Keynote Speaker-2 How I Became a Computational Scientist J. Mailen Kootsey Redlands, California, USA Email:
[email protected] Abstract— Professional journal advertisements, email newsletters, and university marketing now advertise numerous educational and research programs in computational physics, computational biology, and other fields where computation is an essential element of the discipline. These programs all have very recent origins, made possible by the exponential growth in the availability of compute power. In this presentation, I describe some milestones in my own experience as a person living through and participating in the birth of computational science – especially the contributions of computing to scientific theory and understanding. I began my history with analog computing, learned numerical methods by manual computations of derivatives and integrals, learned to program an early vacuum tube computer, and experienced challenges in finding acceptance for computer methods in traditional biomedical disciplines. Keywords—computational science, history of science, biomedicine, cardiac electrophysiology, analog computer, numerical methods. 1. Introduction : Computers are now making major contributions to all fields of science, from fundamental particle physics through chemistry, biology, and medicine, to the social sciences and cosmology. A major part of the computer contribution to these fields is related to data: acquisition, organization, presentation, sharing, and pattern recognition in data. Computers are also changing scientific theory by making it possible to explore and evaluate models that are much more realistic and complex than could be considered with only analytic and hand calculations. Computational science did not spring into existence fully developed, but experienced birth and development like a living system. In some scientific fields, the contribution of computing to theory is still in early stages.