to act in ways that show consideration and respect for other people and enhance an open atmosphere of trust, both offline and online. TECHNOLOGY SERVICES The use of Lakeside’s technology services – tech support, network access, email accounts, storage services, software subscriptions and all other school-owned computer resources – is a privilege, not a right. This privilege may be revoked at any time for abusive conduct, or failure to abide by the school’s expectations and/or responsible usage listed below. GENERAL EXPECTATIONS ▪ Lakeside email accounts, software and services, and onsite network access are provided primarily for school-related work. ▪ Any user of Lakeside’s electronic communications resources is expected to respect the person and privacy of others. ▪ The configuration of school-issued computers (operating system, security settings and software applications) may not be altered. ▪ Using the Lakeside computer network to exchange or store pirated software, unlawful information, or other unauthorized copyright-protected material (i.e. music, multimedia) in any file format is strictly prohibited. ▪ Students are expected to maintain the integrity of their computing devices so as not to bring viruses, malware or spyware to school. Unprotected and infected devices are forbidden to connect to the school network and, when detected, will be disconnected from the network until resolved. -
Linux Kernal II 9.1 Architecture
Page 1 of 7 Linux Kernal II 9.1 Architecture: The Linux kernel is a Unix-like operating system kernel used by a variety of operating systems based on it, which are usually in the form of Linux distributions. The Linux kernel is a prominent example of free and open source software. Programming language The Linux kernel is written in the version of the C programming language supported by GCC (which has introduced a number of extensions and changes to standard C), together with a number of short sections of code written in the assembly language (in GCC's "AT&T-style" syntax) of the target architecture. Because of the extensions to C it supports, GCC was for a long time the only compiler capable of correctly building the Linux kernel. Compiler compatibility GCC is the default compiler for the Linux kernel source. In 2004, Intel claimed to have modified the kernel so that its C compiler also was capable of compiling it. There was another such reported success in 2009 with a modified 2.6.22 version of the kernel. Since 2010, effort has been underway to build the Linux kernel with Clang, an alternative compiler for the C language; as of 12 April 2014, the official kernel could almost be compiled by Clang. The project dedicated to this effort is named LLVMLinxu after the LLVM compiler infrastructure upon which Clang is built. LLVMLinux does not aim to fork either the Linux kernel or the LLVM, therefore it is a meta-project composed of patches that are eventually submitted to the upstream projects. -
Oracle VM Virtualbox User Manual
Oracle VM VirtualBox R User Manual Version 5.0.16 c 2004-2016 Oracle Corporation http://www.virtualbox.org Contents 1 First steps 11 1.1 Why is virtualization useful?............................. 12 1.2 Some terminology................................... 12 1.3 Features overview................................... 13 1.4 Supported host operating systems.......................... 15 1.5 Installing VirtualBox and extension packs...................... 16 1.6 Starting VirtualBox.................................. 17 1.7 Creating your first virtual machine......................... 18 1.8 Running your virtual machine............................ 21 1.8.1 Starting a new VM for the first time.................... 21 1.8.2 Capturing and releasing keyboard and mouse.............. 22 1.8.3 Typing special characters.......................... 23 1.8.4 Changing removable media......................... 24 1.8.5 Resizing the machine’s window...................... 24 1.8.6 Saving the state of the machine...................... 25 1.9 Using VM groups................................... 26 1.10 Snapshots....................................... 26 1.10.1 Taking, restoring and deleting snapshots................. 27 1.10.2 Snapshot contents.............................. 28 1.11 Virtual machine configuration............................ 29 1.12 Removing virtual machines.............................. 30 1.13 Cloning virtual machines............................... 30 1.14 Importing and exporting virtual machines..................... 31 1.15 Global Settings................................... -
The Management of End User Computing a Research Perspective
HD2 8 .M414 Oe>NeV THE MANAGEMENT OF END USER COMPUTING A RESEARCH PERSPECTIVE John F. Rockart Lauren S. Flannery February 1983 CISR WP #100 Sloan WP // 1410-83 Centerfor Information Systems Research Massachusetts Institute of Technology Sloan School of Management 77 Massachusetts Avenue Cambridge, Massachusetts, 02139 THE MANAGEMENT OF END USER COMPUTING A RESEARCH PERSPECTIVE John F. Rockart Lauren S . Flannery February 1983 CISR WP #100 Sloan WP // 1410-83 Rockart - Flannery 1983 Center for Information Systems Research Sloan School of Management Massachusetts Institute of Technology MAY 3 1 1983 RECe;v£d 1- ABSTRACT Based on interviews with 200 end users and 50 information systems managers concerned with end user computing, end users can be classified into six distinct types. Each of them needs differentiated education, support and control from the Information Systems function. End users exist primarily in staff functions. They develop and use a wide spectrum of computing applications ranging from "operational systems" of the type usually developed by information systems professionals to complex analytical programs. To support a large number of their applications a new computing environment, "the third environment" (in addition to the traditional COBOL and timesharing environments) must be developed by Information Systems (I/S) management. Close attention must also be paid by I/S management to the need to involve "functional support personnel" (end users in each functional area who spend most of their time programming and aiding other end users) in the I/S end user management process. An end user strategy is needed in each organization. In addition, users cite increasing needs for support from I/S management.