Extraction of Semantic Clusters for Terminological Information Retrieval from Mrds

Total Page:16

File Type:pdf, Size:1020Kb

Extraction of Semantic Clusters for Terminological Information Retrieval from Mrds Extraction of Semantic Clusters for Terminological Information Retrieval from MRDs Gerardo Sierra*, John McNaught† *Instituto de Ingeniería, UNAM Apdo. Postal 70-472 México 04510, D.F. [email protected] †Centre for Computational Linguistics, UMIST P.O.Box 88 Manchester, U.K., M60 1QD [email protected] Abstract This paper describes a semantic clustering method for data extracted from machine readable dictionaries (MRDs) in order to build a terminological information retrieval system that finds terms from descriptions of concepts. We first examine approaches based on ontologies and statistics, before introducing our analogy-based approach that lets us extract semantic clusters by aligning definitions from two dictionaries. Evaluation of the final set of clusters for a small set of definitions demonstrates the utility of our approach. synonyms or cross-references. As a result, it has been 1. Background found advantageous to expand the original query with The majority of lexicographers recognise the need for closely related keywords (Fox, 1988). In addition to the dictionaries that, contrary to the alphabetical ordering of user’s own knowledge of expressing the same concept in entries, help users to look for a word that has escaped alternative ways, a relational thesaurus brings related their memory even though they remember the concept. words together and thereby helps to stimulate their From a semantic point of view, Baldinger (1980) memory. Some systems provide an on-line thesaurus as a identifies two kinds of dictionaries. The semasiological facility for the user in this regard. However, formalising one corresponds to the viewpoint of the person a concept with the exact clue words is sometimes a heavy interpreting the speaker, thus one starts with the form of task for the user, but searching can become harder if the the expression to look for the meaning. It is user has also to identify clusters of related keywords, alphabetically arranged. The onomasiological type, from particularly when the query is expressed in natural the perspective of the speaker, allows one to start from language. The systematisation of this task has been hence the mental object and look for its designations. It is placed on the system, which can provide clusters during arranged by concepts and splits up the fields of the search session in order to allow the user to select the meanings. E.g., the name “green” may be found under best ones, or alternatively they can be automatically used the concepts “colour”, “vegetable” or “inexperience”. by the system. In order to help the user focus on the In the context of computational lexicography, it has search, it is convenient that the system produces and been shown that machine readable dictionaries (MRDs), manages the semantic clusters transparently, without any which are conventional semasiological dictionaries, can intervention by the user. In fact, this is the goal of a user- be used for onomasiological searches. This is based on friendly onomasiological search system, and the success the assumption that semasiological dictionaries have the of such a system relies on the accurate identification of necessary information in the first place. Kipfer (1986) the semantic clusters. stated that a dictionary can be considered as a matrix that maps between word senses, and that an on-line dictionary 2. Survey of clustering can be entered via words or senses. She added that in an Clustering has been applied to almost every on-line dictionary it is possible to find a word by discipline. The process of identifying clusters has following semantic links or by genus. For example, if a variously been called cluster analysis, classification, user needs to locate the word expressing a group of ducks categorisation, taxonomy, typology or clumping, (flock), they can check the entry for duck. Calzolari according to the discipline. The purpose of clustering (1988) stated that an on-line dictionary can be used to varies from classification and sorting to the development seek a word through examining definitions that contain of inductive generalisations (Anderberg, 1973). The words supplied by the user (clue words). primary goal of clustering is to collect together into The success of an onomasiological search relies upon clusters a set of elements associated by some common the accuracy of all clue words in the concept definition characteristic. Each element or member within a cluster that might represent the target word the user is looking A is strongly associated with each other because they for. Since the user often does not employ precisely the share the same property, while members of other clusters same terminology as the indexed keywords or stored full- show distinct characteristics from those of A. Clustering text database, the retrieved words may be far from the may alternatively be oriented either to discover the concept desired. When the result is not satisfactory, the strongest association among members or to seek user can expand the query with closely related keywords members which are isolated from each other. Clustering which enhance the meaning, such as alternative forms, is often based on measurements of the similarity or dissimilarity between a pair of objects, these objects being connects two concepts in the hierarchical net. Their either single members or other clusters. A cluster is method enables us to check the closeness of candidate defined by its members and often by the “central hypernyms for a given hyponym. This measure may be concept” with which all the cluster’s members are applied to cluster similar concepts, so that candidate associated (McRoy, 1992). This central concept could be concepts with the shortest path in the hierarchy should be the common characteristic, the particular conceptual clustered. On the other hand, Resnik (1995) suggests parent or even any member when there is no need to WordNet for semantic clustering on the basis of the specify the exact nature of the association among the information content shared by the synsets in comparison. members. The identification of the central concept relies However, we may add that the technique of on the variables that are used to characterise the elements conceptual distance or number of links is highly of the problem, either the characteristics, attributes, class dependent on the degree of density of coverage of the memberships or other such properties. Here, our focus is conceptual space in an area that the WordNet on semantic variables. lexicographers have been able to achieve. Besides, it is Clustering methods to identify semantically similar also appropriate to point out some drawbacks observed by words are broadly divided into relation-based and researchers applying WordNet to specific purposes distribution-based approaches (Hirakawa, Xu & Haase, (Arranz, 1998; Agirre & Rigau, 1996; Basili, Pazienza & 1996). The former analyse relations in an ontology, while Velardi, 1996): restricted types of semantic relationships; the latter use statistical analysis. According to the lack of cross-categorical semantic relations among nouns, terminology of Grefenstette (1996), these methods can be verbs and adjectives; the sense distinctions are not always called knowledge-rich, based on a conceptual dependency satisfactory; there are similar words that are not representation, and knowledge-poor, based on recognised in WordNet; tags in WordNet create over- distributional analysis. From a methodological point of ambiguity. view, there is, in addition to the above two approaches, a little known approach called the analogy-based approach. 2.1.2. Roget’s Thesaurus This employs an inferential process and is used in Roget’s Thesaurus has become rather popular for computational linguistics and artificial intelligence as an many applications. One reason is that it is a general alternative to current rule-based linguistic models. thesaurus with broad vocabulary coverage, although it is likely to be missing many domain-specific words. 2.1. Relation-based clustering Another reason is its well-organised structure in three Relation-based clustering methods rely on the hierarchical levels above the basic level of words, namely relations in a semantic network or ontology to judge the category. Grefenstette (1996) has used Roget’s Thesaurus similarity between two concepts. Since an ontology as a gold standard to evaluate distribution-based connects concepts, each located in a node, it is then clustering methods on the premise that there is a very possible to analyse either the taxonomic relations or just low chance, 0.4%, of finding two words together under the conceptual distance between the nodes. A taxonomy the same category. Therefore, he evaluates the results of lets us extract semantic relations, such as is-a or a-kind- these methods over Roget categories, in such a way that of, to judge the similarity between two concepts by there is a hit when two words appear under the same comparing their parent. A semantic network lets us category. Morris and Hirst (1991) used Roget's Thesaurus derive similarity by determining the path-length or as a knowledge base to identify lexical chains, not only number of links between the nodes. on the basis of two words sharing a common category, The most important lexical knowledge resources that but of other relationships. E.g. two words with different provide a basic ontology for clustering are the semantic categories that both point to another common one. The taxonomy WordNet (Fellbaum, 1998) and Roget’s assumption that two words connected by a category can Thesaurus (1987). be clustered together is however not always reliable. Exploration of Roget’s reveals how members of different 2.1.1. WordNet semantic clusters may belong to the same category. WordNet is an organised lexical resource of English nouns, verbs, and adjectives, widely used for relation- Word 1 Word 2 Score based applications. It is a hand-constructed system, measure Meter 10 designed on psycholinguistic principles at Princeton instrument Measure 9 University. The lexicon relies, for each concept, on a set measure Scale 8 of words that can be used to express that concept, namely instrument Meter 7 synonym sets or synsets for short.
Recommended publications
  • Cohesion and Coherence in Indonesian Textbooks for the Tenth Grader of Senior High School
    Advances in Social Science, Education and Humanities Research, volume 301 Seventh International Conference on Languages and Arts (ICLA 2018) COHESION AND COHERENCE IN INDONESIAN TEXTBOOKS FOR THE TENTH GRADER OF SENIOR HIGH SCHOOL Syamsudduha1, Johar Amir2, and Wahida3 1Universitas Negeri Makasar, Makassar, Indonesia, [email protected] 2Universitas Negeri Makasar, Makassar, Indonesia, [email protected] 3 Universitas Negeri Makasar, Makassar, Indonesia, [email protected] Abstract This study aims to describe: (1) cohesion and (2) coherence in Indonesian Textbooks for XI Grade Senior High School. This type of research is qualitative analysis research. The data are the statements or disclosures that contain cohesion and coherence in the Indonesian textbooks. The sources of data are the texts in The Indonesian Textbooks for XI Grade Senior High Schoolpublished by the Ministry of Education and Culture of Republic of Indonesia. The data collection techniques are carried out with documenting, reading,and noting. Data analysis techniques are carried out through reduction, presentation, and inference/verification of data. The results of this study showed that (1) the use of two cohesion markers, grammatical cohesionand lexical cohesion. The markers of grammatical cohesion were reference, substitution, ellipsis, and conjunction. The markers of lexical cohesion were repetition, synonym,antonym, hyponym, and collocation. The later result was (2) the use of coherence markers which are addition, sequencing, resistance, more, cause-consequences, time, terms, ways, uses, and explanations. Those findings showed that the textsof Indonesian Textbooks for XI Grade Senior High School published by the Ministry of Education and Culture of Republic of Indonesia were texts that had cohesion and unity of meaning so that Indonesian Textbooks for XI Grade Senior High Schoolpublished by the Ministry of Education and Cultureof The Republic of Indonesia was declared good to be used as a teaching material.
    [Show full text]
  • Exploring the Relationship Between Word-Association and Learners’ Lexical Development
    Exploring the Relationship between Word-Association and Learners’ Lexical Development Jason Peppard An assignment for Master of Arts in Applied Linguistics Module 2 - Lexis July 2007 Centre for English Language Studies Department of English UNIVERSITY OF BIRMINGHAM Birmingham B15 2TT United Kingdom LX/06/02 Follow task 123 outlined on page 152 of McCarthy (1990 Vocabulary OUP). You do not have to use students: anyone who has an L2 but has not been brought up as a bilingual will do. Use at least four subjects and test them on their L2 (or L3/ L4 etc.). Report your findings, giving the level(s) of subjects' L2 (L3, etc.) and including the prompt words and responses. Follow McCarthy's list of evaluation points, adding other points to this if you wish. Approx. 4530 words 1.0 Introduction Learning or acquiring your first language was a piece of cake, right? So why then, is it so difficult for some people to learn a second language? For starters, many learners might be wondering why I referred to a dessert in the opening sentence of a paper concerning vocabulary. The point here is summed up neatly by McCarthy (1990): No matter how well the student learns grammar, no matter how successfully the sounds of L2 are mastered, without words to express a wide range of meanings, communication in an L2 just cannot happen in any meaningful way (p. viii). This paper, based on Task 123 of McCarthy’s Vocabulary (ibid: 152), aims to explore the L2 mental lexicon. A simple word association test consisting of eight stimulus words was administered to both low-level and high-level Japanese EFL students as well as a group of native English speakers for comparative reasons.
    [Show full text]
  • Translating Lexical Semantic Relations: the First Step Towards Multilingual Wordnets*
    Translating Lexical Semantic Relations: The First Step Towards Multilingual Wordnets* Chu-Ren Huang, I-Ju E. Tseng, Dylan B.S. Tsai Institute of Linguistics, Preparatory Office, Academia Sinica 128 Sec.2 Academy Rd., Nangkang, Taipei, 115, Taiwan, R.O.C. [email protected], {elanna, dylan}@hp.iis.sinica.edu.tw Abstract Wordnets express ontology via a network of Establishing correspondences between words linked by lexical semantic relations. Since wordnets of different languages is essential these words are by definition the lexicon of each to both multilingual knowledge processing language, the wordnet design feature ensures and for bootstrapping wordnets of versatility in faithfully and comprehensively low-density languages. We claim that such representing the semantic content of each correspondences must be based on lexical semantic relations, rather than top ontology language. Hence, on one hand, these conceptual or word translations. In particular, we define atoms reflect linguistic idiosyncrasies; on the a translation equivalence relation as a other hand, the lexical semantic relations (LSR’s) bilingual lexical semantic relation. Such receive universal interpretation across different relations can then be part of a logical languages. For example, the definition of entailment predicting whether source relations such as synonymy or hypernymy is language semantic relations will hold in a universal. The universality of the LSR’s is the target language or not. Our claim is tested foundation that allows wordnet to serve as a with a study of 210 Chinese lexical lemmas potential common semantic network and their possible semantic relations links representation for all languages. The premise is bootstrapped from the Princeton WordNet.
    [Show full text]
  • Machine Reading = Text Understanding! David Israel! What Is It to Understand a Text? !
    Machine Reading = Text Understanding! David Israel! What is it to Understand a Text? ! • To understand a text — starting with a single sentence — is to:! • determine its truth (perhaps along with the evidence for its truth)! ! • determine its truth-conditions (roughly: what must the world be like for it to be true)! • So one doesn’t have to check how the world actually is — that is whether the sentence is true! • calculate its entailments! • take — or at least determine — appropriate action in light of it (and some given preferences/goals/desires)! • translate it accurately into another language! • and what does accuracy come to?! • ground it in a cognitively plausible conceptual space! • …….! • These are not necessarily competing alternatives! ! For Contrast: What is it to Engage Intelligently in a Dialogue? ! • Respond appropriately to what your dialogue partner has just said (and done)! • Typically, taking into account the overall purpose(s) of the interaction and the current state of that interaction (the dialogue state)! • Compare and contrast dialogue between “equals” and between a human and a computer, trying to assist the human ! • Siri is a very simple example of the latter! A Little Ancient History of Dialogue Systems! STUDENT (Bobrow 1964) Question-Answering: Word problems in simple algebra! “If the number of customers Tom gets is twice the square of 20% of the number of advertisements he runs, and the number of advertisements he runs is 45, what is the number of customers Tom gets?” ! Overview of the method ! . 1 Map referential expressions to variables. ! ! . 2 Use regular expression templates to identify and transform mathematical expressions.
    [Show full text]
  • Hindi Wordnet
    Description Hindi WordNet The Hindi WordNet is a system for bringing together different lexical and semantic relations between the Hindi words. It organizes the lexical information in terms of word meanings and can be termed as a lexicon based on psycholinguistic principles. The design of the Hindi WordNet is inspired by the famous English WordNet. In the Hindi WordNet the words are grouped together according to their similarity of meanings. Two words that can be interchanged in a context are synonymous in that context. For each word there is a synonym set, or synset, in the Hindi WordNet, representing one lexical concept. This is done to remove ambiguity in cases where a single word has multiple meanings. Synsets are the basic building blocks of WordNet. The Hindi WordNet deals with the content words, or open class category of words. Thus, the Hindi WordNet contains the following category of words- Noun, Verb, Adjective and Adverb. Each entry in the Hindi WordNet consists of following elements 1. Synset: It is a set of synonymous words. For example, “वि饍यालय, पाठशाला, कू ल” (vidyaalay, paaThshaalaa, skuul) represents the concept of school as an educational institution. The words in the synset are arranged according to the frequency of usage. 2. Gloss: It describes the concept. It consists of two parts: Text definition: It explains the concept denoted by the synset. For example, “िह थान जहााँ प्राथमिक या िाध्यमिक तर की औपचाररक मशक्षा दी जाती है” (vah sthaan jahaan praathamik yaa maadhyamik star kii aupachaarik sikshaa dii jaatii hai) explains the concept of school as an educational institution.
    [Show full text]
  • Introduction to Lexical Resources Oduc O O E Ca Esou
    Introductio n to le xica l resou r ces BlttSBolette San dfdPddford Pedersen Centre for Language Technology University of Copenhagen [email protected] Outline 1 . Why are lexical semantic resources relevant for semantic annotation? . What is the relation between traditional lexicography and lexica l resou rces fo r a nno ta tio n pu rpo ses? Bolette S. Pedersen, CLARA Course 2011 Outline 2 . WordNet, primary focus on vertical , taxonomical relations . VbNtVerbNet, prifimary focus on hitlhorizontal, synttitagmatic relations, thematic roles . PropBank, primary focus on horizontal, syntagmatic relations, argument structure . FrameNet, primary focus on horizontal, syntagmatic relations, thematic roles (()= frame elements) . PAROLE/SIMPLE - Semantic Information for Multifunctional, PluriLingual Lexicons - based on the Generative Lexicon (Pustejovsky 1995) Bolette S. Pedersen, CLARA Course 2011 Outline 2 . WordNet, primary focus on vertical , taxonomical relations . VbNtVerbNet, prifimary focus on hitlhorizontal, synttitagmatic relations, thematic roles . PropBank, primary focus on horizontal, syntagmatic relations, argument structure . FrameNet, primary focus on horizontal, syntagmatic relations, thematic roles . PAROLE/SIMPLE - Semantic Information for Multifunctional, PluriLingual Lexicons - based on the Generative Lexicon (Pustejovsky 1995) Bolette S. Pedersen, CLARA Course 2011 Outline 2 . WordNet, primary focus on vertical , taxonomical relations . VbNtVerbNet, prifimary focus on hitlhorizontal, synttitagmatic relations, thematic roles
    [Show full text]
  • Verbs of 'Preparing Something for Eating by Heating It in a Particular
    DEPARTAMENTO DE FILOLOGÍA INGLESA Y ALEMANA Verbs of ‘preparing something for eating by heating it in a particular way’: a lexicological analysis Grado en Estudios Ingleses Fabián García Díaz Tutora: Mª del Carmen Fumero Pérez San Cristóbal de La Laguna, Tenerife 8 de septiembre de 2015 INDEX 1. Abstract ................................................................................................................................. 3 2. Introduction .......................................................................................................................... 4 3. Theoretical perspective ........................................................................................................ 6 4. Analysis: verbs of to prepare something for eating by heating it in a particular way: cook, fry and roast. ................................................................................................................... 9 4.1. Corpus selection .............................................................................................................. 9 4.2. Verb selection ................................................................................................................ 11 5. Paradigmatic relations ....................................................................................................... 13 5.1. Semantic components and lexematic analysis ............................................................... 13 5.2. Lexical relations ...........................................................................................................
    [Show full text]
  • Lexical Knowledge and Bilingual Reading: Within- and Cross- Language Associations of Paradigmatic and Syntagmatic Knowledge in English and Mandarin
    LEXICAL KNOWLEDGE AND BILINGUAL READING: WITHIN- AND CROSS- LANGUAGE ASSOCIATIONS OF PARADIGMATIC AND SYNTAGMATIC KNOWLEDGE IN ENGLISH AND MANDARIN by Poh Wee Koh A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Applied Psychology and Human Development Ontario Institute for Studies in Education University of Toronto © Copyright by Poh Wee Koh (2016) Lexical Knowledge and Bilingual Reading: Within- and Cross-language Associations of Paradigmatic and Syntagmatic Knowledge in English and Mandarin Poh Wee Koh Doctor of Philosophy Department of Applied Psychology and Human Development University of Toronto 2016 Abstract The cross-language relationship of lexical knowledge between typologically dissimilar languages has not received much attention in previous studies. The relationship between lexical depth and reading comprehension in English and Mandarin was thus investigated in two studies. In Study 1, 139 Mandarin-English speaking children (n= 87, aged 8-9 years; n= 52, aged 10-11 years) completed parallel measures of two aspects of lexical depth, paradigmatic and syntagmatic knowledge in both English and Mandarin, along with measures of lexical breadth and non-verbal reasoning. Regression analyses showed a cross-language relationship for paradigmatic but not syntagmatic knowledge for both the younger and older children. In Study 2, the same children were measured for working memory, word reading, morphological awareness and reading comprehension in both languages in addition to the measures used in Study 1. Paradigmatic knowledge was found to be a significant predictor of reading comprehension in both languages but syntagmatic knowledge was a unique predictor only for comprehension in Mandarin for both age cohorts.
    [Show full text]
  • Word Senses and Wordnet Lady Bracknell
    Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2021. All rights reserved. Draft of September 21, 2021. CHAPTER 18 Word Senses and WordNet Lady Bracknell. Are your parents living? Jack. I have lost both my parents. Lady Bracknell. To lose one parent, Mr. Worthing, may be regarded as a misfortune; to lose both looks like carelessness. Oscar Wilde, The Importance of Being Earnest ambiguous Words are ambiguous: the same word can be used to mean different things. In Chapter 6 we saw that the word “mouse” has (at least) two meanings: (1) a small rodent, or (2) a hand-operated device to control a cursor. The word “bank” can mean: (1) a financial institution or (2) a sloping mound. In the quote above from his play The Importance of Being Earnest, Oscar Wilde plays with two meanings of “lose” (to misplace an object, and to suffer the death of a close person). We say that the words ‘mouse’ or ‘bank’ are polysemous (from Greek ‘having word sense many senses’, poly- ‘many’ + sema, ‘sign, mark’).1 A sense (or word sense) is a discrete representation of one aspect of the meaning of a word. In this chapter WordNet we discuss word senses in more detail and introduce WordNet, a large online the- saurus —a database that represents word senses—with versions in many languages. WordNet also represents relations between senses. For example, there is an IS-A relation between dog and mammal (a dog is a kind of mammal) and a part-whole relation between engine and car (an engine is a part of a car).
    [Show full text]
  • Lexical Scoring System of Lexical Chain for Quranic Document Retrieval
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UKM Journal Article Repository GEMA Online® Journal of Language Studies 59 Volume 18(2), May 2018 http://doi.org/10.17576/gema-2018-1802-05 Lexical Scoring System of Lexical Chain for Quranic Document Retrieval Hamed Zakeri Rad [email protected] Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia Sabrina Tiun [email protected] Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia Saidah Saad [email protected] Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia ABSTRACT An Information Retrieval (IR) system aims to extract information based on a query made by a user on a particular subject from an extensive collection of text. IR is a process through which information is retrieved by submitting a query by a user in the form of keywords or to match words. In the Al-Quran, verses of the same or comparable topics are scattered throughout the text in different chapters, and it is therefore difficult for users to remember the many keywords of the verses. Therefore, in such situations, retrieving information using semantically related words is useful. In well-composed documents, the semantic integrity of the text (coherence) exists between the words. Lexical cohesion is the results of chains of related words that contribute to the continuity of the lexical meaning found within the text are a direct result of text being about the same thing (i.e. topic, etc.). This indicates that using an IR system and lexical chains are a useful and appropriate method for representing documents with concepts rather than using terms in order to have successful retrieval based on semantic relations.
    [Show full text]
  • People Centered HMI's for Deaf and Functionally Illiterate Users
    POLITECNICO DI TORINO AND UNIVERSITY OF POTSDAM SCUOLA DI DOTTORATO Dottorato in Automatica e Informatica – XXVI ciclo Tesi di Dottorato People Centered HMI’s for Deaf and Functionally Illiterate Users Nadeem Ahmad Principal Supervisor Coordinatore del corso di dottorato Prof. Dr. Paolo Ernesto Prinetto Prof. Dr. Pietro Laface Co-Supervisor Prof. Dr. Tiziana Margaria-Steffen March 2014 Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2014/7039/ URN urn:nbn:de:kobv:517-opus-70391 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70391 Abstract The objective and motivation behind this research is to provide applications with easy-to-use interfaces to communities of deaf and functionally illiterate users, which enables them to work without any human assistance. Although recent years have witnessed technological advancements, the availability of technology does not ensure accessibility to information and communication technologies (ICT). Extensive use of text from menus to document contents means that deaf or functionally illiterate can not access services implemented on most computer software. Consequently, most existing computer applications pose an accessibility barrier to those who are unable to read fluently. Online technologies intended for such groups should be developed in continuous partnership with primary users and include a thorough investigation into their limitations, requirements and usability barriers. In this research, I investigated existing tools in voice, web and other multimedia technologies to identify learning gaps and explored ways to enhance the information literacy for deaf and functionally illiterate users. I worked on the development of user-centered interfaces to increase the capabilities of deaf and low literacy users by enhancing lexical resources and by evaluating several multimedia interfaces for them.
    [Show full text]
  • Concurrent Learning of Semantic Relations
    Concurrent Learning of Semantic Relations Georgios Balikas Gael¨ Dias Kelkoo Group, Grenoble, France University of Caen Normandy, France [email protected] [email protected] Rumen Moraliyski Massih-Reza Amini Kodar Ltd, Plovdiv, Bulgaria University of Grenoble Alps, France [email protected] [email protected] Abstract Most approaches focus on modeling a single se- mantic relation and consist in deciding whether Discovering whether words are semantically a given relation r holds between a pair of words related and identifying the specific semantic (x,y) or not. Within this context, the vast ma- relation that holds between them is of crucial importance for NLP as it is essential for tasks jority of efforts (Snow et al., 2004; Roller et al., like query expansion in IR. Within this con- 2014; Shwartz et al., 2016; Nguyen et al., 2017a) text, different methodologies have been pro- concentrate on hypernymy which is the key orga- posed that either exclusively focus on a single nization principle of semantic memory, but stud- lexical relation (e.g. hypernymy vs. random) ies exist on antonymy (Nguyen et al., 2017b), or learn specific classifiers capable of identi- meronymy (Glavas and Ponzetto, 2017) and co- fying multiple semantic relations (e.g. hyper- hyponymy (Weeds et al., 2014). Another research nymy vs. synonymy vs. random). In this pa- direction consists in dealing with multiple seman- per, we propose another way to look at the problem that relies on the multi-task learn- tic relations at a time and can be defined as de- ing paradigm. In particular, we want to study ciding which semantic relation ri (if any) holds whether the learning process of a given seman- between a pair of words (x; y).
    [Show full text]