CORE Metadata, citation and similar papers at core.ac.uk Provided by UM Digital Repository International Journal of Mechanical and Materials Engineering (IJMME), Vol.5 (2010), No.2, 163-170. REYNOLDS AND PRANDTL NUMBERS EFFECTS ON MHD MIXED CONVECTION IN A LID-DRIVEN CAVITY ALONG WITH JOULE HEATING AND A CENTERED HEAT CONDUCTING CIRCULAR BLOCK M. M. Rahman1, M. M. Billah2, M. A. H. Mamun 3, R. Saidur4 and M. Hasanuzzaman4 1Department of Mathematics 1Bangladesh University of Engineering and Technology (BUET), Dhaka-1000, Bangladesh 2Department of Arts and Sciences, Ahsanullah University of Science and Technology (AUST), Dhaka, Bangladesh 3The Institute of Ocean Energy, Saga University, Japan 4Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia Email:
[email protected] Received 20 May 2010, Accepted 29 July 2010 ABSTRACT Nu average Nusselt number p dimensional pressure (Nm-2) The fluid flows and heat transfer induced by the combined P dimensionless pressure effects of mechanically driven lid and buoyancy force Pr Prandtl number within a rectangular cavity is investigated in this paper Ra Rayleigh number numerically. The horizontal walls of the enclosure are Re Reynolds number insulted while the right vertical wall is maintained at a Ri Richardson number uniform temperature higher than the left vertical wall. In T dimensional temperature(K) addition, it contains a heat conducting horizontal circular ∆T temperature difference (K) block in its centre. The governing equations for the problem u, v dimensional velocity components (ms-1) are first transformed into a non-dimensional form and the U, V dimensionless velocity components resulting nonlinear system of partial differential equations U0 lid velocity are solved by using the finite element formulation based on V cavity volume (m3) the Galerkin method of weighted residuals.