Constraints on the Parameters of Radiatively Decaying Dark Matter from the Dark Matter Halos of the Milky Way and Ursa Minor

Total Page:16

File Type:pdf, Size:1020Kb

Constraints on the Parameters of Radiatively Decaying Dark Matter from the Dark Matter Halos of the Milky Way and Ursa Minor A&A 471, 51–57 (2007) Astronomy DOI: 10.1051/0004-6361:20066774 & c ESO 2007 Astrophysics Constraints on the parameters of radiatively decaying dark matter from the dark matter halos of the Milky Way and Ursa Minor A. Boyarsky1,2,3, J. Nevalainen4, and O. Ruchayskiy5,2 1 CERN, PH-TH, 1211 Geneve 23, Switzerland e-mail: [email protected] 2 École Polytechnique Fédérale de Lausanne, Institute of Theoretical Physics, FSB/ITP/LPPC, BSP 720, 1015 Lausanne, Switzerland 3 On leave of absence from Bogolyubov Institute of Theoretical Physics, Kyiv, Ukraine 4 Helsinki University Observatory, Finland e-mail: [email protected] 5 Institut des Hautes Études Scientifiques, 91440 Bures-sur-Yvette, France e-mail: [email protected] Received 20 November 2006 / Accepted 19 April 2007 ABSTRACT Aims. We improve the earlier restrictions on parameters of the warm dark matter (DM) in the form of a sterile neutrinos. Methods. The results were obtained from not observing the DM decay line in the X-ray spectrum of the Milky Way (using the recent XMM-Newton PN blank sky data). We also present a similar constraint coming from the recent XMM-Newton observation of Ursa Minor – dark, X-ray quiet dwarf spheroidal galaxy. Results. The new Milky way data improve on (by as much as the order of magnitude at masses ∼3.5 keV) existing constraints. Although the observation of Ursa Minor has relatively poor statistics, the constraints are comparable to those recently obtained using observations of the Large Magellanic Cloud or M 31. This confirms a recent proposal that dwarf satellites of the MW are very interesting candidates for the DM search and dedicated studies should be made to this purpose. Key words. Galaxy: halo – galaxies: individual: Ursa Minor – cosmology: dark matter – X-rays: galaxies 1. Introduction Secondly, warm DM with the mass of particle in keV range can ease the problem of the dark halo structures in comparison This past year has seen a lot of activity, devoted to search- with the cold dark matter scenario (Bode et al. 2001; Goerdt ing for the decay signals of the DM particle in X-ray et al. 2006). By determining the matter power spectrum from the spectra of various astrophysical objects (Boyarsky et al. Lyman-α forest data from SDSS Seljak et al. (2006) and Viel 2006a,b,c; Riemer-Sørensen et al. 2006a; Watson et al. 2006; et al. (2006) argue that the mass of the DM particles should be Riemer-Sørensen et al. 2006b, e.g). It was noticed long ago by in the range ∼>10 keV (∼>14 keV in the case of Seljak et al. 2006). Dodelson & Widrow (1994) that a right-handed neutrino with As this method gives direct bounds for the free-streaming length masses in the keV range presents a viable warm dark matter of the neutrinos, the bounds on the mass of the DM particle de- (WDM) candidate. Such a particle possesses a specific radia- pend on the momentum distribution function of the sterile neu- tive decay channel, so one can search for its decay line in the trinos and, therefore, on their production mechanism. The results X-ray spectra of astrophysical objects (Dolgov & Hansen 2002; quoted above are claimed for the simplest Dodelson-Widrow Abazajian et al. 2001b). model (1994). Recently, the interest in the sterile neutrino as a DM can- At the same time, studies of the Fornax dwarf spheroidal didate has been greatly revitalized. First, the discovery of neu- galaxy (Goerdt et al. 2006; Strigari et al. 2006) disagree with trino oscillations (see e.g. Strumia & Vissani 2006, for a re- the predictions of CDM models and suggest lower mass than view) strongly suggest the existence of right-handed neutrinos. in Seljak et al. (2006) and Viel et al. (2006) for the DM parti- Probably the easiest way to explain the data on oscillations is by cle Mdm ∼ 2 keV. This result agrees with the earlier studies of adding several right-handed, or sterile, neutrinos, to the Standard Hansen et al. (2002) and Viel et al. (2005), which used a different Model. It has been demonstrated recently in Asaka et al. (2005) dataset. For other interesting applications of the sterile neutrinos and Asaka & Shaposhnikov (2005) that a simple extension of the with the mass ∼few keV see e.g. Kusenko (2006b), Biermann & Standard Model by three singlet fermions with masses smaller ν Kusenko (2006), Stasielak et al. (2006), Kusenko (2006a), and than the electroweak scale (dubbed the MSM in Asaka et al. Hidaka & Fuller (2006). 2005) allows accommodation of the data on neutrino masses and mixings, allows baryon asymmetry of the Universe to be to account for it by introducing a sterile neutrino with the mass around explained, and provides a candidate for the dark matter particle 1 eV. There are also models that explain not all, but only some of these in the form of the lightest of the sterile neutrinos1. phenomena (e.g. LSND and DM, but not the baryon asymmetry as e.g. in de Gouvea 2005) We do not give any review here. We would like to 1 The νMSM does not explain the unconfirmed results of the stress that, although our work is motivated by the recent results on the LSND experiment (Aguilar et al. 2001). There are other models that try νMSM, our method and results do not rely on any particular model. Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20066774 52 A. Boyarsky et al.: Dark matter constraints from the Galaxy and Ursa Minor It has been argued in Boyarsky et al. (2006c) and In the absence of a clearly detectable line, one can put an upper Riemer-Sørensen et al. (2006a) that the preferred targets for ob- limit on the flux of DM from the astrophysical data, which will servations are objects from the local halo, including our own lead via Eq. (4) to the restrictions of parameters of the sterile Milky Way and its satellites. In particular, Boyarsky et al. neutrino Ms and θ. (2006c) showed that the best observational targets are the dwarf spheroidals (Ursa Minor, Draco, etc.). Indeed, these objects are X-ray quiet, while at the same time one expects the DM decay 3. Restrictions from the blank sky observation signal from them, comparable to what comes from galaxy clus- 3.1. Modeling the DM halo of the MW ters. Because at the time of writing of Boyarsky et al. (2006c) no public data were available for these dwarf spheroidals, the obser- As shown in the previous section, one needs to know the distri- vations of the core of Large Magellanic Cloud (LMC) were used bution of the DM to obtain the restrictions on parameters of the to produce the strongest restrictions on parameters of the ster- sterile neutrino. In the case of nearby objects (including our own ile neutrino. It was stressed in Boyarsky et al. (2006c) that other Galaxy and dwarf satellites from the local halo), the DM dis- dwarf satellite galaxies should be studied as well, in order to tribution can be deduced e.g. by using the rotation curves of the minimize uncertainties related to the DM modeling in each sin- stars in the galaxy. Here we follow the analysis of Boyarsky et al. gle object. In this paper we continue studies of the dwarf satel- (2006c). Various DM profiles, used to fit observed velocity dis- lites of the MW by analyzing the data from XMM-Newton obser- tributions, differ the most in the center of a distribution. In the vation of Ursa Minor and confirm the restrictions of Boyarsky case of the MW we choose, as in Boyarsky et al. (2006c), to et al. (2006c). use the observations away from the center, to minimize this un- It was also shown in Boyarsky et al. (2006c) that the im- certainty. In particular, in references Klypin et al. (2002) and provement of the results from MW DM halo can be achieved Battaglia et al. (2005) it was shown that the DM halo of the by using longer exposure data (notably, longer exposure of the MW can be described by the Navarro-Frenk-White (NFW) pro- closed filter observations). In this paper, we improve our restric- file (Navarro et al. 1997) tions, coming from the MW DM halo by using the blank sky ρ r3 dataset with better statistics from Nevalainen et al. (2005). ρnfw = s s , (r) 2 (5) r(r + rs) 2. DM with radiative decay channel with parameters, given in Table 13. The relation between virial parameters and ρs, rs are given in the Appendix A. Quoted halo Although throughout this paper we are talking mostly about the parameters provide DM decay flux (from the directions with sterile neutrino DM, the results can be applied to any DM par- φ>90◦) consistent within ∼5% with the one, given by Eqs. (6), ticle that possesses the monoenergetic radiative decay channel, Γ (7). Only “maximal disk” models in Klypin et al. (2002) would emits photon of energy Eγ and has a decay width . In the case provide 30−50% weaker restrictions; however, these models are of the sterile neutrino (with mass below that of an electron), the highly implausible, see Klypin et al. (2002). Similarly, taking radiative decay channel is into a photon and active neutrino Pal the lower limit for the virial mass of Battaglia et al. (2005), one & Wolfenstein (1982). As the mass of an active neutrino is much M would obtain 25% weaker restrictions than the ones, presented Eγ = s Γ 4 lower than keV, 2 in this case.
Recommended publications
  • A Search for Ionized Gas in the Draco and Ursa Minor Dwarf Spheroidal Galaxies
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server A Search for Ionized Gas in the Draco and Ursa Minor Dwarf Spheroidal Galaxies J.S. Gallagher, G. J. Madsen, R. J. Reynolds Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706-1582; [email protected], [email protected], [email protected] E. K. Grebel Max-Planck Institute for Astronomy, K¨onigstuhl 17, D-69117 Heidelberg, Germany; [email protected] T. A. Smecker-Hane Department of Physics & Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697-4575; [email protected] ABSTRACT The Wisconsin Hα Mapper has been used to set the first deep upper limits on the intensity of diffuse Hα emission from warm ionized gas in the Draco and Ursa Minor dwarf spheroidal 1 galaxies. Assuming a velocity dispersion of 15 km s− for the ionized gas, we set limits of IHα 0:024R and IHα 0:021R for the Draco and Ursa Minor dSphs, respectively, averaged ≤ ≤ over our 1◦ circular beam. Adopting a simple model for the ionized interstellar medium, these limits translate to upper bounds on the mass of ionized gas of .10% of the stellar mass, or 10 times the upper limits for the mass of neutral hydrogen. Note that the Draco and Ursa Minor∼ dSphs could contain substantial amounts of interstellar gas, equivalent to all of the gas injected by dying stars since the end of their main star forming episodes &8 Gyr in the past, without violating these limits on the mass of ionized gas.
    [Show full text]
  • Does the Fornax Dwarf Spheroidal Have a Central Cusp Or Core?
    Research Collection Journal Article Does the Fornax dwarf spheroidal have a central cusp or core? Author(s): Goerdt, Tobias; Moore, Ben; Read, J.I.; Stadel, Joachim; Zemp, Marcel Publication Date: 2006-05 Permanent Link: https://doi.org/10.3929/ethz-b-000024289 Originally published in: Monthly Notices of the Royal Astronomical Society 368(3), http://doi.org/10.1111/ j.1365-2966.2006.10182.x Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Mon. Not. R. Astron. Soc. 368, 1073–1077 (2006) doi:10.1111/j.1365-2966.2006.10182.x Does the Fornax dwarf spheroidal have a central cusp or core? , Tobias Goerdt,1 Ben Moore,1 J. I. Read,1 Joachim Stadel1 and Marcel Zemp1 2 1Institute for Theoretical Physics, University of Zurich,¨ Winterthurerstrasse 190, CH-8057 Zurich,¨ Switzerland 2Institute of Astronomy, ETH Zurich,¨ ETH Honggerberg¨ HPF D6, CH-8093 Zurich,¨ Switzerland Accepted 2006 February 8. Received 2006 February 7; in original form 2005 December 21 ABSTRACT The dark matter dominated Fornax dwarf spheroidal has five globular clusters orbiting at ∼1 kpc from its centre. In a cuspy cold dark matter halo the globulars would sink to the centre from their current positions within a few Gyr, presenting a puzzle as to why they survive undigested at the present epoch. We show that a solution to this timing problem is to adopt a cored dark matter halo. We use numerical simulations and analytic calculations to show that, under these conditions, the sinking time becomes many Hubble times; the globulars effectively stall at the dark matter core radius.
    [Show full text]
  • National Optical Astronomy Observatories
    E NATIONAL OPTICAL ASTRONOMY OBSERVATORIES Preprint Series NOAO Preprint No. 834 WFPC2 OBSERVATIONS OF THE URSA MINOR DWARF SPHEROIDAL GALAXY KENNETH J. MIGHELL CHRISTOPHER J. BURKE To Appear In: The Astrophysical Journal March 1999 Operated for the National Science Foundation by the Association of Universities for Research in Astronomy, Inc. To appear in the Astronomical Journal (accepted 1999 March 1) WFPC2 OBSERVATIONS OF THE URSA MINOR DWARF SPHEROIDAL GALAXY 1 KENNETH J. _'IIGHELL 2 AND CHRISTOPHER J. BURKE 3'4 Kitt Peak National Observatory, National Optical Astronomy Observatories 5, P. O. Box 2673:2, Tucson, AZ 85726 mighell@noao, edu, chrislopt_ r. burk_ @yale.cdu 1Based on observations made with tile NASA/ESA Hubble Space Telescope, obtained fl'om the data archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555. 2Guest User, Canadian Astronomy Data Centre, which is operated by the Dominion Astrophysical Observatory for the National Research Council of Canada's Herzberg Institute of Astrophysics. ZBased on research conducted at. NOAO as part of the Research Experiences for Undergraduates program. 4 Current address: Department of Astronomy, Yale University, P. O. Box 208101, New ttaven, CT 06520-8101 SNOAO is operated by the Association of Universilies for I/esearch in Astronomy, Inc., under cooperative agreelnent with the National Science Foundation. _ ABSTRACT \Ve present our analysis of archival Hubble Space Telescope Wide Field Planetary Canlera 2 (WFPC2) observations in F555W (,-_V) and F814W (_I) of the central region of the Ursa Minor dwarf spheroidal galaxy.
    [Show full text]
  • Dark Matter Searches Targeting Dwarf Spheroidal Galaxies with the Fermi Large Area Telescope
    Doctoral Thesis in Physics Dark Matter searches targeting Dwarf Spheroidal Galaxies with the Fermi Large Area Telescope Maja Garde Lindholm Oskar Klein Centre for Cosmoparticle Physics and Cosmology, Particle Astrophysics and String Theory Department of Physics Stockholm University SE-106 91 Stockholm Stockholm, Sweden 2015 Cover image: Top left: Optical image of the Carina dwarf galaxy. Credit: ESO/G. Bono & CTIO. Top center: Optical image of the Fornax dwarf galaxy. Credit: ESO/Digitized Sky Survey 2. Top right: Optical image of the Sculptor dwarf galaxy. Credit:ESO/Digitized Sky Survey 2. Bottom images are corresponding count maps from the Fermi Large Area Tele- scope. Figures 1.1a, 1.2, 1.3, and 4.2 used with permission. ISBN 978-91-7649-224-6 (pp. i{xxii, 1{120) pp. i{xxii, 1{120 c Maja Garde Lindholm, 2015 Printed by Publit, Stockholm, Sweden, 2015. Typeset in pdfLATEX Abstract In this thesis I present our recent work on gamma-ray searches for dark matter with the Fermi Large Area Telescope (Fermi-LAT). We have tar- geted dwarf spheroidal galaxies since they are very dark matter dominated systems, and we have developed a novel joint likelihood method to com- bine the observations of a set of targets. In the first iteration of the joint likelihood analysis, 10 dwarf spheroidal galaxies are targeted and 2 years of Fermi-LAT data is analyzed. The re- sulting upper limits on the dark matter annihilation cross-section range 26 3 1 from about 10− cm s− for dark matter masses of 5 GeV to about 5 10 23 cm3 s 1 for dark matter masses of 1 TeV, depending on the × − − annihilation channel.
    [Show full text]
  • A Search for Ionized Gas in the Draco and Ursa Minor Dwarf Spheroidal Galaxies J
    The Astrophysical Journal, 588:326–330, 2003 May 1 # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. A SEARCH FOR IONIZED GAS IN THE DRACO AND URSA MINOR DWARF SPHEROIDAL GALAXIES J. S. Gallagher, G. J. Madsen, and R. J. Reynolds Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706-1582; [email protected], [email protected], [email protected] E. K. Grebel Max-Planck-Institut fu¨r Astronomie, Ko¨nigstuhl 17, D-69117 Heidelberg, Germany; [email protected] and T. A. Smecker-Hane Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697-4575; [email protected] Received 2002 December 6; accepted 2003 January 13 ABSTRACT The Wisconsin H Mapper has been used to set the first deep upper limits on the intensity of diffuse H emission from warm ionized gas in the Draco and Ursa Minor dwarf spheroidal galaxies (dSphs). Assuming À1 a velocity dispersion of 15 km s for the ionized gas, we set limits of IH 0:024 R and IH 0:021 R for the Draco and Ursa Minor dSphs, respectively, averaged over our 1 circular beam. Adopting a simple model for the ionized interstellar medium, these limits translate to upper bounds on the mass of ionized gas of d10% of the stellar mass, or 10 times the upper limits for the mass of neutral hydrogen. Note that the Draco and Ursa Minor dSphs could contain substantial amounts of interstellar gas, equivalent to all of the gas injected by dying stars since the end of their main star-forming episodes e8 Gyr in the past, without violating these limits on the mass of ionized gas.
    [Show full text]
  • Supernova-Driven Outflows and Chemical Evolution of Dwarf Spheroidal Galaxies
    Supernova-driven outflows and chemical evolution of dwarf spheroidal galaxies Yong-Zhong Qiana,1 and G. J. Wasserburgb,1 aSchool of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455; and bThe Lunatic Asylum, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 Contributed by G. J. Wasserburg, January 30, 2012 (sent for review October 13, 2011) We present a general phenomenological model for the metallicity Recent observations (14) give results for eight dSphs with rather distribution (MD) in terms of ½Fe∕H for dwarf spheroidal galaxies detailed structure of their MDs and provide a basis for exploring (dSphs). These galaxies appear to have stopped accreting gas from models of their chemical evolution (e.g., ref. 15). Among the key the intergalactic medium and are fossilized systems with their stars issues that we try to address are MDs exhibited by stellar popula- undergoing slow internal evolution. For a wide variety of infall his- tions of dSphs. Our general approach follows that of Lynden-Bell tories of unprocessed baryonic matter to feed star formation, most described in his incisive and excellent article on “theories” of the of the observed MDs can be well described by our model. The key chemical evolution of galaxies (16). It will be shown that the me- requirement is that the fraction of the gas mass lost by supernova- tallicity at which the MD peaks is directly related to the efficiency driven outflows is close to unity. This model also predicts a relation- of SN-driven outflows and that the MD of a dSph and the rela- ship between the total stellar mass and the mean metallicity for tionship between the stellar mass and the mean metallicity for dSphs in accord with properties of their dark matter halos.
    [Show full text]
  • Kinematics of the Dwarf Spheroidal Galaxies Draco and Ursa Minor
    University of Groningen Kapteyn Astronomical Institute Kinematics of the dwarf spheroidal galaxies Draco and Ursa Minor MSc Thesis in Astronomy by Johanna Hartke Groningen, August 14, 2015 Supervisors Second Reader Prof. Dr. Eline Tolstoy Prof. Dr. Scott Trager Dr. Shoko Jin Dr. Maarten Breddels Abstract The aim of this thesis is to study the kinematics of the Local Group dwarf spheroidal galaxies Ursa Minor and Draco. These two galaxies are an interesting pair to study, since they are similar in terms of mass, extent, and distance. However, while Draco appears to have a perfect, undisturbed stellar distribution, Ursa Minor shows signs of tidal disturbance. We use new optical spectroscopy of individual red gi- ant branch stars from the AF2-WYFFOS fiber spectrograph on the William Herschel Telescope. We observed several hundred stars in the CaII triplet region. The data have been pipeline-processed at CASU in Cambridge using prototype WEAVE pro- cessing. We combine our dataset of Draco with data published by Walker, Olszewski & Mateo (2015) and apply orbit-based Schwarzschild modeling to the velocity data in order to constrain the dwarf spheroidal's (dark) matter distribution. We are able to determine the dark matter halo mass distribution for a NFW and a cored profile. Page 1 of 58 Contents 1 Introduction 4 1.1 Galaxy Formation . .5 1.2 Local Group dSph galaxies . .6 1.2.1 Draco . .7 1.2.2 Ursa Minor . .8 1.3 Dynamical modeling . .8 1.3.1 Early attempts to model dSphs . .8 1.3.2 Jeans modeling . .9 1.3.3 Schwarzschild modeling .
    [Show full text]
  • The Milky Way the Milky Way's Neighbourhood
    The Milky Way What Is The Milky Way Galaxy? The.Milky.Way.is.the.galaxy.we.live.in..It.contains.the.Sun.and.at.least.one.hundred.billion.other.stars..Some.modern. measurements.suggest.there.may.be.up.to.500.billion.stars.in.the.galaxy..The.Milky.Way.also.contains.more.than.a.billion. solar.masses’.worth.of.free-floating.clouds.of.interstellar.gas.sprinkled.with.dust,.and.several.hundred.star.clusters.that. contain.anywhere.from.a.few.hundred.to.a.few.million.stars.each. What Kind Of Galaxy Is The Milky Way? Figuring.out.the.shape.of.the.Milky.Way.is,.for.us,.somewhat.like.a.fish.trying.to.figure.out.the.shape.of.the.ocean.. Based.on.careful.observations.and.calculations,.though,.it.appears.that.the.Milky.Way.is.a.barred.spiral.galaxy,.probably. classified.as.a.SBb.or.SBc.on.the.Hubble.tuning.fork.diagram. Where Is The Milky Way In Our Universe’! The.Milky.Way.sits.on.the.outskirts.of.the.Virgo.supercluster..(The.centre.of.the.Virgo.cluster,.the.largest.concentrated. collection.of.matter.in.the.supercluster,.is.about.50.million.light-years.away.).In.a.larger.sense,.the.Milky.Way.is.at.the. centre.of.the.observable.universe..This.is.of.course.nothing.special,.since,.on.the.largest.size.scales,.every.point.in.space. is.expanding.away.from.every.other.point;.every.object.in.the.cosmos.is.at.the.centre.of.its.own.observable.universe.. Within The Milky Way Galaxy, Where Is Earth Located’? Earth.orbits.the.Sun,.which.is.situated.in.the.Orion.Arm,.one.of.the.Milky.Way’s.66.spiral.arms..(Even.though.the.spiral.
    [Show full text]
  • CONSTELLATION URSA MINOR, the LITTLE BEAR Ursa Minor
    CONSTELLATION URSA MINOR, THE LITTLE BEAR Ursa Minor (Latin: "Smaller She-Bear", to contrast with Ursa Major), also known as the Little Bear, is a constellation in the northern sky. Like the Great Bear, the tail of the Little Bear may also be seen as the handle of a ladle, hence the North American name, Little Dipper. It has seven main stars with four in its bowl, like its partner the Big Dipper. It was one of the 48 constellations listed by the 2nd-century astronomer Ptolemy, and remains one of the 88 modern constellations. Ursa Minor has traditionally been important for navigation, particularly by mariners, because of Polaris (at the end of the tail) being the North Star. Alpha Ursae Minoris, better known as Polaris, is the brightest star in the constellation, is a yellow-white supergiant and the brightest Cepheid variable star in the night sky, ranging from an apparent magnitude of 1.97 to 2.00. Beta Ursae Minoris, also known as Kochab, is an aging star that has swollen and cooled to become an orange giant with an apparent magnitude of 2.08, only slightly fainter than Polaris. Gamma Ursae Minoris, magnitude 3 and Kochab have been called the "guardians of the pole star". Planets have been detected orbiting four of the stars, including Kochab. The constellation also contains an isolated neutron star—Calvera—and H1504+65, the hottest white dwarf yet discovered, with a surface temperature of 200,000 K. HISTORY AND MYTHOLOGY In the Babylonian star catalogues, Ursa Minor was known as the Wagon of Heaven, Damkianna.
    [Show full text]
  • Early Gas Stripping As the Origin of the Darkest Galaxies in the Universe
    Early gas stripping as the origin of the darkest galaxies in the Universe L. Mayer1,2, S. Kazantzidis3,4, C. Mastropietro5, & J. Wadsley6 1Institut f¨ur Astronomie, ETH Z¨urich, Wolfgang-Pauli-Strasse 16 , CH-8093 Z¨urich, Switzerland. 2Institute for Theoretical Physics, University of Zurich, Winterthurestrasse 190, CH-8057 Z¨urich. 3Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University, P.O. Box 20450, MS 29, Stanford, CA 94309 USA. 4Kavli Institute for Cosmological Physics, Department of Astronomy & Astrophysics, The University of Chicago, Chicago, IL 60637 USA. 5Universit¨ats Sternwarte M¨unchen, Scheinerstrasse 1, D-81679 M¨unchen , Germany. 6Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada. The known galaxies most dominated by dark matter (Draco, Ursa Minor and Andromeda IX) are satellites of the Milky Way and the Andromeda galaxies1−4. They are members of a class of faint galaxies, devoid of gas, known as dwarf spheroidals3−5, and have by far the highest ratio of dark to luminous matter3,6. None of the models proposed to unravel their origin7−10 can simultaneously explain their exceptional dark matter content and their proximity to a much larger galaxy. Here we report simulations showing that the progenitors of these galaxies were probably gas-dominated dwarf galaxies that became satellites of a larger galaxy earlier than the other dwarf spheroidals. We find that a arXiv:astro-ph/0702495v1 20 Feb 2007 combination of tidal shocks and ram pressure swept away the entire gas content of such progenitors about ten billion years ago because heating by the cosmic ultraviolet background kept the gas loosely bound: a tiny stellar component embedded in a relatively massive dark halo survived until today.
    [Show full text]
  • FY1996 Q1 Oct-Dec NO
    NATIONAL OPTICAL ASTRONOMY OBSERVATORIES NATIONAL OPTICAL ASTRONOMY OBSERVATORIES QUARTERLY REPORT OCTOBER - DECEMBER 1995 July 16,1996 TABLE OF CONTENTS I. INTRODUCTION 1 II. SCIENTIFIC HIGHLIGHTS 1 A. Cerro Tololo Inter-American Observatory 1 1. The Faintest Known White Dwarf 1 2. Evidence for a Black Hole in the X-ray Nova GRO J1655-40 2 3. The Stellar Metallicity Distribution in Omega Centauri 3 B. Kitt Peak National Observatory 3 1. Infrared Colors and Pre-Main-Sequence Evolution 3 2. Bargain Redshifts for Faint Galaxies 4 3. Weighing the Dwarf Spheroidal Companions to the Milky Way 5 C. National Solar Observatory 6 1. Fine Dark Threads and the Temperature of the Solar Corona 6 2. An Objective Test of Magnetic Shear as a Flare Predictor 7 3. Solar Particle Dynamics 7 D. US Gemini Program 8 m. PERSONNEL AND BUDGET STATISTICS, NOAO 9 A. Visiting Scientists 9 B. Hired 9 C. Completed Employment 9 D. Changed Status 9 E. Gemini 8-mTelescopes Project 10 F. Chilean Economic Statistics 10 G. NSFForeign Travel Fund 10 Appendices Appendix A: Telescope Usage Statistics Appendix B: Observational Programs Appendix C: US Sites Safety Report I. INTRODUCTION This document covers scientific highlights and personnel changes for the period 1 October - 31 December 1995. Highlights emphasize concluded projects rather than work in progress. The March 1996 NOAO Newsletter Number 45 contains information on major projects, new instrumentation, and operations. The appendices to this report summarize telescope usagestatistics and observational programs. II. SCIENTIFIC HIGHLIGHTS A. Cerro Tololo Inter-American Observatory 1. The Faintest Known White Dwarf The white dwarf luminosity function incorporates information on the age and star formation history of the Galactic disk which is independent of other techniques.
    [Show full text]
  • Dwarf Cosmology with the Stromlo Missing Satellites Survey
    Hindawi Publishing Corporation Advances in Astronomy Volume 2010, Article ID 434390, 9 pages doi:10.1155/2010/434390 Review Article Dwarf Cosmology with the Stromlo Missing Satellites Survey Helmut Jerjen Research School of Astronomy & Astrophysics, Mt Stromlo Observatory Australian National University, Cotter Road, Weston ACT 2611, Australia Correspondence should be addressed to Helmut Jerjen, [email protected] Received 11 May 2009; Accepted 30 July 2009 Academic Editor: Regina Schulte-Ladbeck Copyright © 2010 Helmut Jerjen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The standard Lambda Cold Dark Matter model is considered to be a triumph of theoretical astrophysics but observations of the Milky Way and its system of satellite galaxies irresistibly signal that theory is incomplete on galactic and subgalactic scales. The Stromlo Missing Satellites (SMS) Survey is a critical endeavor to investigate at what level predictions of CDM cosmology are consistent with the observed matter distribution in the Milky Way halo. It will be the deepest, most extended search for optically elusive satellite galaxies to date, covering 20 000 square degrees of sky. The international SMS Survey collaboration will exploit 150 TB of CCD images in six filters acquired by the new SkyMapper telescope of the Australian National University over the next five years, expecting on completion photometric limits 0.5–1.0 mag fainter than the Sloan Digital Sky Survey. The primary objective of the program is to characterise the baryonic and dark matter components of a complete sample of MW satellites in the Southern hemisphere to provide stringent observational constraints for improving our understanding of how the Milky Way formed and what physical processes governed galaxy formation and evolution in general.
    [Show full text]