The Massive Wolf-Rayet Binary LSS 1964 (=WR 29)*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
White Dwarf Compact Binary Model for Long Gamma-Ray Bursts
MNRAS 000, 1–5 (0000) Preprint 6 October 2018 Compiled using MNRAS LATEX style file v3.0 A Black Hole - White Dwarf Compact Binary Model for Long Gamma-ray Bursts without Supernova Association Yi-Ze Dong, Wei-Min Gu ⋆, Tong Liu, and Junfeng Wang Department of Astronomy, Xiamen University, Xiamen, Fujian 361005, China 6 October 2018 ABSTRACT Gamma-ray bursts (GRBs) are luminous and violent phenomena in the universe. Tra- ditionally, long GRBs are expected to be produced by the collapse of massive stars and associated with supernovae. However, some low-redshift long GRBs have no detection of supernova association, such as GRBs 060505, 060614 and 111005A. It is hard to classify these events convincingly according to usual classifications, and the lack of the supernova implies a non-massive star origin. We propose a new path to produce long GRBs without supernova association, the unstable and extremely violent accretion in a contact binary system consisting of a stellar-mass black hole and a white dwarf, which fills an important gap in compact binary evolution. Key words: accretion, accretion discs – stars: black holes – binaries: close gamma-ray burst: general – white dwarfs 1 INTRODUCTION X-ray binaries (UCXBs) (Nelemans & Jonker 2010) and the repeating fast radio burst (FRB 121102) (Gu et al. 2016). It is generally believed that long gamma-ray bursts (GRBs) In addition, the gravitational wave emission originating originate from the collapse of massive stars and are accom- from the merger of double BHs was detected by LIGO panied with supernovae (Woosley 1993; Woosley & Bloom (Abbott et al. 2016a,b). -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Rotating Wolf-Rayet Stars in a Post RSG/LBV Phase an Evolutionary Channel Towards Long-Duration Grbs?
A&A 547, A83 (2012) Astronomy DOI: 10.1051/0004-6361/201118664 & c ESO 2012 Astrophysics Rotating Wolf-Rayet stars in a post RSG/LBV phase An evolutionary channel towards long-duration GRBs? G. Gräfener1,J.S.Vink1, T. J. Harries2, and N. Langer3 1 Armagh Observatory, College Hill, Armagh BT61 9DG, UK 2 School of Physics and Astronomy, University of Exeter, Stocker Rd, Exeter EX4 4QL, UK 3 Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany Received 16 December 2011 / Accepted 3 October 2012 ABSTRACT Context. Wolf-Rayet (WR) stars with fast rotating cores are thought to be the direct progenitors of long-duration gamma-ray bursts (LGRBs). A well accepted evolutionary channel towards LGRBs is chemically-homogeneous evolution at low metallicities, which completely avoids a red supergiant (RSG), or luminous blue variable (LBV) phase. On the other hand, strong absorption features with velocities of several hundred km s−1 have been found in some LGRB afterglow spectra (GRB 020813 and GRB 021004), which have been attributed to dense circumstellar (CS) material that has been ejected in a previous RSG or LBV phase, and is interacting with a fast WR-type stellar wind. Aims. Here we investigate the properties of Galactic WR stars and their environment to identify similar evolutionary channels that may lead to the formation of LGRBs. Methods. We compile available information on the spectropolarimetric properties of 29 WR stars, the presence of CS ejecta for 172 WR stars, and the CS velocities in the environment of 34 WR stars in the Galaxy. -
Fundamental Parameters of 4 Massive Eclipsing Binaries in Westerlund 1
Active OB stars: structure, evolution, mass loss and critical limits Proceedings IAU Symposium No. 272, 2010 c 2010 International Astronomical Union C. Neiner, G. Wade, G. Meynet & G. Peters DOI: 00.0000/X000000000000000X Fundamental Parameters of 4 Massive Eclipsing Binaries in Westerlund 1 E. Koumpia and A.Z. Bonanos † National Observatory of Athens, Institute of Astronomy & Astrophysics, I. Metaxa & Vas. Pavlou St., Palaia Penteli GR-15236 Athens, Greece [email protected], [email protected] Abstract. Westerlund 1 is one of the most massive young clusters known in the Local Group, with an age of 3-5 Myr. It contains an assortment of rare evolved massive stars, such as blue, yellow and red supergiants, Wolf-Rayet stars, a luminous blue variable, and a magnetar, as well as 4 massive eclipsing binary systems (Wddeb, Wd13, Wd36, WR77o, see Bonanos 2007). The eclipsing binaries present a rare opportunity to constrain evolutionary models of massive stars, the distance to the cluster and furthermore, to determine a dynamical lower limit for the mass of a magnetar progenitor. Wddeb, being a detached system, is of great interest as it allows determination of the masses of 2 of the most massive unevolved stars in the cluster. We have analyzed spectra of all 4 eclipsing binaries, taken in 2007-2008 with the 6.5 meter Magellan telescope at Las Campanas Observatory, Chile, and present fundamental parameters (masses, radii) for their component stars. Keywords. open clusters and associations: individual (Westerlund 1), stars: fundamental pa- rameters, stars: early-type, binaries: eclipsing, stars: Wolf-Rayet 1. Introduction Westerlund 1 (Wd1) is one of the most massive compact young star clusters known in the Local Group. -
The Galactic WC and WO Stars the Impact of Revised Distances from Gaia DR2 and Their Role As Massive Black Hole Progenitors
Astronomy & Astrophysics manuscript no. paper c ESO 2019 January 11, 2019 The Galactic WC and WO stars The impact of revised distances from Gaia DR2 and their role as massive black hole progenitors A.A.C. Sander1; 2, W.-R. Hamann1, H. Todt1, R. Hainich1, T. Shenar1; 3, V. Ramachandran1, and L.M. Oskinova1 1 Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany e-mail: [email protected] 2 Armagh Observatory and Planetarium, College Hill, Armagh, BT61 9DG, Northern Ireland 3 Institute of Astrophysics, KU Leuven, Celestijnenlaan 200 D, 3001, Leuven, Belgium Received 25 June 2018 / Accepted 26 November 2018 ABSTRACT Wolf-Rayet stars of the carbon sequence (WC stars) are an important cornerstone in the late evolution of massive stars before their core collapse. As core-helium burning, hydrogen-free objects with huge mass-loss, they are likely the last observable stage before collapse and thus promising progenitor candidates for type Ib/c supernovae. Their strong mass-loss furthermore provides challenges and constraints to the theory of radiatively driven winds. Thus, the determination of the WC star parameters is of major importance for several astrophysical fields. With Gaia DR2, for the first time parallaxes for a large sample of Galactic WC stars are available, removing major uncertainties inherent to earlier studies. In this work, we re-examine a previously studied sample of WC stars to derive key properties of the Galactic WC population. All quantities depending on the distance are updated, while the underlying spectral analyzes remain untouched. -
What Can Make a Contact Binary Star Explode? Evan Cook, Kenton Greene, and Prof
What Can Make a Contact Binary Star Explode? Evan Cook, Kenton Greene, and Prof. Larry Molnar, Calvin College, Grand Rapids, Michigan, Summer 2017 Supported by the Dragt Family (EC), a VanderPlas Fellowship (KG), and the National Science Foundation (LM) Introduction Merger Mechanism What To Look For Contact binary stars orbit each other so closely that they share a common Fillout Factor: atmosphere. For millions of years, these stars orbit without significant change. L2 The degree of contact in Eventually, an as yet unknown mechanism causes them to spiral together, merge, a contact binary is called and explode. the fillout factor (Fig. 3). At the upper extreme, Three years ago, we identified a contact binary system, KIC 9832227, which we the surface approaches observe to be spiraling inwards, and which we now predict will explode in the year L (on the left in Fig. 3), 2022, give or take a year. This was the first ever prediction of a nova outburst. We 2 the point at which the are using this opportunity to try to discover the mechanism behind stellar outward centrifugal mergers. To explore this question this summer, we studied our system more Fig. 3. The black line is a cross section through force balances the intensively using both optical and X-ray telescopes. We determined a more the equator of our star. The gray lines show attractive gravitational accurate shape with the PHOEBE software package (see Fig. 1). And we began a the range of possible shapes for contact stars. Fig. 6. A Hubble Space Telescope image force. Material reaching survey of the shapes The fillout factor is a parameter from 0 to 1 of a red nova, V838 Mon, that exploded L flows away from the of other contact Fig. -
Study of Eclipsing Binaries: Light Curves & O-C Diagrams Interpretation
galaxies Review Study of Eclipsing Binaries: Light Curves & O-C Diagrams Interpretation Helen Rovithis-Livaniou Department of Astrophysics, Astronomy & Mechanics, Faculty of Physics, Panepistimiopolis, Zografos, Athens University, 15784 Athens, Greece; [email protected]; Tel.: +30-21-0984-7232 Received: 10 October 2020; Accepted: 6 November 2020; Published: 13 November 2020 Abstract: The continuous improvement in observational methods of eclipsing binaries, EBs, yield more accurate data, while the development of their light curves, that is magnitude versus time, analysis yield more precise results. Even so, and in spite the large number of EBs and the huge amount of observational data obtained mainly by space missions, the ways of getting the appropriate information for their physical parameters etc. is either from their light curves and/or from their period variations via the study of their (O-C) diagrams. The latter express the differences between the observed, O, and the calculated, C, times of minimum light. Thus, old and new light curves analysis methods of EBs to obtain their principal parameters will be considered, with examples mainly from our own observational material, and their subsequent light curves analysis using either old or new methods. Similarly, the orbital period changes of EBs via their (O-C) diagrams are referred to with emphasis on the use of continuous methods for their treatment in absence of sudden or abrupt events. Finally, a general discussion is given concerning these two topics as well as to a few related subjects. Keywords: eclipsing binaries; light curves analysis/synthesis; minima times and (O-C) diagrams 1. Introduction A lot of time has passed since the primitive observations of EBs made with naked eye till today’s space surveys. -
The Massive Wolf-Rayet Binary LSS 1964 (=WR 29) II
A&A 506, 1269–1275 (2009) Astronomy DOI: 10.1051/0004-6361/200810112 & c ESO 2009 Astrophysics The massive Wolf-Rayet binary LSS 1964 (=WR 29) II. The V light curve R. C. Gamen1,2,, E. Fernández-Lajús1,2,†,V.S.Niemela‡, and R. H. Barbá3,4,§ 1 Instituto de Astrofísica de La Plata, CONICET, Paseo del bosque s/n, B1900FWA, La Plata, Argentina 2 Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del bosque s/n, B1900FWA, La Plata, Argentina e-mail: [email protected] 3 Instituto de Ciencias Astronómicas de la Tierra y del Espacio, CONICET, Avda. España 1512 Sur, J5402DSP, San Juan, Argentina 4 Departamento de Física, Universidad de La Serena, Benavente 980, La Serena, Chile Received 2 May 2008 / Accepted 1 August 2009 ABSTRACT Context. WR 29 is a known WN7h+O double-lined binary system with a rather short period (3.164 days). Aims. We search for light variations to determine the inclination of the system and thus the absolute masses of both components. Methods. We observed photometrically the field of WR 29 between December, 2002, and February, 2006. Results. We find that the V light of WR 29 varies in phase with the spectroscopic period of 3.16412 days, presenting two minima corresponding to the conjunctions of the binary components. Numerical models fitted to the light curve indicate an orbital inclination ◦ of about 44 , and masses of 53 M and 42 M for the O- and WN-type components, respectively. Key words. stars: binaries: close – stars: binaries: eclipsing – stars: binaries: spectroscopic – stars: Wolf-Rayet 1. -
ESO Annual Report 2004 ESO Annual Report 2004 Presented to the Council by the Director General Dr
ESO Annual Report 2004 ESO Annual Report 2004 presented to the Council by the Director General Dr. Catherine Cesarsky View of La Silla from the 3.6-m telescope. ESO is the foremost intergovernmental European Science and Technology organi- sation in the field of ground-based as- trophysics. It is supported by eleven coun- tries: Belgium, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Sweden, Switzerland and the United Kingdom. Created in 1962, ESO provides state-of- the-art research facilities to European astronomers and astrophysicists. In pur- suit of this task, ESO’s activities cover a wide spectrum including the design and construction of world-class ground-based observational facilities for the member- state scientists, large telescope projects, design of innovative scientific instruments, developing new and advanced techno- logies, furthering European co-operation and carrying out European educational programmes. ESO operates at three sites in the Ataca- ma desert region of Chile. The first site The VLT is a most unusual telescope, is at La Silla, a mountain 600 km north of based on the latest technology. It is not Santiago de Chile, at 2 400 m altitude. just one, but an array of 4 telescopes, It is equipped with several optical tele- each with a main mirror of 8.2-m diame- scopes with mirror diameters of up to ter. With one such telescope, images 3.6-metres. The 3.5-m New Technology of celestial objects as faint as magnitude Telescope (NTT) was the first in the 30 have been obtained in a one-hour ex- world to have a computer-controlled main posure. -
V1309 Scorpii: Merger of a Contact Binary⋆⋆⋆
A&A 528, A114 (2011) Astronomy DOI: 10.1051/0004-6361/201016221 & c ESO 2011 Astrophysics V1309 Scorpii: merger of a contact binary, R. Tylenda1, M. Hajduk1,T.Kaminski´ 1, A. Udalski2,3, I. Soszynski´ 2,3,M.K.Szymanski´ 2,3, M. Kubiak2,3, G. Pietrzynski´ 2,3,4,R.Poleski2,3, Ł. Wyrzykowski3,5, and K. Ulaczyk2,3 1 Department for Astrophysics, N. Copernicus Astronomical Center, Rabianska´ 8, 87-100 Torun,´ Poland e-mail: [tylenda;cinek;tomkam]@ncac.torun.pl 2 Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warsaw, Poland e-mail: [udalski;soszynsk;msz;mk;pietrzyn;rpoleski;kulaczyk]@astrouw.edu.pl 3 The Optical Gravitational Lensing Experiment, Poland 4 Universidad de Concepción, Departamento de Astronomia, Casilla 160–C, Concepción, Chile 5 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK e-mail: [email protected] Received 29 November 2010 / Accepted 1 February 2011 ABSTRACT Context. Stellar mergers are expected to take place in numerous circumstences in the evolution of stellar systems. In particular, they are considered as a plausible origin of stellar eruptions of the V838 Mon type. V1309 Sco is the most recent eruption of this type in our Galaxy. The object was discovered in September 2008. Aims. Our aim is to investigate the nature of V1309 Sco. Methods. V1309 Sco has been photometrically observed in course of the OGLE project since August 2001. We analyse these obser- vations in different ways. In particular, periodogram analyses were done to investigate the nature of the observed short-term variability of the progenitor. -
Luminous Red Nova Phenomenon
Stars: from Collapse to Collapse ASP Conference Series, Vol. 510 Yu. Yu. Balega, D. O. Kudryavtsev, I. I. Romanyuk, and I. A. Yakunin, eds. c 2017 Astronomical Society of the Pacific Luminous Red Nova Phenomenon E. A. Barsukova 1, V. P. Goranskij 2, and A. F. Valeev 1 1Special Astrophysical Observatory of the Russian Academy of Sciences, Nizhnii Arkhyz, Russia 2Sternberg Astronomical Institute, Lomonosov Moscow State University, Russia Abstract. Luminous red novae form a new type of variable stars which explode turning into cool supergiants. We present a review of the main physical properties of the objects of this class. Most of them are mergers in close binary systems, but some of them may have a di fferent nature. Luminous red novae (LRN) are the stars erupting into cool supergiants (Munari et al. 2002). In other words, they are the stars with cool explosions. Along with the giant eruptions of massive stars, such as the Great eruption of η Car, they form a new class called ILOTs, namely, Intermediate Luminosity Optical Transients. At the outburst maximum, such stars become the brightest in their galaxies, only supernovae exceeded them by luminosity. At maximum, red novae have a definitely red color, K–M spectra of supergiants, evolving to more and more later spectral subclass, and they don’t pass a nebular phase characteristic of classical novae. Great interest to red novae is attracted by the assumption on their origin as a result of merging in close binary systems. In a unique case for the first time, merging process in a contact binary system was observed directly. -
Close Binary Stars in the Galactic Open Clusters
Close Binary Stars in the Galactic Open Clusters Kadri Yakut University of Ege, Department of Astronomy and Space Sciences 35100, İzmir-Turkey The IMPACT of BINARIES on STELLAR EVOLUTION July 4, 2017, Garching-Germany (Binary) stellar evolution the equation of the nuclear hydrostatic the radiative opacity state reaction network equilibrium (from core to surface (pressure vs. radiative/convective) gravity) Convection with rotationally driven mixing and diffusive the mixing-length semi-convective separation of abundances (Ap, Am and theory stellar wind mixing Fm stars) mass-loss (dynamo action) convective core tidal friction overshooting (circularize orbits) Evolution Codes Cambridge STARS Code -Eggleton (1971-73) -Pols, Tout, Eggleton, Zhanwen (1995) EV Code -Hurley, Pols, Tout (2000) -Yakut & Eggleton (2005) -Eldridge+ -Eggleton (2006) -Eggleton & Yakut (2017) Close binary stars (CBS) “close binary” • à P is short • à tidal force & RLOF play important roles • à AM, cMT,ncMT, ML, AML and NE • à synchronously rotating • à circular orbit CBS types: -Detached (D) [e.g, RS CVn, Giant+MS, Giant+Giant] -Semi-detached (SD) [e.g. NCB, CV, X-ray binaries, AM CVn, ..] -Contact (C) [e.g., LTCB=W UMa, ETCB] close binary stars (CBS) M, y, z, α, dM/dt + Mt, q, Pbin, dMt/dt, P3, … Single Star: Model of the Sun from its birth to its dead Hypothetical mass-loss and dynamo activity during the Sun's evolution. Today BC 4.525.000.000 Eggleton & Yakut (2017) [MNRAS, 468, 3533] 1-Non-Conservative Evolution of Close/Interacting Binary Stars: Low-mass binary system 1.19 Ms + 0.94 Ms, 0.75 days Yakut & Eggleton (2005, 2018) 2- Non-Conservative Binary Evolution: High-mass binary system V382 Cyg (O6.5 V + O6 V) New observationsà Ege University Observatory Yaşarsoy & Yakut (2013) 8 [AJ, 145, 9] 3-Binary system with giant components: 60 systems Eggleton & Yakut (2017) [MNRAS, 468, 3533] The model of Capella seems to fit the observations very well!!! Primary- Aa Secondary Ab Figure 1.