Reading the Histone Code: Methyl Mark Recognition by MBT and Royal Family Proteins

Total Page:16

File Type:pdf, Size:1020Kb

Reading the Histone Code: Methyl Mark Recognition by MBT and Royal Family Proteins Reading the Histone Code: Methyl Mark Recognition by MBT and Royal Family Proteins by Nataliya Nady A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Medical Biophysics University of Toronto © Copyright by Nataliya Nady 2012 Reading the Histone Code: Methyl Mark Recognition by MBT and Royal Family Proteins Nataliya Nady Doctor of Philosophy, 2012 Department of Medical Biophysics, University of Toronto Abstract The post-translational modifications (PTMs) of histones regulate many cellular processes including transcription, replication, DNA repair, recombination, and chromosome segregation. A large number of combinations of PTMs are possible, with methylation being one of the most complex, since it is found in three states and is recognized in a sequence specific context. Methylation of histones at key lysine residues has been shown to work in concert with other modifications to provide a Histone Code that may determine heritable transcriptional conditions in normal and disease states. On the most basic level it is pivotal to understand how and by which proteins the numerous PTMs are recognized, as well as mechanisms for downstream signal propagation. To address this need we developed a high-throughput method that allows analysis of up to 600 PTMs in a single experiment. This approach was utilized to characterize macromolecules interacting with the specific modifications on histone tails and to screen for the marks that bound to Malignant Brain Tumor (MBT) proteins, important chromatin regulators implicated in cancer. All MBTs recognized either mono- or dimethyllysine histone marks, and using structure-based mutants we identified a triad of residues that were responsible for this discrimination. These results provide the foundation for the rational design of highly selective MBT inhibitors. Additionally, this thesis describes combinatorial recognition of histone modifications, as proposed in the original Histone Code hypothesis. We demonstrate that Tudor domains of UHRF1, a protein involved in epigenetic maintenance of DNA methylation, is able to read a dual modification state of histone H3 in which it is trimethylated at lysine 9 and unmodified at lysine 4. This study provides an elegant example of the combinatorial readout of histone modification states by a single domain. Together, our findings offer mechanistic insights into the recognition of methylated histone tails by MBT domains and Royal Family in general. ii Acknowledgements Looking back, I am very grateful for all I have acquired throughout the years as a graduate student. It has shaped me as a person and a scientist and would not be possible without many great people surrounding me. First and foremost I wish to thank my supervisor, Dr. Cheryl Arrowsmith. She accepted me into her lab as a summer student and continued to support me ever since. I am grateful for her mentorship, guidance, and valuable advice. She has always encouraged my curiosity and ambitious aspirations which were pivotal to the success of my training as a scientist. I would also like to thank my supervisory committee members Dr. Peter Cheung and Dr. Gilbert Privé for their suggestions and encouragement which helped me to stay on track. I am also thankful to Dr. Aled Edwards and the SGC for the plentiful resources and fresh perspective on the issue. I am indebted to past and present members in the Arrowsmith lab for their help, insightful discussions and friendship. I would like to specifically thank my good friend Rob for teaching me how to appreciate good scientific work as well as interesting discussions and occasional beers; Lilia and Shili for their assistance with my project and creating a friendly lab environment; Sasha for teaching me protein NMR; and Liuba for her help over the summers. The years spent as a graduate student would not be as enjoyable without my friends Atoosa Mehrfar, Diana Purushotham, Nadiya Koshtura, Jocelyn Stewart, Fernando Amador, Tharan Srikumar, Alison Aiken. Finally, I wish to thank my family. I am forever indebted to my parents for their unconditional love and invaluable opportunities that allowed me to pursue graduate degree. Lastly, I cannot thank enough my husband, Andrew. Not only he always ensured that my computer is up and running problem-free, but I am above all grateful for his love, endless patience, support, and words of encouragement when it was most required. iii Table of contents Abstract ii Acknowledgements iii Table of Contents iv List of Tables vi List of Figures vii List of Abbreviations viii Chapter 1: Introduction 1 1.1 Thesis overview 2 1.2 Epigenetic mechanisms 2 1.3 Histone post-translational modifications and the Histone Code hypothesis 4 1.4 Histone methylation 8 1.5 Methyl-reader modules 10 1.6 Royal family 12 1.6.1 Identification 12 1.6.2 Architecture 13 1.6.3 Biological function 16 1.7 Rationale and Intensions of the Thesis 18 1.8 References 19 Chapter 2: A SPOT on the chromatin landscape? Histone peptide arrays as a tool for epigenetic research 24 2.1 Summary 25 2.2 Introduction 25 2.3 Results 28 2.3.1 SPOT blotting 28 2.3.2 Application 1: Characterization of reagents for chromatin research 30 2.3.3 Application 2: Mapping the specificity of histone binding domains 32 2.3.4 Application 3: Demonstration of non-sequence specific interactions 36 2.4 Discussion 38 2.5 Materials and Methods 40 2.6 References 50 Chapter 3: Histone Substrate Recognition by Human MBT Domains 53 3.1 Summary 54 3.2 Introduction 54 3.3 Results 58 3.3.1 MBT domains recognize a variety of methylated lysines on core histones 58 3.3.2 Recognition mechanism for mono- and dimethyllysine 60 3.3.3 Lack of sequence specific binding by L3MBTL1 and L3MBTL3 67 3.3.4 Potential recognition of non-histone proteins 70 3.3.5 Recognition of specific histone sequences 70 3.4 Discussion 79 3.5 Materials and Methods 83 iv 3.6 References 89 Chapter 4: Recognition of multivalent histone states associated with heterochromatin by Tandem Tudor Domains of UHRF1 93 4.1 Summary 94 4.2 Introduction 94 4.3 Results 97 4.3.1 UHRF1 contains a Tandem Tudor Domain that binds H3K9me3 in vitro 97 4.3.2 TTD recognizes hallmarks of heterochromatin 100 4.3.3 Structural basis for the recognition of the H3K4me0/K9me3 signature 103 4.3.4 Reorientation of TTD subdomains upon histone H3 binding 107 4.3.5 Mutational analysis confirms localization of TTD to heterochromatin 110 4.4 Discussion 113 4.5 Materials and Methods 115 4.6 References 125 Chapter 5: Conclusions and Future Directions 130 5.1 Conclusions 131 5.2 Future Directions 132 5.3 Concluding remarks 137 5.4 References 138 v List of Tables Chapter 1 Table 1.1. Examples of the protein domains, the histone marks they recognize and their biological effect. 11 Chapter 2 Table 2.1. List of peptides with known modifications used in SPOT-blot synthesis. 42 Table 2.2. List of peptides used in SPOT-blot synthesis. 44 Chapter 3 Table 3.1. Overview of the highest affinity histone substrates for MBT domains within human proteins. 61 Table 3.2. Thermal stability of the wild type and mutant proteins as indicated by aggregation temperatures. 65 Table 3.3. Overview of the ability of MBT mutants to bind lower lysine methylation states. 66 Table 3.4. Crystallographic data collection and refinement statistics. 75 Chapter 4 Table 4.1. NMR data and refinement statistics. 105 Table 4.2. Intra- and intermolecular distance restraints used for TTD-H3K4me0/K9me3 calculations. 121 iv List of Figures Chapter 1 Figure 1.1. Sites of histone post-translational modifications (PTMs). 5 Figure 1.2. Model representation of lysine and arginine methylation. 9 Figure 1.3. Recognition of methyllysine by the Royal family protein domains. 14 Chapter 2 Figure 2.1. Schematic representation of the SPOT binding assay. 29 Figure 2.2. Confirmation of complete synthesis of modified histone peptides. 31 Figure 2.3. Characterization of reagents for chromatin research. 33 Figure 2.4. Mapping the specificity of histone-binding domains. 35 Figure 2.5. Demonstration of non-sequence-specific interactions. 37 Chapter 3 Figure 3.1. Domain architecture and analysis of the MBT-containing proteins. 56 Figure 3.2. Interactions of the MBT domains with histones in SPOT arrays. 59 Figure 3.3. Influence of the MBT pocket architecture on the recognition of the lysine methylation state. 63 Figure 3.4. L3MBTL1 and L3MBTL3 are promiscuous binders. 69 Figure 3.5. Poor recognition of histone substrates by MBTs. 71 Figure 3.6. Recognition of specific histone sequences. 72 Figure 3.7. Structural and functional analysis of the SCML2 binding. 74 Figure 3.8. Binding of SCML2 to nucleosomes. 77 Figure 3.9. SCML2 binds to DNA with its basic region. 78 Figure 3.10. SCML2 interacts specifically with the H2AK36me1-containing nucleosomes. 80 Chapter 4 Figure 4.1. A novel evolutionary conserved domain within UHRF1 corresponds to TTD. 96 Figure 4.2. A novel TTD domain within UHRF1 binds H3 histone tail with H3K9me3. 98 Figure 4.3. UHRF1 recognizes multivalent histone signatures associated with heterochromatin. 101 Figure 4.4. Minimal interactions between TTD and the short H3K9me3-containing peptide in solution. 103 Figure 4.5. Recognition of multivalent sites at the interface between the two Tudor subdomains. 106 Figure 4.6. Tandem tudor domain behaves as a single rigid body. 108 Figure 4.7. Structural re-adjustment of TTDC in order to accommodate the histone tail. 109 Figure 4.8. Residual dipolar couplings (RDCs) collected on the TTD/H3K4me0K9me3 complex fit poorly the apo crystal structure. 111 Figure 4.9. Mutational analysis confirms localization of TTD to heterochromatin in mouse ES cells.
Recommended publications
  • Interplay Between Epigenetics and Metabolism in Oncogenesis: Mechanisms and Therapeutic Approaches
    OPEN Oncogene (2017) 36, 3359–3374 www.nature.com/onc REVIEW Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches CC Wong1, Y Qian2,3 and J Yu1 Epigenetic and metabolic alterations in cancer cells are highly intertwined. Oncogene-driven metabolic rewiring modifies the epigenetic landscape via modulating the activities of DNA and histone modification enzymes at the metabolite level. Conversely, epigenetic mechanisms regulate the expression of metabolic genes, thereby altering the metabolome. Epigenetic-metabolomic interplay has a critical role in tumourigenesis by coordinately sustaining cell proliferation, metastasis and pluripotency. Understanding the link between epigenetics and metabolism could unravel novel molecular targets, whose intervention may lead to improvements in cancer treatment. In this review, we summarized the recent discoveries linking epigenetics and metabolism and their underlying roles in tumorigenesis; and highlighted the promising molecular targets, with an update on the development of small molecule or biologic inhibitors against these abnormalities in cancer. Oncogene (2017) 36, 3359–3374; doi:10.1038/onc.2016.485; published online 16 January 2017 INTRODUCTION metabolic genes have also been identified as driver genes It has been appreciated since the early days of cancer research mutated in some cancers, such as isocitrate dehydrogenase 1 16 17 that the metabolic profiles of tumor cells differ significantly from and 2 (IDH1/2) in gliomas and acute myeloid leukemia (AML), 18 normal cells. Cancer cells have high metabolic demands and they succinate dehydrogenase (SDH) in paragangliomas and fuma- utilize nutrients with an altered metabolic program to support rate hydratase (FH) in hereditary leiomyomatosis and renal cell 19 their high proliferative rates and adapt to the hostile tumor cancer (HLRCC).
    [Show full text]
  • The Histone Methyltransferase DOT1L Prevents Antigen-Independent
    bioRxiv preprint doi: https://doi.org/10.1101/826255; this version posted November 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The histone methyltransferase DOT1L prevents antigen-independent differentiation and safeguards epigenetic identity of CD8+ T cells Eliza Mari Kwesi-Maliepaard1*, Muhammad Assad Aslam2,3*, Mir Farshid Alemdehy2*, Teun van den Brand4, Chelsea McLean1, Hanneke Vlaming1, Tibor van Welsem1, Tessy Korthout1, Cesare Lancini1, Sjoerd Hendriks1, Tomasz Ahrends5, Dieke van Dinther6, Joke M.M. den Haan6, Jannie Borst5, Elzo de Wit4, Fred van Leeuwen1,7,#, and Heinz Jacobs2,# 1Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands 2Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands 3Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan 4Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, and Oncode Institute, The Netherlands 5Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, and Oncode Institute, The Netherlands 6Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location VUmc, 1081HV Amsterdam, The Netherlands 7Department of Medical Biology, Amsterdam UMC, location AMC, UvA, 1105 AZ Amsterdam, The Netherlands * These authors contributed equally to this work. # Equal contribution and corresponding authors [email protected]; [email protected] Lead contact: Fred van Leeuwen 1 bioRxiv preprint doi: https://doi.org/10.1101/826255; this version posted November 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Predicting Double-Strand DNA Breaks Using Epigenome Marks Or DNA at Kilobase Resolution
    bioRxiv preprint doi: https://doi.org/10.1101/149039; this version posted June 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Predicting double-strand DNA breaks using epigenome marks or DNA at kilobase resolution Rapha¨elMourad1 and Olivier Cuvier1 April 10, 2017 1 Laboratoire de Biologie Mol´eculaireEucaryote (LBME), CNRS, Universit´ePaul Sabatier (UPS), 31000 Toulouse, France Abstract Double-strand breaks (DSBs) result from the attack of both DNA strands by multiple sources, includ- ing exposure to ionizing radiation or reactive oxygen species. DSBs can cause abnormal chromosomal rearrangements which are linked to cancer development, and hence represent an important issue. Recent techniques allow the genome-wide mapping of DSBs at high resolution, enabling the comprehensive study of DSB origin. However these techniques are costly and challenging. Hence we devised a computational approach to predict DSBs using the epigenomic and chromatin context, for which public data are available from the ENCODE project. We achieved excellent prediction accuracy (AUC = 0:97) at high resolution (< 1 kb), and showed that only chromatin accessibility and H3K4me1 mark were sufficient for highly accurate prediction (AUC = 0:95). We also demonstrated the better sensitivity of DSB predictions com- pared to BLESS experiments. We identified chromatin accessibility, activity and long-range contacts as best predictors. In addition, our work represents the first step toward unveiling the "cis-DNA repairing" code underlying DSBs, paving the way for future studies of cis-elements involved in DNA damage and repair.
    [Show full text]
  • Combinatorial Genetic Control of Rpd3s Through Histone H3K4 and H3K36 Methylation
    bioRxiv preprint doi: https://doi.org/10.1101/376046; this version posted July 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Combinatorial Genetic Control of Rpd3S through histone H3K4 and H3K36 Methylation 2 in Budding Yeast 3 4 Kwan Yin Lee*, Mathieu Ranger*, and Marc D. Meneghini* 5 *Department of Molecular Genetics, University of Toronto, ON, M5S 1A8, Canada 6 Running title: Rpd3S control by H3K4me and H3K36me 7 Keywords: Rpd3S; histone methylation; SET1; JHD2; RPH1; SET2 8 Corresponding author mailing addresses: 9 Marc Meneghini 10 Dept. of Molecular Genetics University of Toronto 11 MaRS2 1532 12 661 University Avenue 13 Toronto, ON M5G 1M1 14 Office: 416-978-7578 15 Fax: 416-978-6885 16 email: [email protected] 17 18 19 1 bioRxiv preprint doi: https://doi.org/10.1101/376046; this version posted July 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Abstract 2 Much of euchromatin regulation occurs through reversible methylation of histone H3 3 lysine-4 and lysine-36 (H3K4me and H3K36me). Using the budding yeast Saccharomyces 4 cerevisiae, we previously found that levels of H3K4me modulated temperature sensitive alleles 5 of the transcriptional elongation complex Spt6-Spn1 through an unknown H3K4me effector 6 pathway. Here we identify the Rpd3S histone deacetylase complex as the H3K4me effector 7 underlying these Spt6-Spn1 genetic interactions.
    [Show full text]
  • Application of Histone Modification-Specific Interaction Domains As an Alternative to Antibodies
    Downloaded from genome.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Method Application of histone modification-specific interaction domains as an alternative to antibodies Goran Kungulovski,1 Ina Kycia,1,4 Raluca Tamas,1 Renata Z. Jurkowska,1 Srikanth Kudithipudi,1 Chisato Henry,2 Richard Reinhardt,3 Paul Labhart,2 and Albert Jeltsch1 1Institute of Biochemistry, Stuttgart University, 70569 Stuttgart, Germany; 2Active Motif, Carlsbad, California 92008, USA; 3Max-Planck-Genomzentrum Koln,€ 50829 Koln,€ Germany Post-translational modifications (PTMs) of histones constitute a major chromatin indexing mechanism, and their proper characterization is of highest biological importance. So far, PTM-specific antibodies have been the standard reagent for studying histone PTMs despite caveats such as lot-to-lot variability of specificity and binding affinity. Herein, we suc- cessfully employed naturally occurring and engineered histone modification interacting domains for detection and identification of histone PTMs and ChIP-like enrichment of different types of chromatin. Our results demonstrate that histone interacting domains are robust and highly specific reagents that can replace or complement histone modification antibodies. These domains can be produced recombinantly in Escherichia coli at low cost and constant quality. Protein design of reading domains allows for generation of novel specificities, addition of affinity tags, and preparation of PTM binding pocket variants as matching negative controls, which is not possible with antibodies. [Supplemental material is available for this article.] The unstructured N-terminal tails of histones protrude from the yielding false negative results. When undocumented, the cross- core nucleosome and harbor complex patterns of post-translational reactivity with related or unrelated marks and the combinatorial modifications (PTMs) (Kouzarides 2007; Margueron and Reinberg effect of neighboring marks compromise the application of anti- 2010; Bannister and Kouzarides 2011; Tan et al.
    [Show full text]
  • Recognition of Cancer Mutations in Histone H3K36 by Epigenetic Writers and Readers Brianna J
    EPIGENETICS https://doi.org/10.1080/15592294.2018.1503491 REVIEW Recognition of cancer mutations in histone H3K36 by epigenetic writers and readers Brianna J. Kleina, Krzysztof Krajewski b, Susana Restrepoa, Peter W. Lewis c, Brian D. Strahlb, and Tatiana G. Kutateladzea aDepartment of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA; bDepartment of Biochemistry & Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC, USA; cWisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA ABSTRACT ARTICLE HISTORY Histone posttranslational modifications control the organization and function of chromatin. In Received 30 May 2018 particular, methylation of lysine 36 in histone H3 (H3K36me) has been shown to mediate gene Revised 1 July 2018 transcription, DNA repair, cell cycle regulation, and pre-mRNA splicing. Notably, mutations at or Accepted 12 July 2018 near this residue have been causally linked to the development of several human cancers. These KEYWORDS observations have helped to illuminate the role of histones themselves in disease and to clarify Histone; H3K36M; cancer; the mechanisms by which they acquire oncogenic properties. This perspective focuses on recent PTM; methylation advances in discovery and characterization of histone H3 mutations that impact H3K36 methyla- tion. We also highlight findings that the common cancer-related substitution of H3K36 to methionine (H3K36M) disturbs functions of not only H3K36me-writing enzymes but also H3K36me-specific readers. The latter case suggests that the oncogenic effects could also be linked to the inability of readers to engage H3K36M. Introduction from yeast to humans and has been shown to have a variety of functions that range from the control Histone proteins are main components of the of gene transcription and DNA repair, to cell cycle nucleosome, the fundamental building block of regulation and nutrient stress response [8].
    [Show full text]
  • Automethylation of PRC2 Promotes H3K27 Methylation and Is Impaired in H3K27M Pediatric Glioma
    Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Automethylation of PRC2 promotes H3K27 methylation and is impaired in H3K27M pediatric glioma Chul-Hwan Lee,1,2,7 Jia-Ray Yu,1,2,7 Jeffrey Granat,1,2,7 Ricardo Saldaña-Meyer,1,2 Joshua Andrade,3 Gary LeRoy,1,2 Ying Jin,4 Peder Lund,5 James M. Stafford,1,2,6 Benjamin A. Garcia,5 Beatrix Ueberheide,3 and Danny Reinberg1,2 1Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA; 2Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA; 3Proteomics Laboratory, New York University School of Medicine, New York, New York 10016, USA; 4Shared Bioinformatics Core, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; 5Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA The histone methyltransferase activity of PRC2 is central to the formation of H3K27me3-decorated facultative heterochromatin and gene silencing. In addition, PRC2 has been shown to automethylate its core subunits, EZH1/ EZH2 and SUZ12. Here, we identify the lysine residues at which EZH1/EZH2 are automethylated with EZH2-K510 and EZH2-K514 being the major such sites in vivo. Automethylated EZH2/PRC2 exhibits a higher level of histone methyltransferase activity and is required for attaining proper cellular levels of H3K27me3. While occurring inde- pendently of PRC2 recruitment to chromatin, automethylation promotes PRC2 accessibility to the histone H3 tail. Intriguingly, EZH2 automethylation is significantly reduced in diffuse intrinsic pontine glioma (DIPG) cells that carry a lysine-to-methionine substitution in histone H3 (H3K27M), but not in cells that carry either EZH2 or EED mutants that abrogate PRC2 allosteric activation, indicating that H3K27M impairs the intrinsic activity of PRC2.
    [Show full text]
  • REVIEW Chromatin Modifications and DNA Double-Strand Breaks
    Leukemia (2007) 21, 195–200 & 2007 Nature Publishing Group All rights reserved 0887-6924/07 $30.00 www.nature.com/leu REVIEW Chromatin modifications and DNA double-strand breaks: the current state of play TC Karagiannis1,2 and A El-Osta3 1Molecular Radiation Biology, Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; 2Department of Pathology, The University of Melbourne, Parkville, Melbourne, Victoria, Australia and 3Epigenetics in Human Health and Disease, Baker Medical Research Institute, The Alfred Medical Research and Education Precinct, Prahran, Victoria, Australia The packaging and compaction of DNA into chromatin is mutated (ATM) and ataxia telangiectasia-related (also known as important for all DNA-metabolism processes such as transcrip- Rad3-related, ATR), which are members of the phosphoinositide tion, replication and repair. The involvement of chromatin 4,5 modifications in transcriptional regulation is relatively well 3-kinase (PI(3)K) superfamily. They catalyse the phosphoryla- characterized, and the distinct patterns of chromatin transitions tion of numerous downstream substrates that are involved in 4,5 that guide the process are thought to be the result of a code on cell-cycle regulation, DNA repair and apoptosis. the histone proteins (histone code). In contrast to transcription, In mammalian cells, DSBs are repaired by one of two distinct the intricate link between chromatin and responses to DNA and complementary pathways – homologous recombination damage has been given attention only recently. It is now (HR) and non-homologous end-joining (NHEJ).6,7 Briefly, NHEJ emerging that specific ATP-dependent chromatin remodeling involves processing of the broken DNA terminii to make them complexes (including the Ino80, Swi/Snf and RSC remodelers) 3 and certain constitutive (methylation of lysine 79 of histone H3) compatible, followed by a ligation step.
    [Show full text]
  • Annotated Classic Histone Code and Transcription
    Annotated Classic Histone Code and Transcription Jerry L. Workman1,* 1Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA *Correspondence: [email protected] We are pleased to present a series of Annotated Classics celebrating 40 years of exciting biology in the pages of Cell. This install- ment revisits “Tetrahymena Histone Acetyltransferase A: A Homolog to Yeast Gcn5p Linking Histone Acetylation to Gene Activa- tion” by C. David Allis and colleagues. Here, Jerry Workman comments on how the discovery of Tetrahymena histone acetyltrans- ferase A, a homolog to a yeast transcriptional adaptor Gcn5p, by Allis led to the establishment of links between histone acetylation and gene activation. Each Annotated Classic offers a personal perspective on a groundbreaking Cell paper from a leader in the field with notes on what stood out at the time of first reading and retrospective comments regarding the longer term influence of the work. To see Jerry L. Workman’s thoughts on different parts of the manuscript, just download the PDF and then hover over or double- click the highlighted text and comment boxes on the following pages. You can also view Workman’s annotation by opening the Comments navigation panel in Acrobat. Cell 158, August 14, 2014, 2014 ©2014 Elsevier Inc. Cell, Vol. 84, 843±851, March 22, 1996, Copyright 1996 by Cell Press Tetrahymena Histone Acetyltransferase A: A Homolog to Yeast Gcn5p Linking Histone Acetylation to Gene Activation James E. Brownell,* Jianxin Zhou,* Tamara Ranalli,* 1995; Edmondson et al., submitted). Thus, the regulation Ryuji Kobayashi,² Diane G. Edmondson,³ of histone acetylation is an attractive control point for Sharon Y.
    [Show full text]
  • Histone Methylases As Novel Drug Targets. Focus on EZH2 Inhibition. Catherine BAUGE1,2,#, Céline BAZILLE 1,2,3, Nicolas GIRARD1
    Histone methylases as novel drug targets. Focus on EZH2 inhibition. Catherine BAUGE1,2,#, Céline BAZILLE1,2,3, Nicolas GIRARD1,2, Eva LHUISSIER1,2, Karim BOUMEDIENE1,2 1 Normandie Univ, France 2 UNICAEN, EA4652 MILPAT, Caen, France 3 Service d’Anatomie Pathologique, CHU, Caen, France # Correspondence and copy request: Catherine Baugé, [email protected], EA4652 MILPAT, UFR de médecine, Université de Caen Basse-Normandie, CS14032 Caen cedex 5, France; tel: +33 231068218; fax: +33 231068224 1 ABSTRACT Posttranslational modifications of histones (so-called epigenetic modifications) play a major role in transcriptional control and normal development, and are tightly regulated. Disruption of their control is a frequent event in disease. Particularly, the methylation of lysine 27 on histone H3 (H3K27), induced by the methylase Enhancer of Zeste homolog 2 (EZH2), emerges as a key control of gene expression, and a major regulator of cell physiology. The identification of driver mutations in EZH2 has already led to new prognostic and therapeutic advances, and new classes of potent and specific inhibitors for EZH2 show promising results in preclinical trials. This review examines roles of histone lysine methylases and demetylases in cells, and focuses on the recent knowledge and developments about EZH2. Key-terms: epigenetic, histone methylation, EZH2, cancerology, tumors, apoptosis, cell death, inhibitor, stem cells, H3K27 2 Histone modifications and histone code Epigenetic has been defined as inheritable changes in gene expression that occur without a change in DNA sequence. Key components of epigenetic processes are DNA methylation, histone modifications and variants, non-histone chromatin proteins, small interfering RNA (siRNA) and micro RNA (miRNA).
    [Show full text]
  • Screening for Genes That Accelerate the Epigenetic Aging Clock in Humans Reveals a Role for the H3K36 Methyltransferase NSD1 Daniel E
    Martin-Herranz et al. Genome Biology (2019) 20:146 https://doi.org/10.1186/s13059-019-1753-9 RESEARCH Open Access Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1 Daniel E. Martin-Herranz1,2* , Erfan Aref-Eshghi3,4, Marc Jan Bonder1,5, Thomas M. Stubbs2, Sanaa Choufani6, Rosanna Weksberg6, Oliver Stegle1,5,7, Bekim Sadikovic3,4, Wolf Reik8,9,10*† and Janet M. Thornton1*† Abstract Background: Epigenetic clocks are mathematical models that predict the biological age of an individual using DNA methylation data and have emerged in the last few years as the most accurate biomarkers of the aging process. However, little is known about the molecular mechanisms that control the rate of such clocks. Here, we have examined the human epigenetic clock in patients with a variety of developmental disorders, harboring mutations in proteins of the epigenetic machinery. Results: Using the Horvath epigenetic clock, we perform an unbiased screen for epigenetic age acceleration in the blood of these patients. We demonstrate that loss-of-function mutations in the H3K36 histone methyltransferase NSD1, which cause Sotos syndrome, substantially accelerate epigenetic aging. Furthermore, we show that the normal aging process and Sotos syndrome share methylation changes and the genomic context in which they occur. Finally, we found that the Horvath clock CpG sites are characterized by a higher Shannon methylation entropy when compared with the rest of the genome, which is dramatically decreased in Sotos syndrome patients. Conclusions: These results suggest that the H3K36 methylation machinery is a key component of the epigenetic maintenance system in humans, which controls the rate of epigenetic aging, and this role seems to be conserved in model organisms.
    [Show full text]
  • Histone H4 Lysine 20 Mono-Methylation Directly Facilitates Chromatin Openness and Promotes Transcription of Housekeeping Genes
    ARTICLE https://doi.org/10.1038/s41467-021-25051-2 OPEN Histone H4 lysine 20 mono-methylation directly facilitates chromatin openness and promotes transcription of housekeeping genes Muhammad Shoaib 1,8,9, Qinming Chen2,9, Xiangyan Shi 3, Nidhi Nair1, Chinmayi Prasanna 2, Renliang Yang2,4, David Walter1, Klaus S. Frederiksen 5, Hjorleifur Einarsson1, J. Peter Svensson 6, ✉ ✉ ✉ Chuan Fa Liu 2, Karl Ekwall6, Mads Lerdrup 7 , Lars Nordenskiöld 2 & Claus S. Sørensen 1 1234567890():,; Histone lysine methylations have primarily been linked to selective recruitment of reader or effector proteins that subsequently modify chromatin regions and mediate genome functions. Here, we describe a divergent role for histone H4 lysine 20 mono-methylation (H4K20me1) and demonstrate that it directly facilitates chromatin openness and accessibility by disrupting chromatin folding. Thus, accumulation of H4K20me1 demarcates highly accessible chromatin at genes, and this is maintained throughout the cell cycle. In vitro, H4K20me1-containing nucleosomal arrays with nucleosome repeat lengths (NRL) of 187 and 197 are less compact than unmethylated (H4K20me0) or trimethylated (H4K20me3) arrays. Concordantly, and in contrast to trimethylated and unmethylated tails, solid-state NMR data shows that H4K20 mono-methylation changes the H4 conformational state and leads to more dynamic histone H4-tails. Notably, the increased chromatin accessibility mediated by H4K20me1 facilitates gene expression, particularly of housekeeping genes. Altogether, we show how the methy- lation state of a single histone H4 residue operates as a focal point in chromatin structure control. While H4K20me1 directly promotes chromatin openness at highly transcribed genes, it also serves as a stepping-stone for H4K20me3-dependent chromatin compaction.
    [Show full text]