Jeu12691 Am.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Jeu12691 Am.Pdf PROF. SINA ADL (Orcid ID : 0000-0001-6324-6065) PROF. DAVID BASS (Orcid ID : 0000-0002-9883-7823) DR. CÉDRIC BERNEY (Orcid ID : 0000-0001-8689-9907) DR. PACO CÁRDENAS (Orcid ID : 0000-0003-4045-6718) DR. IVAN CEPICKA (Orcid ID : 0000-0002-4322-0754) DR. MICAH DUNTHORN (Orcid ID : 0000-0003-1376-4109) PROF. BENTE EDVARDSEN (Orcid ID : 0000-0002-6806-4807) DR. DENIS H. LYNN (Orcid ID : 0000-0002-1554-7792) DR. EDWARD A.D MITCHELL (Orcid ID : 0000-0003-0358-506X) PROF. JONG SOO PARK (Orcid ID : 0000-0001-6253-5199) DR. GUIFRÉ TORRUELLA (Orcid ID : 0000-0002-6534-4758) DR. VASILY V. ZLATOGURSKY (Orcid ID : 0000-0002-2688-3900) Article type : Original Article Corresponding author mail id: [email protected] Adl et al.---Classification of Eukaryotes Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Sina M. Adla, David Bassb,c, Christopher E. Laned, Julius Lukeše,f, Conrad L. Schochg, Alexey Smirnovh, Sabine Agathai, Cedric Berneyj, Matthew W. Brownk,l, Fabien Burkim, Paco Cárdenasn, o p q r,s t Ivan Čepička , Ludmila Chistyakova , Javier del Campo , Micah Dunthorn , Bente Edvardsen , Yana u v w x y z Eglit , Laure Guillou , VladimírAuthor Manuscript Hampl , Aaron A. Heiss , Mona Hoppenrath , Timothy Y. James , Sergey Karpovh, Eunsoo Kimx, Martin Koliskoe, Alexander Kudryavtsevh,aa, Daniel J. G. Lahrab, Enrique Laraac,ad, Line Le Gallae, Denis H. Lynnaf,ag, David G. Mannah, Ramon Massana i Moleraq, This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/jeu.12691-5149 This article is protected by copyright. All rights reserved Edward A. D. Mitchellac,ai , Christine Morrowaj, Jong Soo Parkak, Jan W. Pawlowskial, Martha J. Powellam, Daniel J. Richteran, Sonja Rueckertao, Lora Shadwickap, Satoshi Shimanoaq, Frederick W. Spiegelap, Guifré Torruella i Cortesar, Noha Youssefas, Vasily Zlatogurskyh,at, Qianqian Zhangau,av. a Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK Canada, and b Dept of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, and c Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, and d Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, 02881 USA, and e Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czechia, and f Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czechia, and gNational Institute for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA, and hDepartment of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia, and iDepartment of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria, and jCNRS, UMR 7144 (AD2M), Groupe Evolution des Protistes et Ecosystèmes Pélagiques, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France, and kDepartment of Biological Sciences, Mississippi State University, MS USA, and lInstitute for Genomics, Biocomputing & Biotechnology, Mississippi State University, MS USA, and mDepartment of Organismal Biology, Program in Systematic Biology, Science for Life Laboratory, Uppsala University, Uppsala 75236, Sweden, and nPharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-75123 Uppsala, Sweden, and oDepartment of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czechia, and pCore Facility Centre for Culture Collection of Microorganisms, Saint Petersburg State University, 198504 Saint Petersburg, Russia, and q Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta, 37-49 08003 Barcelona, Catalonia, Spain, and rDepartment of Ecology, University of Kaiserslautern, Erwin-Schroedinger Street, D-67663 Kaiserslautern, Germany, and sDepartment of Eukaryotic Microbiology, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany, and tDepartment of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway, and uDepartment of Biology, Dalhousie University, Halifax, NS, Canada, and vSorbonne Université, Université Pierre et Marie Curie - Paris 6, CNRS, UMR 7144 (AD2M), Station Biologique de Roscoff, Place Georges Teissier, CS90074, 29688 Roscoff, France, and w Author Manuscript Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 42 Vestec, Czechia, and xDepartment of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024 USA, and ySenckenberg am Meer, DZMB – German Centre for Marine Biodiversity Research, D-26382 Wilhelmshaven, Germany, and z Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA, and This article is protected by copyright. All rights reserved aaLaboratory of Parasitic Worms and Protistology, Zoological Institute RAS, 199034 Saint Petersburg, Russia, and abDepartment of Zoology, Institute of Biosciences, University of Sao Paulo, Matao Travessa 14 Cidade Universitaria, Sao Paulo, 05508-090 SP, Brazil, and acLaboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, Switzerland, and adReal Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain, and aeInstitut de Systématique, Évolution, Biodiversité, Muséum National d’Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 39 75005, Paris, France, and afDepartment of Integrative Biology, University of Guelph, Summerlee Science Complex, Guelph, Ontario N1G 2W1 Canada, and agDepartment of Zoology, University of British Columbia, 4200-6270 University Blvd., Vancouver, British Columbia V6T 1Z4 Canada, and ahRoyal Botanic Garden, Edinburgh, EH3 5LR, United Kingdom and Institute for Agrifood Research and Technology, C/ Poble Nou km 5.5, Sant Carles de La Ràpita, E-43540 Spain , and aiJardin Botanique de Neuchâtel, Chemin du Perthuis-du-Sault 58, CH-2000 Neuchâtel, Switzerland, and ajDepartment of Natural Sciences, National Museums Northern Ireland, 153 Bangor Road, Holywood BT18 OEU, Northern Ireland, UK, and akDepartment of Oceanography and Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, Republic of Korea, and alDepartment of Genetics and Evolution, University of Geneva 1211, Geneva 4, Switzerland, and amDepartment of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA, and anInstitut de Biologia Evolutiva (CSIC-Univeritat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain, and aoSchool of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, United Kingdom, and apDepartment of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA, and aqScience Research Centre, Hosei University, 2-17-1 Fujimi, Chiyoda-ku, Tokyo, 102-8160, Japan, and arLaboratoire Evolution et Systématique, Université Paris-XI, 91405 Orsay, France, and asDepartment of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74074 USA, and atDepartment of Organismal Biology, Systematic Biology Program, Uppsala university, Uppsala, Sweden, and au Yantai Institute of Coastal Zone Research, Chinese Academy of Science, Yantai 264003, China, and avInstitute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China. Abstract: This revision of the classification of eukaryotes follows that of Adl et al., 2012 [J. Euk. Microbiol. 59(5)] and retains an emphasis on protists. Changes since have improved the resolution of many nodes in phylogenetic analyses. For some clades even families are being clearly resolved. As we had predicted, environmental sampling in the intervening years has massively increased the genetic information at hand. Consequently, we have discoveredAuthor Manuscript novel clades, exciting new genera, and uncovered a massive species level diversity beyond the morphological species descriptions. Several clades known from environmental samples only have found their home. Sampling soils, deeper marine waters, and the deep sea will continue to fill us with surprises. The main changes in this revision are the confirmation that eukaryotes form at least two domains, the loss of monophyly in the Exavata, robust support for the Haptista and Cryptista. We provide suggested primer sets for DNA sequences from environmental samples that are effective for each This article is protected by copyright. All rights reserved clade. We have provided a guide to trophic functional guilds in an appendix, to facilitate the interpretation of environmental samples. THIS revision of the classification of eukaryotes updates that of the International Society of Protistologists (Adl et al., 2012). Since then, there has been a massive increase in DNA sequence information of phylogenetic relevance from environmental samples. We now have a much better sense of the undescribed biodiversity in our environment (Pawlowski et al., 2012; de Vargas et al., 2015). While significant, it still remains a partial estimation as several continents and soils in general are poorly sampled, and the deeper ocean is hard to reach. This new data clarified phylogenetic relationships
Recommended publications
  • A Six-Gene Phylogeny Provides New Insights Into Choanoflagellate Evolution Martin Carr, Daniel J
    A six-gene phylogeny provides new insights into choanoflagellate evolution Martin Carr, Daniel J. Richter, Parinaz Fozouni, Timothy J. Smith, Alexandra Jeuck, Barry S.C. Leadbeater, Frank Nitsche To cite this version: Martin Carr, Daniel J. Richter, Parinaz Fozouni, Timothy J. Smith, Alexandra Jeuck, et al.. A six- gene phylogeny provides new insights into choanoflagellate evolution. Molecular Phylogenetics and Evolution, Elsevier, 2017, 107, pp.166 - 178. 10.1016/j.ympev.2016.10.011. hal-01393449 HAL Id: hal-01393449 https://hal.archives-ouvertes.fr/hal-01393449 Submitted on 7 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Molecular Phylogenetics and Evolution 107 (2017) 166–178 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A six-gene phylogeny provides new insights into choanoflagellate evolution ⇑ Martin Carr a, ,1, Daniel J. Richter b,1,2, Parinaz Fozouni b,3, Timothy J. Smith a, Alexandra Jeuck c, Barry S.C. Leadbeater d, Frank Nitsche c a School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK b Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA c University of Cologne, Biocentre, General Ecology, Zuelpicher Str.
    [Show full text]
  • Movement of Plastic-Baled Garbage and Regulated (Domestic) Garbage from Hawaii to Landfills in Oregon, Idaho, and Washington
    Movement of Plastic-baled Garbage and Regulated (Domestic) Garbage from Hawaii to Landfills in Oregon, Idaho, and Washington. Final Biological Assessment, February 2008 Table of Contents I. Introduction and Background on Proposed Action 3 II. Listed Species and Program Assessments 28 Appendix A. Compliance Agreements 85 Appendix B. Marine Mammal Protection Act 150 Appendix C. Risk of Introduction of Pests to the Continental United States via Municipal Solid Waste from Hawaii. 159 Appendix D. Risk of Introduction of Pests to Washington State via Municipal Solid Waste from Hawaii 205 Appendix E. Risk of Introduction of Pests to Oregon via Municipal Solid Waste from Hawaii. 214 Appendix F. Risk of Introduction of Pests to Idaho via Municipal Solid Waste from Hawaii. 233 2 I. Introduction and Background on Proposed Action This biological assessment (BA) has been prepared by the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS) to evaluate the potential effects on federally-listed threatened and endangered species and designated critical habitat from the movement of baled garbage and regulated (domestic) garbage (GRG) from the State of Hawaii for disposal at landfills in Oregon, Idaho, and Washington. Specifically, garbage is defined as urban (commercial and residential) solid waste from municipalities in Hawaii, excluding incinerator ash and collections of agricultural waste and yard waste. Regulated (domestic) garbage refers to articles generated in Hawaii that are restricted from movement to the continental United States under various quarantine regulations established to prevent the spread of plant pests (including insects, disease, and weeds) into areas where the pests are not prevalent.
    [Show full text]
  • Protistology an International Journal Vol
    Protistology An International Journal Vol. 10, Number 2, 2016 ___________________________________________________________________________________ CONTENTS INTERNATIONAL SCIENTIFIC FORUM «PROTIST–2016» Yuri Mazei (Vice-Chairman) Welcome Address 2 Organizing Committee 3 Organizers and Sponsors 4 Abstracts 5 Author Index 94 Forum “PROTIST-2016” June 6–10, 2016 Moscow, Russia Website: http://onlinereg.ru/protist-2016 WELCOME ADDRESS Dear colleagues! Republic) entitled “Diplonemids – new kids on the block”. The third lecture will be given by Alexey The Forum “PROTIST–2016” aims at gathering Smirnov (Saint Petersburg State University, Russia): the researchers in all protistological fields, from “Phylogeny, diversity, and evolution of Amoebozoa: molecular biology to ecology, to stimulate cross- new findings and new problems”. Then Sandra disciplinary interactions and establish long-term Baldauf (Uppsala University, Sweden) will make a international scientific cooperation. The conference plenary presentation “The search for the eukaryote will cover a wide range of fundamental and applied root, now you see it now you don’t”, and the fifth topics in Protistology, with the major focus on plenary lecture “Protist-based methods for assessing evolution and phylogeny, taxonomy, systematics and marine water quality” will be made by Alan Warren DNA barcoding, genomics and molecular biology, (Natural History Museum, United Kingdom). cell biology, organismal biology, parasitology, diversity and biogeography, ecology of soil and There will be two symposia sponsored by ISoP: aquatic protists, bioindicators and palaeoecology. “Integrative co-evolution between mitochondria and their hosts” organized by Sergio A. Muñoz- The Forum is organized jointly by the International Gómez, Claudio H. Slamovits, and Andrew J. Society of Protistologists (ISoP), International Roger, and “Protists of Marine Sediments” orga- Society for Evolutionary Protistology (ISEP), nized by Jun Gong and Virginia Edgcomb.
    [Show full text]
  • A Guide to 1.000 Foraminifera from Southwestern Pacific New Caledonia
    Jean-Pierre Debenay A Guide to 1,000 Foraminifera from Southwestern Pacific New Caledonia PUBLICATIONS SCIENTIFIQUES DU MUSÉUM Debenay-1 7/01/13 12:12 Page 1 A Guide to 1,000 Foraminifera from Southwestern Pacific: New Caledonia Debenay-1 7/01/13 12:12 Page 2 Debenay-1 7/01/13 12:12 Page 3 A Guide to 1,000 Foraminifera from Southwestern Pacific: New Caledonia Jean-Pierre Debenay IRD Éditions Institut de recherche pour le développement Marseille Publications Scientifiques du Muséum Muséum national d’Histoire naturelle Paris 2012 Debenay-1 11/01/13 18:14 Page 4 Photos de couverture / Cover photographs p. 1 – © J.-P. Debenay : les foraminifères : une biodiversité aux formes spectaculaires / Foraminifera: a high biodiversity with a spectacular variety of forms p. 4 – © IRD/P. Laboute : îlôt Gi en Nouvelle-Calédonie / Island Gi in New Caledonia Sauf mention particulière, les photos de cet ouvrage sont de l'auteur / Except particular mention, the photos of this book are of the author Préparation éditoriale / Copy-editing Yolande Cavallazzi Maquette intérieure et mise en page / Design and page layout Aline Lugand – Gris Souris Maquette de couverture / Cover design Michelle Saint-Léger Coordination, fabrication / Production coordination Catherine Plasse La loi du 1er juillet 1992 (code de la propriété intellectuelle, première partie) n'autorisant, aux termes des alinéas 2 et 3 de l'article L. 122-5, d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle, faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause, est illicite » (alinéa 1er de l'article L.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • Reconstruction of Protein Domain Evolution Using Single-Cell Amplified
    Reconstruction of protein domain evolution using single-cell amplified royalsocietypublishing.org/journal/rstb genomes of uncultured choanoflagellates sheds light on the origin of animals Research David López-Escardó 1,2 , Xavier Grau-Bové 1,3,4 , Amy Guillaumet-Adkins 5,6 , Marta Gut 5,6 , Michael E. Sieracki 7 and Iñaki Ruiz-Trillo 1,3,8 Cite this article: López-Escardó D, Grau-Bové X, Guillaumet-Adkins A, Gut M, Sieracki ME, 1Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Ruiz-Trillo I. 2019 Reconstruction of protein 08003 Barcelona, Catalonia, Spain 2Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain domain evolution using single- cell amplified 3Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain genomes of uncultured choanoflagellates sheds 4Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK light on the origin of animals. Phil. 5CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Trans. R. Soc. B 374 : 20190088. Barcelona, Spain 6Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain http://dx.doi.org/10.1098/rstb.2019.0088 7National Science Foundation, Arlington, VA 22314, USA 8ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain Accepted: 15 June 2019 DL-E, 0000-0002-9122-6771; XG-B, 0000-0003-1978-5824; IR-T, 0000-0001-6547-5304 One contribution of 18 to a discussion meeting Understanding the origins of animal multicellularity is a fundamental biologi- cal question. Recent genome data have unravelled the role that co-option of issue ‘Single cell ecology ’.
    [Show full text]
  • A Flagellate-To-Amoeboid Switch in the Closest Living Relatives of Animals
    RESEARCH ARTICLE A flagellate-to-amoeboid switch in the closest living relatives of animals Thibaut Brunet1,2*, Marvin Albert3, William Roman4, Maxwell C Coyle1,2, Danielle C Spitzer2, Nicole King1,2* 1Howard Hughes Medical Institute, Chevy Chase, United States; 2Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States; 3Department of Molecular Life Sciences, University of Zu¨ rich, Zurich, Switzerland; 4Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNED, Barcelona, Spain Abstract Amoeboid cell types are fundamental to animal biology and broadly distributed across animal diversity, but their evolutionary origin is unclear. The closest living relatives of animals, the choanoflagellates, display a polarized cell architecture (with an apical flagellum encircled by microvilli) that resembles that of epithelial cells and suggests homology, but this architecture differs strikingly from the deformable phenotype of animal amoeboid cells, which instead evoke more distantly related eukaryotes, such as diverse amoebae. Here, we show that choanoflagellates subjected to confinement become amoeboid by retracting their flagella and activating myosin- based motility. This switch allows escape from confinement and is conserved across choanoflagellate diversity. The conservation of the amoeboid cell phenotype across animals and choanoflagellates, together with the conserved role of myosin, is consistent with homology of amoeboid motility in both lineages. We hypothesize that
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • Supporting Material
    Supporting Text Recursions. We developed a model to investigate the evolution of ploidy levels in the presence of host-parasite interactions between a focal and nonfocal species. The focal species is assumed to have two loci, a ploidy modifier locus with alleles C1 and C2 and an interaction locus with alleles A and a. Thus there are four haploid gamete types in the focal species: AC1 with frequency X1, aC1 with frequency X2, AC2 with frequency X3, and aC2 with frequency X4. The modifier locus influences ploidy levels by altering the timing of meiosis; diploid zygotes of genotype CiCj have a probability, dij, of undergoing meiosis late in life, thus experiencing host-parasite selection as a diploid, versus early in life, thus experiencing selection as a haploid (Fig. 2). The nonfocal species is assumed to be a sexual diploid, having only a brief haploid stage, although results derived with a haploid nonfocal species were similar. For clarity, we assume that the A locus in the focal species interacts with a B locus in the nonfocal species, with alleles B and b. Note that Table 1 differs from this convention by referring to alleles in both species as A and a. We use a different notation here to avoid additional subscripts in the equations. The frequencies of alleles are denoted by pA, pa, pC1, and pC2 in the focal species and pB and pb in the nonfocal species, all measured at the gamete stage of the life cycle (Fig. 2). Also measured at this stage is D = (X1 X4 - X2 X3), the disequilibrium between the modifier and selected loci in the focal species.
    [Show full text]
  • Chytridiomycetes, Chytridiomycota)
    VOLUME 5 JUNE 2020 Fungal Systematics and Evolution PAGES 17–38 doi.org/10.3114/fuse.2020.05.02 Taxonomic revision of the genus Zygorhizidium: Zygorhizidiales and Zygophlyctidales ord. nov. (Chytridiomycetes, Chytridiomycota) K. Seto1,2,3*, S. Van den Wyngaert4, Y. Degawa1, M. Kagami2,3 1Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294, Sugadaira-Kogen, Ueda, Nagano 386-2204, Japan 2Department of Environmental Science, Faculty of Science, Toho University, 2-2-1, Miyama, Funabashi, Chiba 274-8510, Japan 3Graduate School of Environment and Information Sciences, Yokohama National University, 79-7, Tokiwadai, Hodogaya, Yokohama, Kanagawa 240- 8502, Japan 4Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhuette 2, D-16775 Stechlin, Germany *Corresponding author: [email protected] Key words: Abstract: During the last decade, the classification system of chytrids has dramatically changed based on zoospore Chytridiomycota ultrastructure and molecular phylogeny. In contrast to well-studied saprotrophic chytrids, most parasitic chytrids parasite have thus far been only morphologically described by light microscopy, hence they hold great potential for filling taxonomy some of the existing gaps in the current classification of chytrids. The genus Zygorhizidium is characterized by an zoospore ultrastructure operculate zoosporangium and a resting spore formed as a result of sexual reproduction in which a male thallus Zygophlyctis and female thallus fuse via a conjugation tube. All described species of Zygorhizidium are parasites of algae and Zygorhizidium their taxonomic positions remain to be resolved. Here, we examined morphology, zoospore ultrastructure, host specificity, and molecular phylogeny of seven cultures of Zygorhizidium spp. Based on thallus morphology and host specificity, one culture was identified as Z.
    [Show full text]
  • Fungal Planet Description Sheets: 400–468
    Persoonia 36, 2016: 316– 458 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158516X692185 Fungal Planet description sheets: 400–468 P.W. Crous1,2, M.J. Wingfield3, D.M. Richardson4, J.J. Le Roux4, D. Strasberg5, J. Edwards6, F. Roets7, V. Hubka8, P.W.J. Taylor9, M. Heykoop10, M.P. Martín11, G. Moreno10, D.A. Sutton12, N.P. Wiederhold12, C.W. Barnes13, J.R. Carlavilla10, J. Gené14, A. Giraldo1,2, V. Guarnaccia1, J. Guarro14, M. Hernández-Restrepo1,2, M. Kolařík15, J.L. Manjón10, I.G. Pascoe6, E.S. Popov16, M. Sandoval-Denis14, J.H.C. Woudenberg1, K. Acharya17, A.V. Alexandrova18, P. Alvarado19, R.N. Barbosa20, I.G. Baseia21, R.A. Blanchette22, T. Boekhout3, T.I. Burgess23, J.F. Cano-Lira14, A. Čmoková8, R.A. Dimitrov24, M.Yu. Dyakov18, M. Dueñas11, A.K. Dutta17, F. Esteve- Raventós10, A.G. Fedosova16, J. Fournier25, P. Gamboa26, D.E. Gouliamova27, T. Grebenc28, M. Groenewald1, B. Hanse29, G.E.St.J. Hardy23, B.W. Held22, Ž. Jurjević30, T. Kaewgrajang31, K.P.D. Latha32, L. Lombard1, J.J. Luangsa-ard33, P. Lysková34, N. Mallátová35, P. Manimohan32, A.N. Miller36, M. Mirabolfathy37, O.V. Morozova16, M. Obodai38, N.T. Oliveira20, M.E. Ordóñez39, E.C. Otto22, S. Paloi17, S.W. Peterson40, C. Phosri41, J. Roux3, W.A. Salazar 39, A. Sánchez10, G.A. Sarria42, H.-D. Shin43, B.D.B. Silva21, G.A. Silva20, M.Th. Smith1, C.M. Souza-Motta44, A.M. Stchigel14, M.M. Stoilova-Disheva27, M.A. Sulzbacher 45, M.T. Telleria11, C. Toapanta46, J.M. Traba47, N.
    [Show full text]
  • Barcoding of Cryptic Stages of Marine Brown Algae Isolated from Incubated Substratum Reveals High Diversity in Acinetosporaceae (Ectocarpales, Phaeophyceae)1
    Cryptogamie, Algologie, 2015, 36 (1): 3-29 © 2015 Adac. Tous droits réservés Barcoding of cryptic stages of marine brown algae isolated from incubated substratum reveals high diversity in Acinetosporaceae (Ectocarpales, Phaeophyceae)1 Akira F. PETERS a*, Lucía COUCEIRO b, Konstantinos TSIAMIS c, Frithjof C. KÜPPER d & Myriam VALERO b aBezhin Rosko, 29250 Santec, France and FR2424, Station Biologique, 29682 Roscoff Cedex, France bUMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités UPMC, Station Biologique de Roscoff, 29688 Roscoff Cedex, France cHellenic Centre for Marine Research (HCMR), Institute of Oceanography, Anavyssos 19013, Attica, Greece dOceanlab, University of Aberdeen, Main Street, Newburgh AB41 6AA, Scotland, UK Abstract – To identify cryptic stages of marine brown macroalgae present in the “bank of microscopic forms”, we incubated natural substrata of different geographical origins and isolated emerging Phaeophyceae into clonal cultures. A total of 431 clones were subsequently identified by barcoding using 5’-COI. A proportion of 98% of the isolates belonged to the Ectocarpales. The distribution of pairwise genetic distances revealed a K2P divergence of 1.8% as species-level cut-off. Using this threshold, the samples were ascribed to 83 different species, 39 (47%) of which were identified through reference sequences or morphology. In the Ectocarpaceae, 16 lineages of Ectocarpus fulfilled the barcode criterion for different species, while three putative new species were detected. In the Chordariaceae, numerous microthalli were microstages of known macroscopic taxa. A separate cluster contained Hecatonema maculans and other microscopic species. Taxa traditionally classified in Acinetosporaceae were split in two species-rich groups containing Pylaiella and Hincksia in one and Acinetospora in the other.
    [Show full text]