Snn= 2.76 Tev at the LHC with ALICE

Total Page:16

File Type:pdf, Size:1020Kb

Snn= 2.76 Tev at the LHC with ALICE Neutral kaon femtoscopy in Pb-Pb collisions at p sNN = 2:76 TeV at the LHC with ALICE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Matthew Steinpreis, M.S., B.S. Graduate Program in Physics The Ohio State University 2014 Dissertation Committee: Professor Thomas Humanic, Advisor Professor Michael Lisa Professor Yuri Kovchegov Professor Klaus Honscheid ⃝c Copyright by Matthew Steinpreis 2014 Abstract Femtoscopy is an experimental method used to study the spatio-temporal characteristics of the particle-emitting \sources" of ultra-relativistic particle collisions. This method allows us to measure the size, shape, and lifetime of the kinetic freeze-out region of the particles created in the collisions as they are emitted from the expanding system. Studying these source regions allows us to investigate the dynamics of the system as it evolves from the hot, dense state of matter known as the Quark-Gluon Plasma into a dilute, free-streaming hadronic gas. The analysis of the extracted femtoscopic radii and their dependences on event centrality, momentum, and particle species can help put constaints on unknown quantities used in theoretical models such as time-scales and particle-particle scattering parameters. The femtoscopic tool is the two-particle relative momentum correlation function, which connects the final-state momentum distributions measured by the detector to the space- time distributions of particle emission, which are on the order of 10−15 m, or femtometers, and cannot be directly measured. These correlations are sensitive to the quantum statistics of identical particles as well as the strong and/or Coulomb interactions between particles. Neutral kaon femtoscopy acts as an excellent complement to similar analyses of other particle species. Kaon analyses are generally able to reach higher values of transverse mo- q 2 2 mentum (KT) and transverse mass (MT = KT + m ) than the more commonly studied pion analyses. The comparison of kaon radii with those of pions and protons allows us to check for universal MT-scaling, which is predicted by some hydrodynamic models. The study of neutral kaons also acts as a convenient consistency check for the charged kaon anal- ysis, as both analyses are expected to produce similar results while employing significantly different analysis methods, e.g. directly measured tracks vs. decay vertex reconstruction ii and Coulomb-dominated vs. strong-dominated final-state interactions. 0 0 This thesis will present KSKS femtoscopic correlations in Pb-Pb collisions at p sNN = 2:76 TeV at the LHC with ALICE. This analysis will be the first centrality- and 0 0 KT-differential study of KSKS correlations in heavy-ion collisions, presenting femtoscopic results for three centrality bins and four KT bins. This thesis will present results for both one-dimensional and three-dimensional femtoscopic analyses, the latter being the first of 0 0 its kind for the KSKS system. iii To my parents and grandparents. iv Acknowledgments First, I would like to thank my advisor, Tom Humanic, for his support, guidance, and patience over the past five years. I would also like to thank Mike Lisa for his additional support and guidance. I would like to thank Tom and Mike both for accepting me into their research group, for encouraging and critiquing my work when necessary, and for providing me with the opportunities and means to travel to CERN and to various conferences. I also thank the rest of the OSU Nuclear Physics group for their collaboration and the professors at The Ohio State University and the University of Wisconsin-Madison for their tutelage. Next, I would like to thank my fellow researchers in the heavy-ion community, especially the ALICE collaboration and the ALICE femtoscopy group. I would especially like to thank Dhevan Gangadharan for helping me kickstart my analysis, providing daily guidance on all things experimental, theoretical, and computational, and accompanying me on our global travels. I would like to acknowledge financial support from the U.S. National Science Foundation under grant PHY-1307188 and computing support from the Ohio Supercomputer Center. Lastly, I would like to give special thanks to my friends and family. To my friends: thank you for your love, support, joviality, and shared interest in music, food, sports, and trivia contests, which have been extremely crucial to my sanity and enjoyment of life over the past six years. To my family: thank you for your undying love, support, and provision over the past thirty years. I could not have succeeded without you. v Vita September 5, 1984 . Born, Plymouth, Wisconsin June 2003 . Diploma, Plymouth High School, Plymouth, Wisconsin August 2008 . B.S., University of Wisconsin-Madison, Madison, Wisconsin September 2008 - May 2010 . Graduate Teaching Assistant, The Ohio State University, Columbus, Ohio December 2010 . M.S., Physics, The Ohio State University, Columbus, Ohio September 2010 - present . Graduate Research Assistant, The Ohio State University, Columbus, Ohio Publications Abelev, B. et al. [ALICE Collaboration] \Performance of the ALICE experiment at the CERN LHC". Int. J. Mod. Phys A, 29(24):1430044, Sep. 2014. Abelev, B. et al. [ALICE Collaboration] \Production of charged pions, kaons and protons p at large transverse momenta in pp and Pb-Pb collisions at sNN = 2:76 TeV". Phys. Lett. B, 736:196{207, Sep. 2014. Abelev, B. et al. [ALICE Collaboration] \Measurement of quarkonium production at p forward rapidity in pp collisions at s = 7 TeV". Eur. Phys. J. C, 74(8):2974, Aug. 2014. Abelev, B. et al. [ALICE Collaboration] \Upgrade of the ALICE Experiment Letter Of Intent". J. Phys. G: Nucl. Part. Phys., 41(8):087001, Aug. 2014. Abelev, B. et al. [ALICE Collaboration] \Technical Design Report for the Upgrade of the ALICE Inner Tracking System". J. Phys. G: Nucl. Part. Phys., 41(8):087002, Aug. 2014. vi Abelev, B. et al. [ALICE Collaboration] \Centrality, rapidity and transverse momentum p dependence of J/ suppression in Pb-Pb collisions at sNN = 2:76 TeV". Phys. Lett. B, 734:314-327, Jun. 2014. Abelev, B. et al. [ALICE Collaboration] \Measurement of charged jet suppression in Pb-Pb p collisions at sNN = 2:76 TeV". J. High Energy Phys., 3:013, Mar. 2014. Abelev, B. et al. [ALICE Collaboration] \Two- and three-pion quantum statistics correla- p tions in Pb-Pb collisions at sNN = 2:76 TeV at the CERN Large Hadron Collider". Phys. Rev. C, 89(2):024911, Feb. 2014. Abelev, B. et al. [ALICE Collaboration] \J/ production and nuclear effects in p-Pb p collisions at sNN = 5:02 TeV". J. High Energy Phys, 2:073, Feb. 2014. Abelev, B. et al. [ALICE Collaboration] \Multiplicity dependence of pion, kaon, proton p and lambda production in p-Pb collisions at sNN = 5:02 TeV". Phys. Lett. B, 728:25-38, Jan. 2014. Abelev, B. et al. [ALICE Collaboration] \Multi-strange baryon production at mid-rapidity p in Pb-Pb collisions at sNN = 2:76 TeV". Phys. Lett. B, 728:216-227, Jan. 2014. Abelev, B. et al. [ALICE Collaboration] \Multiplicity dependence of the average transverse momentum in pp, p-Pb, and Pb-Pb collisions at the LHC". Phys. Lett. B, 727:371-380, Dec. 2013. Abelev, B. et al. [ALICE Collaboration] \Energy dependence of the transverse momentum distributions of charged particles in pp collisions measured by ALICE". Eur. Phys. J. C, 73(12):2662, Dec. 2013. Abelev, B. et al. [ALICE Collaboration] \Directed Flow of Charged Particles at Midrapidity p Relative to the Spectator Plane in Pb-Pb Collisions at sNN = 2:76 TeV". Phys. Rev. Lett., 111(23):232302, Dec. 2013. Abelev, B. et al. [ALICE Collaboration] \K0 and Λ Production in Pb-Pb Collisions at p S sNN = 2:76 TeV". Phys. Rev. Lett., 111(22):222301, Nov. 2013. Abbas, E. et al. [ALICE Collaboration] \Charmonium and e+e− pair photoproduction at p mid-rapidity in ultra-peripheral Pb-Pb collisions at sNN = 2:76 TeV". Eur. Phys. J. C, 73(11):2617, Nov. 2013. Abbas, E. et al. [ALICE Collaboration] \Centrality dependence of the pseudorapidity p density distribution for charged particles in Pb-Pb collisions at sNN = 2:76 TeV". Phys. Lett. B, 726(4-5):610-622, Nov. 2013. p Abbas, E. et al. [ALICE Collaboration] \J/ Elliptic Flow in Pb-Pb Collisions at sNN = 2:76 TeV". Phys. Rev. Lett., 111(16):162301, Oct. 2013. vii Abelev, B. et al. [ALICE Collaboration] \Centrality determination of Pb-Pb collisions at p sNN = 2:76 TeV". Phys. Rev. C, 88(4):044909, Oct. 2013. Abelev, B. et al. [ALICE Collaboration] \Centrality dependence of π, K, and p production p in Pb-Pb collisions at sNN = 2:76 TeV". Phys. Rev. C, 88(4):044910, Oct. 2013. Abelev, B. et al. [ALICE Collaboration] \Long-range angular correlations of π, K and p in p p-Pb collisions at sNN = 5:02 TeV". Phys. Lett. B, 726(1-3):164-177, Oct. 2013. Abelev, B. et al. [ALICE Collaboration] \Multiplicity dependence of two-particle azimuthal correlations in pp collisions at the LHC". J. High Energy Phys., 9:049, Sep. 2013. Abelev, B. et al. [ALICE Collaboration] \D Meson Elliptic Flow in Noncentral Pb-Pb p Collisions at sNN = 2:76 TeV". Phys. Rev. Lett., 111(10):102301, Sep. 2013. Abbas, E. et al. [ALICE Collaboration] \Mid-rapidity anti-baryon to baryon ratios in pp p collisions at s = 0:9, 2.76, and 7 TeV". Eur. Phys. J. C, 73(7):2496, Jul. 2013. Abelev, B. et al. [ALICE Collaboration] \Charge correlations using the balance function p in Pb-Pb collisions at sNN = 2:76 TeV". Phys. Lett. B, 723(4-5):267-279, Jun. 2013. Abelev, B. et al.
Recommended publications
  • The Role of Strangeness in Ultrarelativistic Nuclear
    HUTFT THE ROLE OF STRANGENESS IN a ULTRARELATIVISTIC NUCLEAR COLLISIONS Josef Sollfrank Research Institute for Theoretical Physics PO Box FIN University of Helsinki Finland and Ulrich Heinz Institut f ur Theoretische Physik Universitat Regensburg D Regensburg Germany ABSTRACT We review the progress in understanding the strange particle yields in nuclear colli sions and their role in signalling quarkgluon plasma formation We rep ort on new insights into the formation mechanisms of strange particles during ultrarelativistic heavyion collisions and discuss interesting new details of the strangeness phase di agram In the main part of the review we show how the measured multistrange particle abundances can b e used as a testing ground for chemical equilibration in nuclear collisions and how the results of such an analysis lead to imp ortant con straints on the collision dynamics and spacetime evolution of high energy heavyion reactions a To b e published in QuarkGluon Plasma RC Hwa Eds World Scientic Contents Introduction Strangeness Pro duction Mechanisms QuarkGluon Pro duction Mechanisms Hadronic Pro duction Mechanisms Thermal Mo dels Thermal Parameters Relative and Absolute Chemical Equilibrium The Partition Function The Phase Diagram of Strange Matter The Strange Matter Iglo o Isentropic Expansion Trajectories The T ! Limit of the Phase Diagram
    [Show full text]
  • Pion and Kaon Structure at 12 Gev Jlab and EIC
    Pion and Kaon Structure at 12 GeV JLab and EIC Tanja Horn Collaboration with Ian Cloet, Rolf Ent, Roy Holt, Thia Keppel, Kijun Park, Paul Reimer, Craig Roberts, Richard Trotta, Andres Vargas Thanks to: Yulia Furletova, Elke Aschenauer and Steve Wood INT 17-3: Spatial and Momentum Tomography 28 August - 29 September 2017, of Hadrons and Nuclei INT - University of Washington Emergence of Mass in the Standard Model LHC has NOT found the “God Particle” Slide adapted from Craig Roberts (EICUGM 2017) because the Higgs boson is NOT the origin of mass – Higgs-boson only produces a little bit of mass – Higgs-generated mass-scales explain neither the proton’s mass nor the pion’s (near-)masslessness Proton is massive, i.e. the mass-scale for strong interactions is vastly different to that of electromagnetism Pion is unnaturally light (but not massless), despite being a strongly interacting composite object built from a valence-quark and valence antiquark Kaon is also light (but not massless), heavier than the pion constituted of a light valence quark and a heavier strange antiquark The strong interaction sector of the Standard Model, i.e. QCD, is the key to understanding the origin, existence and properties of (almost) all known matter Origin of Mass of QCD’s Pseudoscalar Goldstone Modes Exact statements from QCD in terms of current quark masses due to PCAC: [Phys. Rep. 87 (1982) 77; Phys. Rev. C 56 (1997) 3369; Phys. Lett. B420 (1998) 267] 2 Pseudoscalar masses are generated dynamically – If rp ≠ 0, mp ~ √mq The mass of bound states increases as √m with the mass of the constituents In contrast, in quantum mechanical models, e.g., constituent quark models, the mass of bound states rises linearly with the mass of the constituents E.g., in models with constituent quarks Q: in the nucleon mQ ~ ⅓mN ~ 310 MeV, in the pion mQ ~ ½mp ~ 70 MeV, in the kaon (with s quark) mQ ~ 200 MeV – This is not real.
    [Show full text]
  • Strange Particle Theory in the Cosmic Ray Period R
    STRANGE PARTICLE THEORY IN THE COSMIC RAY PERIOD R. Dalitz To cite this version: R. Dalitz. STRANGE PARTICLE THEORY IN THE COSMIC RAY PERIOD. Journal de Physique Colloques, 1982, 43 (C8), pp.C8-195-C8-205. 10.1051/jphyscol:1982811. jpa-00222371 HAL Id: jpa-00222371 https://hal.archives-ouvertes.fr/jpa-00222371 Submitted on 1 Jan 1982 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C8, suppldment au no 12, Tome 43, ddcembre 1982 page ~8-195 STRANGE PARTICLE THEORY IN THE COSMIC RAY PERIOD R.H. Dalitz Department of Theoretical Physics, 2 KebZe Road, Oxford OX1 3NP, U.K. What role did theoretical physicists play concerning elementary particle physics in the cosmic ray period? The short answer is that it was the nuclear forces which were the central topic of their attention at that time. These were considered to be due primarily to the exchange of pions between nucleons, and the study of all aspects of the pion-nucleon interactions was the most direct contribution they could make to this problem. Of course, this was indeed a most important topic, and much significant understanding of the pion-nucleon interaction resulted from these studies, although the precise nature of the nucleonnucleon force is not settled even to this day.
    [Show full text]
  • Three Lectures on Meson Mixing and CKM Phenomenology
    Three Lectures on Meson Mixing and CKM phenomenology Ulrich Nierste Institut f¨ur Theoretische Teilchenphysik Universit¨at Karlsruhe Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany I give an introduction to the theory of meson-antimeson mixing, aiming at students who plan to work at a flavour physics experiment or intend to do associated theoretical studies. I derive the formulae for the time evolution of a neutral meson system and show how the mass and width differences among the neutral meson eigenstates and the CP phase in mixing are calculated in the Standard Model. Special emphasis is laid on CP violation, which is covered in detail for K−K mixing, Bd−Bd mixing and Bs−Bs mixing. I explain the constraints on the apex (ρ, η) of the unitarity triangle implied by ǫK ,∆MBd ,∆MBd /∆MBs and various mixing-induced CP asymmetries such as aCP(Bd → J/ψKshort)(t). The impact of a future measurement of CP violation in flavour-specific Bd decays is also shown. 1 First lecture: A big-brush picture 1.1 Mesons, quarks and box diagrams The neutral K, D, Bd and Bs mesons are the only hadrons which mix with their antiparticles. These meson states are flavour eigenstates and the corresponding antimesons K, D, Bd and Bs have opposite flavour quantum numbers: K sd, D cu, B bd, B bs, ∼ ∼ d ∼ s ∼ K sd, D cu, B bd, B bs, (1) ∼ ∼ d ∼ s ∼ Here for example “Bs bs” means that the Bs meson has the same flavour quantum numbers as the quark pair (b,s), i.e.∼ the beauty and strangeness quantum numbers are B = 1 and S = 1, respectively.
    [Show full text]
  • Detection of a Strange Particle
    10 extraordinary papers Within days, Watson and Crick had built a identify the full set of codons was completed in forensics, and research into more-futuristic new model of DNA from metal parts. Wilkins by 1966, with Har Gobind Khorana contributing applications, such as DNA-based computing, immediately accepted that it was correct. It the sequences of bases in several codons from is well advanced. was agreed between the two groups that they his experiments with synthetic polynucleotides Paradoxically, Watson and Crick’s iconic would publish three papers simultaneously in (see go.nature.com/2hebk3k). structure has also made it possible to recog- Nature, with the King’s researchers comment- With Fred Sanger and colleagues’ publica- nize the shortcomings of the central dogma, ing on the fit of Watson and Crick’s structure tion16 of an efficient method for sequencing with the discovery of small RNAs that can reg- to the experimental data, and Franklin and DNA in 1977, the way was open for the com- ulate gene expression, and of environmental Gosling publishing Photograph 51 for the plete reading of the genetic information in factors that induce heritable epigenetic first time7,8. any species. The task was completed for the change. No doubt, the concept of the double The Cambridge pair acknowledged in their human genome by 2003, another milestone helix will continue to underpin discoveries in paper that they knew of “the general nature in the history of DNA. biology for decades to come. of the unpublished experimental results and Watson devoted most of the rest of his ideas” of the King’s workers, but it wasn’t until career to education and scientific administra- Georgina Ferry is a science writer based in The Double Helix, Watson’s explosive account tion as head of the Cold Spring Harbor Labo- Oxford, UK.
    [Show full text]
  • Prospects for Measurements with Strange Hadrons at Lhcb
    Prospects for measurements with strange hadrons at LHCb A. A. Alves Junior1, M. O. Bettler2, A. Brea Rodr´ıguez1, A. Casais Vidal1, V. Chobanova1, X. Cid Vidal1, A. Contu3, G. D'Ambrosio4, J. Dalseno1, F. Dettori5, V.V. Gligorov6, G. Graziani7, D. Guadagnoli8, T. Kitahara9;10, C. Lazzeroni11, M. Lucio Mart´ınez1, M. Moulson12, C. Mar´ınBenito13, J. Mart´ınCamalich14;15, D. Mart´ınezSantos1, J. Prisciandaro 1, A. Puig Navarro16, M. Ramos Pernas1, V. Renaudin13, A. Sergi11, K. A. Zarebski11 1Instituto Galego de F´ısica de Altas Enerx´ıas(IGFAE), Santiago de Compostela, Spain 2Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom 3INFN Sezione di Cagliari, Cagliari, Italy 4INFN Sezione di Napoli, Napoli, Italy 5Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom, now at Universit`adegli Studi di Cagliari, Cagliari, Italy 6LPNHE, Sorbonne Universit´e,Universit´eParis Diderot, CNRS/IN2P3, Paris, France 7INFN Sezione di Firenze, Firenze, Italy 8Laboratoire d'Annecy-le-Vieux de Physique Th´eorique , Annecy Cedex, France 9Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology, Kalsruhe, Germany 10Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology, Kalsruhe, Germany 11School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 12INFN Laboratori Nazionali di Frascati, Frascati, Italy 13Laboratoire de l'Accelerateur Lineaire (LAL), Orsay, France 14Instituto de Astrof´ısica de Canarias and Universidad de La Laguna, Departamento de Astrof´ısica, La Laguna, Tenerife, Spain 15CERN, CH-1211, Geneva 23, Switzerland 16Physik-Institut, Universit¨atZ¨urich,Z¨urich,Switzerland arXiv:1808.03477v2 [hep-ex] 31 Jul 2019 Abstract This report details the capabilities of LHCb and its upgrades towards the study of kaons and hyperons.
    [Show full text]
  • Workshop on Pion-Kaon Interactions (PKI2018) Mini-Proceedings
    Date: April 19, 2018 Workshop on Pion-Kaon Interactions (PKI2018) Mini-Proceedings 14th - 15th February, 2018 Thomas Jefferson National Accelerator Facility, Newport News, VA, U.S.A. M. Amaryan, M. Baalouch, G. Colangelo, J. R. de Elvira, D. Epifanov, A. Filippi, B. Grube, V. Ivanov, B. Kubis, P. M. Lo, M. Mai, V. Mathieu, S. Maurizio, C. Morningstar, B. Moussallam, F. Niecknig, B. Pal, A. Palano, J. R. Pelaez, A. Pilloni, A. Rodas, A. Rusetsky, A. Szczepaniak, and J. Stevens Editors: M. Amaryan, Ulf-G. Meißner, C. Meyer, J. Ritman, and I. Strakovsky Abstract This volume is a short summary of talks given at the PKI2018 Workshop organized to discuss current status and future prospects of π K interactions. The precise data on π interaction will − K have a strong impact on strange meson spectroscopy and form factors that are important ingredients in the Dalitz plot analysis of a decays of heavy mesons as well as precision measurement of Vus matrix element and therefore on a test of unitarity in the first raw of the CKM matrix. The workshop arXiv:1804.06528v1 [hep-ph] 18 Apr 2018 has combined the efforts of experimentalists, Lattice QCD, and phenomenology communities. Experimental data relevant to the topic of the workshop were presented from the broad range of different collaborations like CLAS, GlueX, COMPASS, BaBar, BELLE, BESIII, VEPP-2000, and LHCb. One of the main goals of this workshop was to outline a need for a new high intensity and high precision secondary KL beam facility at JLab produced with the 12 GeV electron beam of CEBAF accelerator.
    [Show full text]
  • Kaon to Two Pions Decays from Lattice QCD: ∆I = 1/2 Rule and CP
    Kaon to Two Pions decays from Lattice QCD: ∆I =1/2 rule and CP violation Qi Liu Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2012 c 2012 Qi Liu All Rights Reserved Abstract Kaon to Two Pions decays from Lattice QCD: ∆I =1/2 rule and CP violation Qi Liu We report a direct lattice calculation of the K to ππ decay matrix elements for both the ∆I = 1/2 and 3/2 amplitudes A0 and A2 on a 2+1 flavor, domain wall fermion, 163 32 16 lattice ensemble and a 243 64 16 lattice ensemble. This × × × × is a complete calculation in which all contractions for the required ten, four-quark operators are evaluated, including the disconnected graphs in which no quark line connects the initial kaon and final two-pion states. These lattice operators are non- perturbatively renormalized using the Rome-Southampton method and the quadratic divergences are studied and removed. This is an important but notoriously difficult calculation, requiring high statistics on a large volume. In this work we take a major step towards the computation of the physical K ππ amplitudes by performing → a complete calculation at unphysical kinematics with pions of mass 422MeV and 329MeV at rest in the kaon rest frame. With this simplification we are able to 3 resolve Re(A0) from zero for the first time, with a 25% statistical error on the 16 3 lattice and 15% on the 24 lattice. The complex amplitude A2 is calculated with small statistical errors.
    [Show full text]
  • Negative Strange Quark-Chemical Potential a Necessary and Sufficient Observable of the Deconfinement Phase Transition in a Finite-Baryon Equilibrated State*
    Negative strange quark-chemical potential A necessary and sufficient observable of the deconfinement phase transition in a finite-baryon equilibrated state* Apostolos D. Panagiotou and Panayiotis Katsas University of Athens, Physics Department Nuclear & Particle Physics Division Panepistimiopolis, GR-157 71 Athens, Hellas Abstract We consider the variation of the strange quark-chemical potential in the phase diagramme of nuclear matter, employing the order parameters and mass-scaled partition functions in each domain and enforcing flavour conservation. Assuming the region beyond the hadronic phase to be described by massive, correlated and interacting quarks, in the spirit of lattice and N−J-L calculations, we find the strange quark-chemical potential to attain large negative values in this domain. We propose that this change in the sign of the strange quark- chemical potential, from positive in the hadronic phase to negative in the partonic, to be a unique, concise and well-defined indication of the quark-deconfinement phase transition in nuclear matter. We propose also that, for a chemically equilibrated state in the deconfined region, which follows an isentropic expansion to hadronization via a second order phase transition, the fugacities of the equilibrated quark flavours, once fixed in the primordial state, remain constant throughout the hadronization process. PACS codes: 25.75.+r,12.38.Mh,24.84.+p Key words: Quark-chemical potential, phase transition, deconfined quark matter, HG, QGP e-mail: [email protected] * Work supported in part by the Research Secretariat of the University of Athens. 1. Introduction It is generally expected that ultra-relativistic nucleus-nucleus collisions will provide the basis for strong interaction thermodynamics, which will lead to new physics.
    [Show full text]
  • Physics 29000 – Quarknet/Service Learning
    Physics 29000 – Quarknet/Service Learning Lecture 3: Ionizing Radiation Purdue University Department of Physics February 1, 2013 1 Resources • Particle Data Group: http://pdg.lbl.gov • Summary tables of particle properties: http://pdg.lbl.gov/2012/tables/contents_tables.html • Table of atomic and nuclear properties of materials: http://pdg.lbl.gov/2012/reviews/rpp2012-rev-atomic-nuclear-prop.pdf 2 Some Subatomic Particles – electron , and positron , – proton , and neutron , – muon , and anti-muon , • When we don’t care which we usually just call them “muons” or write ± – photon , – electron neutrino , and muon neutrino , – charged pions , ± and charged kaons , ± – neutral pions , and neutral kaons , – “lambda hyperon ”, Some are fundamental (no substructure) while others are not. 3 Subatomic Particles • Fundamental particles (as far as we know): Quarks Leptons • electrons, muons and neutrinos are fundamental. • protons, neutrons, kaons, pions are made of quarks: – baryons have 3 quarks: – mesons are pairs: • what about the photon? 4 Subatomic Particles • fundamental particles of matter interact with fundamental “force carriers” called “gauge bosons”: – Electromagnetic force: photon ( ) – Weak nuclear force, responsible for -decay: , – Strong nuclear force: gluons ( ) • The force carriers “couple” to the “charge” of the matter particle: – photons couple to electric charge (not neutrinos) – W’s couple to “weak hypercharge” (all particles) – gluons couple to “color charge” (only quarks) – mesons and baryons are “colorless”
    [Show full text]
  • Kaon Oscillations and Baryon Asymmetry of the Universe Abstract
    Kaon oscillations and baryon asymmetry of the universe Wanpeng Tan∗ Department of Physics, Institute for Structure and Nuclear Astrophysics (ISNAP), and Joint Institute for Nuclear Astrophysics - Center for the Evolution of Elements (JINA-CEE), University of Notre Dame, Notre Dame, Indiana 46556, USA (Dated: September 17, 2019) Abstract Baryon asymmetry of the universe (BAU) can likely be explained with K0 − K00 oscillations of a newly developed mirror-matter model and new understanding of quantum chromodynamics (QCD) phase transitions. A consistent picture for the origin of both BAU and dark matter is presented with the aid of n − n0 oscillations of the new model. The global symmetry breaking transitions in QCD are proposed to be staged depending on condensation temperatures of strange, charm, bottom, and top quarks in the early universe. The long-standing BAU puzzle could then be understood with K0 − K00 oscillations that occur at the stage of strange quark condensation and baryon number violation via a non-perturbative sphaleron-like (coined \quarkiton") process. Similar processes at charm, bottom, and top quark condensation stages are also discussed including an interesting idea for top quark condensation to break both the QCD global Ut(1)A symmetry and the electroweak gauge symmetry at the same time. Meanwhile, the U(1)A or strong CP problem of particle physics is addressed with a possible explanation under the same framework. ∗ [email protected] 1 I. INTRODUCTION The matter-antimatter imbalance or baryon asymmetry of the universe (BAU) has been a long standing puzzle in the study of cosmology. Such an asymmetry can be quantified in various ways.
    [Show full text]
  • Rare Kaon Decays
    1 64. Rare Kaon Decays 64. Rare Kaon Decays Revised August 2019 by L. Littenberg (BNL) and G. Valencia (Monash U.). 64.1 Introduction There are several useful reviews on rare kaon decays and related topics [1–12]. Activity in rare kaon decays can be divided roughly into four categories: 1. Searches for explicit violations of the Standard Model (SM) 2. The golden modes: K → πνν¯ 3. Other constraints on SM parameters 4. Studies of strong interactions at low energy. The paradigm of Category 1 is the lepton flavor violating decay KL → µe. Category 2 in- cludes the two modes that can be calculated with negligible theoretical uncertainty, K+ → π+νν 0 and KL → π νν. These modes can lead to precision determinations of CKM parameters or, in combination with other measurements of these parameters, they can constrain new interactions. They constitute the main focus of the current experimental kaon program. Category 3 is focused 0 + − + − on decays with charged leptons, such as KL → π ` ` or KL → ` ` where ` ≡ e, µ. These modes are sensitive to CKM parameters but they suffer from multiple hadronic uncertainties that can be addressed, at least in part, through a systematic study of the peripheral modes indicated in Fig. 64.1. The interplay between Categories 3-4 and their complementarity to Category 2 is illustrated in the figure. Category 4 includes reactions like K+ → π+`+`− where long distance con- tributions are dominant and which constitute a testing ground for the ideas of chiral perturbation 0 + − theory. Other decays in this category are KL → π γγ and KL → ` ` γ.
    [Show full text]