DERIVED CATEGORIES and STABLE EQUIVALENCE Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
COVERING THEORY for LINEAR CATEGORIES with APPLICATION to DERIVED CATEGORIES Introduction the Covering Technique Has Been Playin
COVERING THEORY FOR LINEAR CATEGORIES WITH APPLICATION TO DERIVED CATEGORIES RAYMUNDO BAUTISTA AND SHIPING LIU Abstract. We extend the Galois covering theory introduced by Bongartz- Gabriel for skeletal linear categories to general linear categories. We show that a Galois covering between Krull-Schmidt categories preserves irreducible morphisms and almost splits sequences. Specializing to derived categories, we study when a Galois covering between locally bounded linear categories induces a Galois covering between the bounded derived categories of finite dimensional modules. As an application, we show that each locally bounded linear category with radical squared zero admits a gradable Galois covering, which induces a Galois covering between the bounded derived categories of finite dimensional modules, and a Galois covering between the Auslander-Reiten quivers of these bounded derived categories. In a future paper, this will enable us to obtain a complete description of the bounded derived category of finite dimensional modules over a finite dimensional algebra with radical squared zero. Introduction The covering technique has been playing an important role in the representation theory of finite dimensional algebras; see, for example, [6, 8, 9, 16]. In this connec- tion, algebras are regarded as locally bounded linear categories; see [6]. To each Galois covering between such categories, Bongartz-Gabriel associated a push-down functor between their module categories, which induces a Galois covering between the Auslander-Reiten quivers in the locally representation-finite case; see [6, 8]. This technique was extended later by Asashiba by studying the induced push-down functor between the bounded homotopy categories of finitely generated projective modules; see [1]. -
Infinity-Tilting Theory
∞-TILTING THEORY LEONID POSITSELSKI AND JAN SˇTOVˇ ´ICEKˇ Abstract. We define the notion of an infinitely generated tilting object of infi- nite homological dimension in an abelian category. A one-to-one correspondence between ∞-tilting objects in complete, cocomplete abelian categories with an injec- tive cogenerator and ∞-cotilting objects in complete, cocomplete abelian categories with a projective generator is constructed. We also introduce ∞-tilting pairs, con- sisting of an ∞-tilting object and its ∞-tilting class, and obtain a bijective corre- spondence between ∞-tilting and ∞-cotilting pairs. Finally, we discuss the related derived equivalences and t-structures. Contents Introduction 1 1. The Tilted and Cotilted Abelian Categories 4 2. ∞-Tilting-Cotilting Correspondence 7 3. ∞-Tilting and ∞-Cotilting Pairs 13 4. ∞-Tilting-Cotilting Derived Equivalences 17 5. ∞-Tilting and ∞-Cotilting t-Structures 20 6. Examples 25 References 32 Introduction The phrase ‘tilting theory’ is often used to refer to a well-developed general ma- chinery for producing equivalences between triangulated categories (see [3] for an introduction, history and applications). Such equivalences are often represented by a arXiv:1711.06169v3 [math.CT] 13 Aug 2019 distinguished object, a so-called tilting object, and it is crucial to most of the theory that such a tilting object is homologically small. If A is an abelian category with exact coproducts (e.g. a category of modules over a ring or sheaves on a topological space) and T is a tilting object, the smallness typically translates at least to the assumptions that T is finitely generated and of finite projective dimension. In this paper we introduce and systematically develop ∞-tilting theory, where all homological smallness assumptions are dropped. -
I. Overview of Activities, April, 2005-March, 2006 …
MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights -
TILTING up ITERATED TILTED ALGEBRAS 1. Introduction Throughout This Paper, We Let K Denote a Fixed Algebraically Closed Field. B
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 128, Number 8, Pages 2223{2232 S 0002-9939(99)05230-2 Article electronically published on November 29, 1999 TILTING UP ITERATED TILTED ALGEBRAS IBRAHIM ASSEM, DIETER HAPPEL, AND SONIA TREPODE (Communicated by Ken Goodearl) Abstract. We show that, if A is a representation-finite iterated tilted algebra of euclidean type Q, then there exist a sequence of algebras A = A0;A1;A2;:::; (i) (i) Am, and a sequence of modules T ,where0≤ i<m,suchthateachT is Ai Ai (i) an APR-tilting Ai-module, or an APR-cotilting Ai-module, End T = Ai+1 Ai and Am is tilted representation-finite. 1. Introduction Throughout this paper, we let k denote a fixed algebraically closed field. By algebra is always meant a finite dimensional associative k-algebra with an identity, which we assume moreover to be basic and connected, and by module is meant a finitely generated right A-module. Tilting theory is by now an established tool in the representation theory of algebras. In particular, the classes of tilted and iterated tilted algebras, introduced by means of the tilting process, were very useful, for instance, in the classification of the self-injective algebras of polynomial growth (see [1], [7], [11]). We recall their definition. Let Q be a finite, connected quiver without oriented cycles and let kQ denote the path algebra of Q.AnalgebraA is said to be iterated tilted of type Q if there exists a going-up tilting series from A to kQ, that is, a sequence of algebras A = A0;A1;:::;Am = kQ and a sequence of tilting modules T (i),where0≤ i<m, such that End T (i) = A and each T (i) Ai Ai i+1 Ai is separating, that is, such that each indecomposable Ai-module M satisfies either (i) 1 (i) HomAi (T ;M)=0orExtAi (T ;M) = 0 (see [2]). -
Thick Subcategories of the Stable Module Category
FUNDAMENTA MATHEMATICAE 153 (1997) Thick subcategories of the stable module category by D. J. B e n s o n (Athens, Ga.), Jon F. C a r l s o n (Athens, Ga.) and Jeremy R i c k a r d (Bristol) Abstract. We study the thick subcategories of the stable category of finitely generated modules for the principal block of the group algebra of a finite group G over a field of characteristic p. In case G is a p-group we obtain a complete classification of the thick subcategories. The same classification works whenever the nucleus of the cohomology variety is zero. In case the nucleus is nonzero, we describe some examples which lead us to believe that there are always infinitely many thick subcategories concentrated on each nonzero closed homogeneous subvariety of the nucleus. 1. Introduction. A subcategory of a triangulated category is said to be thick, or ´epaisse, if it is a triangulated subcategory and it is closed under taking direct summands. One product of the deep work of Devinatz, Hop- kins and Smith [8] on stable homotopy theory was a classification of the thick subcategories of the stable homotopy category. This is described in Hopkins’ survey [11], where he also states a corresponding classification of thick subcategories of the homotopy category of bounded chain complexes of finitely generated projective R-modules for a commutative ring R. In fact, this classification requires R to be Noetherian, as Neeman pointed out in [13], where he also gave a complete proof. Recent work in the modular representation theory of finite groups [3, 4, 5, 18] has exploited the analogy between the stable homotopy category of algebraic topology and the stable module category of a finite group, which is also a triangulated category. -
Quasi-Projective Covers and Direct Sums Anne Koehler
QUASI-PROJECTIVE COVERS AND DIRECT SUMS ANNE KOEHLER Abstract. In this paper R denotes an associative ring with an identity, and all modules are unital left .R-modules. It is shown that the existence of a quasi-projective cover for each module implies that each module has a projective cover. By a similar tech- nique the following statements are shown to be equivalent: 1. R is semisimple and Artinian; 2. Every finitely generated module is quasi-projective; and 3. The direct sum of every pair of quasi- projective modules is quasi-projective. Direct sums of quasi- injective modules are also investigated. 1. Quasi-projective covers. Rings which have a projective cover for each module are called left perfect rings, and such rings have been characterized by H. Bass [l ]. A module M has a projective cover P(M) iff there is an epimorphism <j>:P(M)-^M such that P(M) is a projec- tive module, and Ker <p is small in P(M) (i.e. A=P whenever A + Ker cf>=P(M)). A module is quasi-projective iff for every epimor- phism q:M^A, Hom(Af, A)=qoUom(M, M) [8] and [ll]. Wu and Jans have defined a quasi-projective cover as follows: QP(M) is a quasi-projective cover of M iff there exists an epimorphism 0: QP(M) —*M such that 1. QP(M) is quasi-projective, 2. Ker <f>is small in QP(M), and 3. if O^BQKer <p,then QP(M)/B is not quasi-projec- tive. They show that if a module has a projective cover, then it must have a quasi-projective cover. -
Generalized Tilting Theory in Functor Categories
Table of content Motivation and Introduction Main results Applications Generalized tilting theory in functor categories Xi Tang April 25, 2019 logo Table of content Motivation and Introduction Main results Applications Table of content 1 Motivation and Introduction 2 Main results Equivalences induced by T A cotorsion pair 3 Applications An isomorphism of Grothendieck groups An abelian model structure A t-structure induced by T logo Table of content Motivation and Introduction Main results Applications References S. Bazzoni, The t-structure induced by an n- tilting module, Trans. Amer. Math. Soc. (to ap- pear). R. Mart´ınez-Villa and M. Ortiz-Morales, Tilting theory and functor categories I. Classical tilt- ing, Appl. Categ. Struct. 22 (2014), 595–646. R. Mart´ınez-Villa and M. Ortiz-Morales, Tilting theory and functor categories II. Generalized tilting, Appl. Categ. Struct. 21 (2013), 311– logo 348. Table of content Motivation and Introduction Main results Applications Motivation K algebraically closed field Λ finite dimensional K-algebra TΛ tilting module Γ := End(T)op Brenner-Butler Tilting Theorem The following statements hold. (1) (T (T); F(T)) is a torsion theory, where 1 T (T) := fM 2 mod Λ j ExtΛ(T; M) = 0g; logo F(T) := fM 2 mod Λ j HomΛ(T; M) = 0g: Table of content Motivation and Introduction Main results Applications Motivation (2) (X (T); Y(T)) is a torsion theory, where X (T) := fN 2 mod Γ j N ⊗Γ T = 0g; Γ Y(T) := fN 2 mod Γ j Tor1 (N; T) = 0g. (3) There are two category equivalences: T (T) F(T) g 7 s s w ' X (T) Y(T): logo Table of content Motivation and Introduction Main results Applications R associative ring TR n-tilting module S := End(T)op Miyashita Theorem There are category equivalences: e ExtR(T;−) n / n KE (TR) KT (ST); where e o s e S Tore (−;T) n i KEe (TR) := fM j ExtR(T; M) = 0; 0 6 i 6= e 6 ng; n S logo KTe (ST) := fN j Tori (N; T) = 0; 0 6 i 6= e 6 ng. -
Separable Commutative Rings in the Stable Module Category of Cyclic Groups
SEPARABLE COMMUTATIVE RINGS IN THE STABLE MODULE CATEGORY OF CYCLIC GROUPS PAUL BALMER AND JON F. CARLSON Abstract. We prove that the only separable commutative ring-objects in the stable module category of a finite cyclic p-group G are the ones corresponding to subgroups of G. We also describe the tensor-closure of the Kelly radical of the module category and of the stable module category of any finite group. Contents Introduction1 1. Separable ring-objects4 2. The Kelly radical and the tensor6 3. The case of the group of prime order 14 4. The case of the general cyclic group 16 References 18 Introduction Since 1960 and the work of Auslander and Goldman [AG60], an algebra A over op a commutative ring R is called separable if A is projective as an A ⊗R A -module. This notion turns out to be remarkably important in many other contexts, where the module category C = R- Mod and its tensor ⊗ = ⊗R are replaced by an arbitrary tensor category (C; ⊗). A ring-object A in such a category C is separable if multiplication µ : A⊗A ! A admits a section σ : A ! A⊗A as an A-A-bimodule in C. See details in Section1. Our main result (Theorem 4.1) concerns itself with modular representation theory of finite groups: Main Theorem. Let | be a separably closed field of characteristic p > 0 and let G be a cyclic p-group. Let A be a commutative and separable ring-object in the stable category |G- stmod of finitely generated |G-modules modulo projectives. -
Stable Model Categories Are Categories of Modules 1
STABLE MODEL CATEGORIES ARE CATEGORIES OF MODULES STEFAN SCHWEDE AND BROOKE SHIPLEY Abstract: A stable model category is a setting for homotopy theory where the suspension functor is invertible. The prototypical examples are the category of spectra in the sense of stable homotopy theory and the category of unbounded chain complexes of modules over a ring. In this paper we develop methods for deciding when two stable model categories represent ‘the same homotopy theory’. We show that stable model categories with a single compact generator are equivalent to modules over a ring spectrum. More generally stable model categories with a set of generators are characterized as modules over a ‘ring spectrum with several objects’, i.e., as spectrum valued diagram categories. We also prove a Morita theorem which shows how equivalences between module categories over ring spectra can be realized by smashing with a pair of bimodules. Finally, we characterize stable model categories which represent the derived category of a ring. This is a slight generalization of Rickard’s work on derived equivalent rings. We also include a proof of the model category equivalence of modules over the Eilenberg-Mac Lane spectrum HR and (unbounded) chain complexes of R-modules for a ring R. 1. Introduction The recent discovery of highly structured categories of spectra has opened the way for a new wholesale use of algebra in stable homotopy theory. In this paper we use this new algebra of spectra to characterize stable model categories, the settings for doing stable homotopy theory, as categories of highly structured modules. This characterization also leads to a Morita theory for equivalences between categories of highly structured modules. -
TORSION THEORIES OVER SEMIPERFECT RINGS (A) ¿Rnjs
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 34, Number 2, August 1972 TORSION THEORIES OVER SEMIPERFECT RINGS EDGAR A. RUTTER, JR. Abstract. In this note we characterize those torsion theories over a semiperfect ring such that the class of torsion free modules is closed under projective covers and the hereditary torsion theories for which this is true of the class of torsion modules. These results are applied to determine all hereditary torsion theories over an injective cogenerator ring with the property that the torsion sub- module of every module is a direct summand. The purpose of this note is to investigate some properties of torsion theories in the category of modules over a semiperfect ring. We charac- terize those torsion theories with the property that the class of torsion free modules is closed under projective covers and the hereditary torsion theories for which this is true of the class of torsion modules. A torsion theory is called splitting provided the torsion submodule of every module is a direct summand. Bernhardt [4] proved that every splitting hereditary torsion theory for a quasi-Frobenius ring is determined by a central idempotent of the ring. The results mentioned above permit us to extend this result to a natural generalization of quasi-Frobenius rings, namely, the one-sided injective cogenerator rings. Bernhardt's theorem depended on a result of Alin and Armendariz [1] which states that every hereditary torsion class over a right perfect ring is closed under direct products and hence is determined by an idempotent ideal of the ring. While we shall not require this result our methods yield a new proof of it. -
ALL TILTING MODULES ARE of FINITE TYPE 1. Introduction in The
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 135, Number 12, December 2007, Pages 3771–3781 S 0002-9939(07)08911-3 Article electronically published on August 30, 2007 ALL TILTING MODULES ARE OF FINITE TYPE SILVANA BAZZONI AND JAN SˇTOVˇ ´ICEKˇ (Communicated by Martin Lorenz) Abstract. We prove that any infinitely generated tilting module is of finite type, namely that its associated tilting class is the Ext-orthogonal of a set of modules possessing a projective resolution consisting of finitely generated projective modules. 1. Introduction In the early eighties Brenner and Butler in [9] and Happel and Ringel in [18] gen- eralized the classical Morita equivalence induced by a progenerator by introducing the notion of a tilting module over a finite-dimensional Artin algebra. In order to obtain equivalences between subcategories of the module category, tilting modules were assumed to be finitely generated and moreover of projective dimension at most one. Later, Miyashita [20] considered tilting modules of finite projective dimension and studied the equivalences induced by them. Colby and Fuller in [10] extended the setting to arbitrary rings, but in all the above-mentioned papers the tilting modules were always assumed to be finitely generated. The notion of infinitely generated tilting modules over arbitrary rings was introduced by Colpi and Trlifaj in [11] for the one-dimensional case and by Angeleri-H¨ugel and Coelho in [1] in the general case of finite projective dimension. One of the advantages in dealing with infinitely generated tilting modules is evident in connection with the good approximation theory that they induce and which we are going to illustrate (cf. -
Τ-Tilting Theory – an Introduction
τ-TILTING THEORY – AN INTRODUCTION HIPOLITO TREFFINGER 1. Introduction The term τ-tilting theory was coined by Adachi, Iyama and Reiten in [3] a paper having this title that first appeared in the arXiv in 2012 and that was published in 2014. In this paper, the authors combined with a fresh approach to the the study of two classical branches of representation theory of finite dimensional algebras, namely tilting theory and Auslander-Reiten theory. The combination of these two subjects is clearly reflected in the name of this novel theory, where the greek letter τ represents the Auslander-Reiten translation in the module category of an algebra while the reference to tilting theory is obvious. In these notes we give a small introduction to τ-tilting theory from the representation the- oretic perspective, making special emphasis in the close relation between τ-tilting theory and torsion theories. Clearly, this notes do not represent a complete survey on the topic since several important aspects of the theory are not covered in detail or even mentioned. For instance, in this notes we do not cover the explicit between τ-tilting theory with cluster theory, stability conditions, or exceptional sequences, just to name a few. These notes are organised as follows. In Section 2 we give a short historical account of the developments in representation theory that lead to the introduction of τ-tilting theory, hoping that this will help placing τ-tilting theory in the more general framework of representation theory. Then, in Section 3 we start giving the material that is covered in the lectures by giving the definition of our main objects of study: τ-rigid and τ-tilting modules and pairs.