HTML5 for Web Designers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Opera Software the Best Browsing Experience on Any Device
Opera Software The best browsing experience on any device The best Internet experience on any device Web Standards for the Future – Bruce Lawson, Opera.com • Web Evangelist, Opera • Tech lead, Law Society & Solicitors Regulation Authority (2004-8) • Author 2 books on Web Standards, edited 2 • Committee member for British Standards Institution (BSI) for the new standard for accessible websites • Member of Web Standards Project: Accessibility Task Force • Member of W3C Mobile Best Practices Working Group Web Standards for the Future – Bruce Lawson, Opera.com B.A., Honours English Literature and Language with Drama Theresa is blind But she can use the Web if made with standards The big picture WWW The big picture Western Western Web A web (pre)history • 1989 TBL proposes a project • 1992 <img> in Mosaic beta. Now 99.57% (MAMA) • 1994 W3C started at MIT • 1996 The Browser Wars • 1999 WAP, Web Content Accessibility Guidelines (WCAG) • 2000 Flash Modern web history • 2000-ish .com Crash - Time to grow up... • 2002 Opera Mobile with Small Screen Rendering • 2005 WHAT-WG founded, W3C Mobile Web Initiative starts • 2007 W3C adopts WHAT-WG spec as basis for HTML 5 • January 22, 2008 First public working draft of HTML 5 Standards at Opera • 25 employees work on standards • Mostly at W3C - a big player • Working on many standards • Bringing new work to W3C • Implementing Standards properly (us and you!) (Web Standards Curriculum www.opera.com/wsc) Why standards? The Web works everywhere - The Web is the platform • Good standards help developers: validate; separate content and presentation - means specialisation and maintainability. -
Bibliography of Erik Wilde
dretbiblio dretbiblio Erik Wilde's Bibliography References [1] AFIPS Fall Joint Computer Conference, San Francisco, California, December 1968. [2] Seventeenth IEEE Conference on Computer Communication Networks, Washington, D.C., 1978. [3] ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, Los Angeles, Cal- ifornia, March 1982. ACM Press. [4] First Conference on Computer-Supported Cooperative Work, 1986. [5] 1987 ACM Conference on Hypertext, Chapel Hill, North Carolina, November 1987. ACM Press. [6] 18th IEEE International Symposium on Fault-Tolerant Computing, Tokyo, Japan, 1988. IEEE Computer Society Press. [7] Conference on Computer-Supported Cooperative Work, Portland, Oregon, 1988. ACM Press. [8] Conference on Office Information Systems, Palo Alto, California, March 1988. [9] 1989 ACM Conference on Hypertext, Pittsburgh, Pennsylvania, November 1989. ACM Press. [10] UNIX | The Legend Evolves. Summer 1990 UKUUG Conference, Buntingford, UK, 1990. UKUUG. [11] Fourth ACM Symposium on User Interface Software and Technology, Hilton Head, South Carolina, November 1991. [12] GLOBECOM'91 Conference, Phoenix, Arizona, 1991. IEEE Computer Society Press. [13] IEEE INFOCOM '91 Conference on Computer Communications, Bal Harbour, Florida, 1991. IEEE Computer Society Press. [14] IEEE International Conference on Communications, Denver, Colorado, June 1991. [15] International Workshop on CSCW, Berlin, Germany, April 1991. [16] Third ACM Conference on Hypertext, San Antonio, Texas, December 1991. ACM Press. [17] 11th Symposium on Reliable Distributed Systems, Houston, Texas, 1992. IEEE Computer Society Press. [18] 3rd Joint European Networking Conference, Innsbruck, Austria, May 1992. [19] Fourth ACM Conference on Hypertext, Milano, Italy, November 1992. ACM Press. [20] GLOBECOM'92 Conference, Orlando, Florida, December 1992. IEEE Computer Society Press. http://github.com/dret/biblio (August 29, 2018) 1 dretbiblio [21] IEEE INFOCOM '92 Conference on Computer Communications, Florence, Italy, 1992. -
Designing and Implementing the OP and OP2 Web Browsers
Designing and Implementing the OP and OP2 Web Browsers CHRIS GRIER, SHUO TANG and SAMUEL T. KING, University of Illinois at Urbana-Champaign Current web browsers are plagued with vulnerabilities, providing hackers with easy access to computer systems via browser-based attacks. Browser security efforts that retrofit existing browsers have had lim- ited success because the design of modern browsers is fundamentally flawed. To enable more secure web browsing, we design and implement a new browser, called the OP web browser, that attempts to improve the state-of-the-art in browser security. We combine operating system design principles with formal methods to design a more secure web browser by drawing on the expertise of both communities. Our design philosophy is to partition the browser into smaller subsystems and make all communication between subsystems sim- ple and explicit. At the core of our design is a small browser kernel that manages the browser subsystems and interposes on all communications between them to enforce our new browser security features. To show the utility of our browser architecture, we design and implement three novel security features. First, we develop flexible security policies that allow us to include browser plugins within our security framework. Second, we use formal methods to prove useful security properties including user interface invariants and browser security policy. Third, we design and implement a browser-level information-flow tracking system to enable post-mortem analysis of browser-based attacks. In addition to presenting the OP browser architecture, we discuss the design and implementation of a second version of OP, OP2, that includes features from other secure web browser designs to improve on the overall security and performance of OP. -
SMIL) Boston Specification W3C Working Draft 3-August-1999
next contents Synchronized Multimedia Integration Language (SMIL) Boston Specification W3C Working Draft 3-August-1999 This version: http://www.w3.org/1999/08/WD-smil-boston-19990803 Latest version: http://www.w3.org/TR/smil-boston Previous version: http://www.w3.org/AudioVideo/Group/smil-boston-19990723 (W3C members only) Editors: Jeff Ayars (RealNetworks), Aaron Cohen (Intel), Ken Day (Macromedia), Erik Hodge (RealNetworks), Philipp Hoschka (W3C), Rob Lanphier (RealNetworks), Nabil Layaïda (INRIA), Jacco van Ossenbruggen (CWI), Lloyd Rutledge (CWI), Bridie Saccocio (RealNetworks), Patrick Schmitz (Microsoft), Warner ten Kate (Philips), Ted Wugofski (Gateway), Jin Yu (Compaq) Copyright © 1999 W3C ® ( MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use and software licensing rules apply. Abstract This document specifies the "Boston" version of the Synchronized Multimedia Integration Language (SMIL, pronounced "smile"). SMIL Boston has the following two design goals: ● Define a simple XML-based language that allows authors to write interactive multimedia presentations. Using SMIL Boston, an author can describe the temporal behavior of a multimedia presentation, associate hyperlinks with media objects and describe the layout of the presentation on a screen. ● Allow reusing of SMIL syntax and semantics in other XML-based languages, in particular those who need to represent timing and synchronization. For example, SMIL Boston components should be used for integrating timing into XHTML. Status of this document This section describes the status of this document at the time of its publication. Other documents may supersede this document. The latest status of this document series is maintained at the W3C. This document is the first working draft of the specification for the next version of SMIL code-named "Boston". -
Next Media Deliverable Template
WP 1 AND EREADING AND D 1.1.4.1 STATE-OF-THE-ART-STANDARDS Deliverable number 1.1.4.1 State-of-the art, html5-standard Author(s): Olli Nurmi Confidentiality: Public Date and status: 7.9.2011 - Status: Version 1.0 This work was supported by TEKES as part of the next Media programme of TIVIT (Finnish Strategic Centre for Science, Technology and Innovation in the field of ICT) Next Media - a Tivit Programme Phase 2 (1.1-31.12.2011) Version history: Version Date State Author(s) OR Remarks (draft/ /update/ final) Editor/Contributors 0.9 30.6.2011 draft Olli Nurmi 1.0 1.9.2011 update Olli Nurmi 1.1 28.9.2011 final Olli Nurmi 1.2 4.10.2011 final Olli Nurmi Issues about Onix is removed to separate deliverable next Media www.nextmedia.fi www.tivit.fi WP 1 AND EREADING AND D 1.1.4.1 1 (12) STATE-OF-THE-ART-STANDARDS Next Media - a Tivit Programme Phase 2 (1.1-31.12.2011) Table of Contents 1 Introduction ............................................................................................................. 3 1.1 Web browsers ................................................................................................. 3 1.2 HTML5 – an open standard ............................................................................ 4 1.3 CSS - Cascading Style Sheets ....................................................................... 6 1.4 HTML5 vs native applications ......................................................................... 6 2 HTML5/CSS3 standards ........................................................................................ -
Semantic Skin: from Flat Textual Content to Interconnected Repositories Of
Semantic Skin: from flat textual content to interconnected repositories of semantic data. Claudio Baldassarre ABSTRACT front-end web application. This application offers a faceted One approach to re-balancing the Digital Divide tends to view of the underlying \news-KB". The current blog site favor the production of informative content in flat formats, appearance is merely a stylistic choice, while a running in- which are easy to distribute and consume. At the same time stance is always backed by a SPARQL endpoint over the this approach forbids to deliver the core knowledge perti- \news-KB". The facets are typically rendered as menu ele- nent within the content; i.e. it increases the Knowledge ments5: some menus facet the entire \news-KB" (e.g., news Divide. In some international organizations1, informative Topics, or Provenance); while other menus facet only the content distribution to groups in Latin America happens by content currently visible to the users. The faceting mech- manually collecting text-based content, then disseminating anism is also applied tothe \news archive" as a time-based it via standard mailing lists, or databases copies sent out facet of the repository content. All the facets are popu- regularly. Our demo showcases the use of Semantic Skin lated with SPARQL queries over the \news-model" instances a technology that after semantifying the content submit- in the \news-KB". Each news item is then presented with ted in flat formats, provides access to the information via a its summary, title, publication date, and provenance (e.g., knowledge layer, which is, however, transparent to the end permalink). -
Automated Cross-Browser Compatibility Testing
Automated Cross-Browser Compatibility Testing ∗ Ali Mesbah Mukul R. Prasad Electrical and Computer Engineering Trusted Systems Innovation Group University of British Columbia Fujitsu Laboratories of America Vancouver, BC, Canada Sunnyvale, CA, USA [email protected] [email protected] ABSTRACT web browsers render web content somewhat differently [18, With the advent of Web 2.0 applications and new browsers, 24, 25, 26]. However, the scope and impact of this problem the cross-browser compatibility issue is becoming increas- has been rapidly growing due to two, fairly recent trends. ingly important. Although the problem is widely recognized First, modern, rich-content web applications have a heavy among web developers, no systematic approach to tackle client-side behavioral footprint, i.e., they are designed to ex- it exists today. None of the current tools, which provide ecute significant elements of their behavior exclusively on the screenshots or emulation environments, specifies any notion client-side, typically within the web browser. Further, tech- of cross-browser compatibility, much less check it automat- nologies such as Ajax [12], Flash, and event-handling for ically. In this paper, we pose the problem of cross-browser dynamic HTML, which support this thick-client behavior, compatibility testing of modern web applications as a `func- are the very aspects in which web browsers differ. tional consistency' check of web application behavior across Second, recent years have seen an explosion in the num- different web browsers and present an automated solution ber of available web browsers. There are nearly 100 different for it. Our approach consists of (1) automatically analyzing web browsers available today [31]. -
Jeff Jaffe, CEO, W3C
Publishing and the Open Web Platform W3C and the Publishing Industry Edupub Conference Jeff Jaffe, CEO, W3C Photo from Cristina Diaz 20 years ago the Web created new experiences for publishing Reading . Hyperlinks (i.e., non-linear reading) Publishing . Global distribution . Anyone could publish (low barriers) . New advertising opportunities (search engines, pop-ups) But… . impoverished style, layout of early Web no match for print . low resolution screens, slow processors Trends of past decade have further transformed reading, publishing Internet everywhere Mobility Social Customization Cloud Broadband Multi-function devices Much higher quality display, typesetting, speed Many industries feeling the impact Mobile Television Automotive Health Care Gaming Digital signage Government But publishing in particular Pew: Survey Finds Rising Reliance on Libraries as a Gateway to the Web But publishing in particular Pew: “News is becoming a shared social experience as people exchange links and recommendations as a form of cultural currency in their social networks.” Pew: “In the past year, the number of those who read e-books increased from 16% of all Americans ages 16 and older to 23%. At the same time, the number of those who read printed books in the previous 12 months fell from 72% of the population ages 16 and older to 67%.” The Bookseller: “In all of 2012, e-book sales doubled their volume […] in the United Kingdom” Pew: “[The] number of owners of either a tablet computer or e-book reading device […] grew from 18% in late 2011 to 33% in late 2012.” That is because Publishing = Web Web is “intimately” tied to the intrinsic purpose of publishing . -
Will HTML 5 Restandardize the Web?
TECHNOLOGY NEWS Will HTML 5 Restandardize the Web? Steven J. Vaughan-Nichols The World Wide Web Consortium is developing HTML 5 as a stan- dard that provides Web users and developers with enhanced func- tionality without using the proprietary technologies that have become popular in recent years. n theory, the Web is a resource enhanced functionality without using “Microsoft is investing heavily in that is widely and uniformly proprietary technologies. the W3C HTML 5 effort, working with usable across platforms. As Indeed, pointed out Google our competitors and the Web commu- such, many of the Web’s researcher Ian Hickson, one of the nity at large. We want to implement key technologies and archi- W3C’s HTML 5 editors, “One of our ratified, thoroughly tested, and stable Itectural elements are open and goals is to move the Web away from standards that can help Web interop- platform-independent. proprietary technologies.” erability,” said Paul Cotton, cochair of However, some vendors have The as-yet-unapproved standard the W3C HTML Working Group and developed their own technologies takes HTML from simply describing Microsoft’s group manager for Web that provide more functionality than the basics of a text-based Web to creat- services standards and partners in Web standards—such as the ability to ing and presenting animations, audio, the company’s Interoperability Strat- build rich Internet applications. mathematical equations, typefaces, egy Team. Adobe System’s Flash, Apple’s and video, as well as providing offline At the same time though, Web QuickTime, and Microsoft’s Silverlight functionality. It also enables geoloca- companies say their proprietary tech- are examples of such proprietary tion, a rich text-editing model, and nologies are already up and running, formats. -
Innovating Through Standardization
Association for Information Systems AIS Electronic Library (AISeL) Pacific Asia Conference on Information Systems PACIS 2018 Proceedings (PACIS) 6-26-2018 Innovating through standardization: How Google Leverages the Value of Open Digital Platforms Yoshiaki Fukami Rikkyo Business School, Keio Research Institute at SFC, [email protected] Takumi Shimizu McGill University, [email protected] Follow this and additional works at: https://aisel.aisnet.org/pacis2018 Recommended Citation Fukami, Yoshiaki and Shimizu, Takumi, "Innovating through standardization: How Google Leverages the Value of Open Digital Platforms" (2018). PACIS 2018 Proceedings. 208. https://aisel.aisnet.org/pacis2018/208 This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in PACIS 2018 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact [email protected]. Innovating through standardization Innovating through standardization: How Google Leverages the Value of Open Digital Platforms Completed Research Paper Yoshiaki Fukami Takumi Shimizu Rikkyo Business School, Desautels Faculty of Management, Keio Research Institute at SFC McGill University [email protected] [email protected] Abstract The purpose of this paper is to examine how an actor strategically develops and diffuses technology standards that align with innovation trajectories while maintaining a consensus with competitors. -
Document Object Model
Document Object Model Copyright © 1999 - 2020 Ellis Horowitz DOM 1 What is DOM • The Document Object Model (DOM) is a programming interface for XML documents. – It defines the way an XML document can be accessed and manipulated – this includes HTML documents • The XML DOM is designed to be used with any programming language and any operating system. • The DOM represents an XML file as a tree – The documentElement is the top-level of the tree. This element has one or many childNodes that represent the branches of the tree. Copyright © 1999 - 2020 Ellis Horowitz DOM 2 Version History • DOM Level 1 concentrates on HTML and XML document models. It contains functionality for document navigation and manipulation. See: – http://www.w3.org/DOM/ • DOM Level 2 adds a stylesheet object model to DOM Level 1, defines functionality for manipulating the style information attached to a document, and defines an event model and provides support for XML namespaces. The DOM Level 2 specification is a set of 6 released W3C Recommendations, see: – https://www.w3.org/DOM/DOMTR#dom2 • DOM Level 3 consists of 3 different specifications (Recommendations) – DOM Level 3 Core, Load and Save, Validation, http://www.w3.org/TR/DOM-Level-3/ • DOM Level 4 (aka DOM4) consists of 1 specification (Recommendation) – W3C DOM4, http://www.w3.org/TR/domcore/ • Consolidates previous specifications, and moves some to HTML5 • See All DOM Technical Reports at: – https://www.w3.org/DOM/DOMTR • Now DOM specification is DOM Living Standard (WHATWG), see: – https://dom.spec.whatwg.org -
HTML5 Microdata and Schema.Org
HTML5 Microdata and Schema.org journal.code4lib.org/articles/6400 On June 2, 2011, Bing, Google, and Yahoo! announced the joint effort Schema.org. When the big search engines talk, Web site authors listen. This article is an introduction to Microdata and Schema.org. The first section describes what HTML5, Microdata and Schema.org are, and the problems they have been designed to solve. With this foundation in place section 2 provides a practical tutorial of how to use Microdata and Schema.org using a real life example from the cultural heritage sector. Along the way some tools for implementers will also be introduced. Issues with applying these technologies to cultural heritage materials will crop up along with opportunities to improve the situation. By Jason Ronallo Foundation HTML5 The HTML5 standard or (depending on who you ask) the HTML Living Standard has brought a lot of changes to Web authoring. Amongst all the buzz about HTML5 is a new semantic markup syntax called Microdata. HTML elements have semantics. For example, an ol element is an ordered list, and by default gets rendered with numbers for the list items. HTML5 provides new semantic elements like header , nav , article , aside , section and footer that allow more expressiveness for page authors. A bunch of div elements with various class names is no longer the only way to markup this content. These new HTML5 elements enable new tools and better services for the Web ecosystem. Browser plugins can more easily pull out the text of the article for a cleaner reading experience. Search engines can give more weight to the article content rather than the advertising in the sidebar.