ACCEPTED MANUSCRIPT 1 Coupling of marine and continental oxygen isotope records 2 during the Eocene-Oligocene transition 3 4 Nathan D. Sheldon1*, Stephen T. Grimes 2, Jerry J. Hooker3, Margaret E. Collinson 4, 5 Melanie J. Bugler2, Michael T. Hren5, Gregory D, Price 2, Paul A. Sutton 2 6 7 * Corresponding author:
[email protected] 8 9 1 Department of Earth and Environmental Sciences, University of Michigan, Ann 10 Arbor, MI 48109, USA. 11 2 School of Geography, Earth & Environmental Sciences, Plymouth University, Drake 12 Circus, Plymouth, Devon, PL4 8AA, UK. 3 13 Department of Earth Sciences, Natural History Museum, Cromwell Road, London, 14 SW7 5BD, UK. 15 4 Department of Earth Sciences, Royal Holloway University of London, Egham, 16 Surrey, TW20 0EX, UK. 17 5Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA. 18 19 ABSTRACT 20 While marine records of the Eocene-Oligocene transition (EOT) indicate a generally 21 coherent response to global cooling and the growth of continental ice on Antarctica, 22 continental records indicate substantial spatial variability. Marine EOT records are 23 marked by a ~+1.1‰ foraminiferal δ18O shift, but continental records rarely record 24 the same geochemical signature, making both correlation and linking of causal 25 mechanisms between marine and continental records challenging. Here, a new high- 26 resolution continental δ18O record, derived from the freshwater gill-breathing 27 gastropod Viviparus lentus, is presented from the Hampshire Basin (UK). The Solent 28 Group records marine incursions and has an established magnetostratigraphy, 29 making it possible to correlate the succession directly with marine records.