Growth & Excellence

Total Page:16

File Type:pdf, Size:1020Kb

Growth & Excellence MATHEMATICS NEWSLETTER Growth & Excellence Contents Letter from the Chair 3 AMS Society Fellows 2-3 New Academic Staff 4-7 Colloquium: Schwarz 10 In Memorium: Edelson 11 Focus: Lecturers at Math 12-13 Graduate News 8-9 Undergraduate News 15 Department Awards 16-17 Life After Davis 8-9, 14, 18 Staff News 19 Fellows of Math: Recognition from the American Mathematical Society additional necessary conditions for optimality. This work has stimulated strong interest over the years, and been generalized and extended by many authors. With colleagues Krener gave conditions for the existence and construction of decou- pling and non-interacting control laws for nonlinear systems. This paper won the Best Paper of the Year Award of the IEEE Transac- Art Krener tions on Automatic Control. He also has been Jesus De Loera a leader in the development of software tools Arthur Krener joined the faculty of the for nonlinear control. His Nonlinear Systems Jesus De Loera has made many notable Mathematics Department at Davis in 1971, Toolbox is a suite of MATLAB routines that contributions to discrete mathematics and its immediately after receiving his Ph.D. from implement a variety of the latest methods of applications, as well as to the education of our Berkeley. He spent his entire career at Davis, nonlinear control. students at UC Davis. retiring in 2006 as a Distinguished Professor Art’s work has earned him many honors. He started his career working in the area of Mathematics. In addition to being named a Fellow in the of discrete and computational geometry. His Art’s mathematical interests focus on non- American Mathematical Society, he also is a Ph.D dissertation solved an outstanding prob- linear control theory, where he did founda- Fellow of the Society for Industrial and Applied lem posed by Gelfand, Kapranov and Zelevin- tional work. With Hermann, Krener gave the Mathematics (SIAM), the Institute of Electrical sky concerning the structure of the space of definitive treatment of controllability and ob- and Electronic Engineers (IEEE) and the In- triangulations of a product of simplices, a servability for nonlinear systems based on dif- ternational Federation for Automatic Control topic started by J. Stasheff and Milnor in the ferential geometric tools. The importance of (IFAC). He has won numerous awards includ- 1970’s. Later, in joint work with Below and this paper was recognized immediately. It was ing a Guggenheim Fellowship, the SIAM Reid Richter-Gebert, he solved another longstand- cited by the IEEE Control Systems Society as Prize, the IEEE Bode Lectureship and an IFAC ing problem by showing that finding a trian- one of Twenty Five Seminal Papers in Control Certificate of Excellent Achievements. gulation of a convex 3-polytope with the mini- published in the twentieth century. It forms Krener held a variety of administrative mum number of simplices is NP-hard. the basis for many of the seminal advances in posts while at UC Davis, including Chair of He also has made important contributions control theory that have followed. the Department of Mathematics, and member in other areas of discrete geometry, in particu- Around 1960 the well-known Pontryagin of the Committee on Academic Personnel. lar on computational problems involving lat- Maximum Principle was developed for opti- He began and endowed the Krener Assistant tice points, volumes, and integrals of polyhe- mal control problems. These are the first order Professorships. This program brings several dra. His work in this area has been applied necessary conditions that a control must satis- excellent young mathematicians to UC Davis in many fields of mathematics, including al- fy to be optimal. But they are not always deter- each year. He also was founding Chair of the gebraic geometry, representation theory and minative, particularly for problems where the SIAM Activity Group on Control and Systems algebraic combinatorics. Together with others control enters affinely. The High Order Maxi- Theory. at UC Davis he has developed the highly suc- mum Principle that Krener developed gives cessful software package LattE that provides many useful computational methods for dis- 2 Fellows of Math: Letter from Recognition from the American Mathematical Society the Chair by Dan Romik This has been a great year to be a math- ematician. A ranking of U.S. occupations published last April by the job search website CareerCast and quoted in the Wall Street Jour- crete geometry problems. nal, Forbes and other notable media outlets, In recent years Jesus’ research interests declared ‘mathematician’ to be the top job in have extended to encompass more applied the United States in 2014. (Lumberjack was areas of mathematics, including integer and ranked as the worst job, in case you were combinatorial optimization. An Integer Linear wondering.) Color us unsurprised: Here in Program (ILP) problem is this: given a matrix the UC Davis Mathematics Department we A, vector b and linear function f(x), find the have always known how much fun and how maximum value of f(x) over all integer vec- rewarding math is! Of course we are delighted tors x that satisfy Ax = b and every compo- that the rest of the world is catching on, as this nent of x is non-negative. In pioneering work enables the Department to enjoy an exciting with Hemmecke, Koeppe and Weismantel, De wave of growth. the past year the Department graduated ten Loera proved the first theoretical results for In the past year we have hired four excel- doctoral students. Our incoming class of grad- the generalization of this problem in which lent new faculty members: Javier Arsuaga, Mi- uate students comprises 20 students. We are f(x) is a non-linear objective function. To put chael Friedlander, Mariel Vazquez and Eugene proud of our continued ability to attract tal- this results in context, recall the celebrated Gorsky (who will arrive later this year). Also, ented graduate students, which form an essen- result by H.W. Lenstra: When the number of Niels Grønbech-Jensen has joined us by tran- tial part of any successful research program, variables is fixed there is an algorithm to solve sitioning into a joint appointment with Me- and wish them luck in their work. ILPs in polynomial time on the input size. De chanical and Aeronautical Engineering. And Our undergraduate program is growing in Loera et al. extended this to the case when f this year we have appointed Andrew Sorn- size and prominence. This is due both to the is non-linear. Although they showed that the berger to be our first Research Scientist. growth in undergraduate enrollments at UC problem becomes NP-hard, even in dimen- In the coming year our growth will con- Davis, and to the increasing recognition of the sion two, they designed an approximation tinue unabated, with a recruitment for one value and importance of STEM (Science, Tech- algorithm to maximize an arbitrary integral tenure-track position at the Assistant Profes- nology, Engineering and Mathematics) educa- polynomial over the lattice points of a convex sor level, and no fewer than four additional tion. This year our undergraduate program rational polytope with a fixed dimension. faculty positions in a joint recruitment effort includes 568 math majors, the most ever. And The excellence of Jesus’ De Loera’s work with the Physics Department. we are launching a new major, Mathematical has been recognized by all the mathematical The Department also has been successful Analytics and Operations Research, which al- societies. He has been a plenary speaker for in many other ways. Two of our members, Pro- ready is attracting significant interest. the AMS, the MAA, and SIAM. In 2010 he was fessor Jesus De Loera and Professor Emeritus The excellence of our instructors’ teaching co-winner of the computer society award from Arthur Krener, were elected as Fellows of the continues to be recognized at the national lev- The Institute for Operations Research and the American Mathematical Society. They join five el. This year, our popular lecturer Dr. Duane Management Sciences. of our faculty who were recognized with this Kouba was awarded the 2014 Golden Section De Loera is an outstanding mentor and prestigious honor in 2012. In May we hosted Distinguished Teacher Award by the Math- teacher. While at UC Davis he has supervised a large conference held to honor the research ematical Association of America. eight Ph.D students, five postdocs, and over achievements of Professor Albert Schwarz. En- I’ll conclude with a note of thanks to our 30 undergraduate honors theses. More than titled “The Mathematics of Quantum Theory,” outgoing chair, Joel Hass. His four years of sig- 45 undergraduates have conducted research this highly successful event featured talks by nificant accomplishments as chair have left the with him. He received the 2003 UC Davis Fields Medal-winner Andrei Okounkov of Co- Department in great shape. Joel now is focus- Chancellor’s fellow award, the 2006 UC Davis lumbia University and several other luminaries ing on research activities, with a quarter-long award for diversity, the 2007 Award for Excel- from mathematics and theoretical physics. In visit to the Hebrew University in Jerusalem. lence in Service to Graduate Students by the the present academic year we have scheduled We are immensely grateful to our many UC Davis Graduate Student Association, and talks and visits by other famous mathematical contributors for their generous donations, the 2013 Chancellor’s award for mentoring scientists, including the Fields Medalists Ed- which support and make possible many of our undergraduate research. But the success of his ward Witten and Charles Fefferman. activities. If you are considering joining this many students is his greatest reward, and one We have had impressive success in teach- select group, see the back of the newsletter for he receives every day.
Recommended publications
  • Anna C. Gilbert
    Anna C. Gilbert Dept. of Mathematics University of Michigan 530 Church Street Ann Arbor, MI 48109-1109 [email protected] 734-763-5728 (phone) http://www.math.lsa.umich.edu/~annacg 734-763-0937 (fax) Revision date: 30 October, 2017. Research • General interests: analysis, probability, signal processing, and algorithms. • Specialization: randomized algorithms with applications to massive datasets and signal processing. Education • Ph.D., Mathematics, Princeton University, June 1997, Multiresolution homogenization schemes for differential equations and applications, Professor Ingrid Daubechies, advisor. • S.B., Mathematics (with honors), University of Chicago, June 1993. Positions Held • Herman H. Goldstine Collegiate Professor. Department of Mathematics, University of Michigan, 2014{ present. • Full Professor (Courtesy appointment). Division of Electrical and Computer Engineering, University of Michigan, 2010{present. • Full Professor. Department of Mathematics, University of Michigan, 2010{present. • Associate Professor (Courtesy appointment). Division of Electrical and Computer Engineering, Uni- versity of Michigan, 2008{2010. • Associate Professor. Department of Mathematics, University of Michigan, 2007{2010. • Assistant Professor. Department of Mathematics, University of Michigan, 2004{2007. • Principal technical staff member. Internet and Network Systems Research Center, AT&T Labs-Research, 2002{2004. • Senior technical staff member. Information Sciences Research Center, AT&T Labs-Research, 1998{ 2002. • Visiting instructor. Department of Mathematics, Stanford University, Winter quarter 2000. • Postdoctoral research associate. Yale University and AT&T Labs-Research, 1997{1998. • Intern. Lucent Technologies Bell Laboratories, summer 1996. • Research assistant. Princeton University, 1994{1995. • Intern. AT&T Bell Laboratories, summers 1993{1995. Publications Refereed Journal Publications • F. J. Chung, A. C. Gilbert, J. G. Hoskins, and J. C. Schotland, \Optical tomography on graphs", Inverse Problems, Volume 33, Number 5, 2017.
    [Show full text]
  • Martin J. Strauss April 22, 2015
    Martin J. Strauss April 22, 2015 Work Address: Dept. of Mathematics University of Michigan Ann Arbor, MI 48109-1043 [email protected] http://www.eecs.umich.edu/~martinjs/ +1-734-717-9874 (cell) Research Interests • Sustainable Energy. • Fundamental algorithms, especially randomized and approximation algorithms. • Algorithms for massive data sets. • Signal processing and and computational harmonic analysis. • Computer security and cryptography. • Complexity theory. Pedagogical Interests • Manipulative Mathematics (teaching via pipe cleaners, paper folding and other mutilation, etc.) • Kinesthetic Mathematics (teaching through movement, including acting out algorithms, per- mutations, and other transformations). Education • Ph.D., Mathematics, Rutgers University, October 1995. Thesis title: Measure in Feasible Complexity Classes. Advisor: Prof. E. Allender, Dept. of Computer Science. • A.B. summa cum laude, Mathematics, Columbia University, May 1989. Minor in Computer Science. Employment History • Professor, Dept. of Mathematics and Dept. of Electrical Engineering and Computer Science (jointly appointed), University of Michigan, 2011{present. • Associate Professor, Dept. of Mathematics and Dept. of Electrical Engineering and Computer Science (jointly appointed), University of Michigan, 2008{2011. • Assistant Professor, Dept. of Mathematics and Dept. of Electrical Engineering and Computer Science (jointly appointed), University of Michigan, 2004{2008. • Visiting Associate Research Scholar, Program in Applied and Computational Mathematics, Princeton University, Sept. 2006{Feb. 2007. Page 1 of 17 • Principal investigator, AT&T Laboratories|Research, 1997{2004. Most recent position: Principal Technical Staff Member, Internet and Network Systems Research Center. • Consultant, Network Services Research Center, AT&T Laboratories, 1996. • Post-Doctoral Research Associate, Department of Computer Science, Iowa State University, September 1995{May 1996. • Intern. Speech recognition group, IBM Watson Research Center, summers, 1989{1990.
    [Show full text]
  • Focm 2017 Foundations of Computational Mathematics Barcelona, July 10Th-19Th, 2017 Organized in Partnership With
    FoCM 2017 Foundations of Computational Mathematics Barcelona, July 10th-19th, 2017 http://www.ub.edu/focm2017 Organized in partnership with Workshops Approximation Theory Computational Algebraic Geometry Computational Dynamics Computational Harmonic Analysis and Compressive Sensing Computational Mathematical Biology with emphasis on the Genome Computational Number Theory Computational Geometry and Topology Continuous Optimization Foundations of Numerical PDEs Geometric Integration and Computational Mechanics Graph Theory and Combinatorics Information-Based Complexity Learning Theory Plenary Speakers Mathematical Foundations of Data Assimilation and Inverse Problems Multiresolution and Adaptivity in Numerical PDEs Numerical Linear Algebra Karim Adiprasito Random Matrices Jean-David Benamou Real-Number Complexity Alexei Borodin Special Functions and Orthogonal Polynomials Mireille Bousquet-Mélou Stochastic Computation Symbolic Analysis Mark Braverman Claudio Canuto Martin Hairer Pierre Lairez Monique Laurent Melvin Leok Lek-Heng Lim Gábor Lugosi Bruno Salvy Sylvia Serfaty Steve Smale Andrew Stuart Joel Tropp Sponsors Shmuel Weinberger 2 FoCM 2017 Foundations of Computational Mathematics Barcelona, July 10th{19th, 2017 Books of abstracts 4 FoCM 2017 Contents Presentation . .7 Governance of FoCM . .9 Local Organizing Committee . .9 Administrative and logistic support . .9 Technical support . 10 Volunteers . 10 Workshops Committee . 10 Plenary Speakers Committee . 10 Smale Prize Committee . 11 Funding Committee . 11 Plenary talks . 13 Workshops . 21 A1 { Approximation Theory Organizers: Albert Cohen { Ron Devore { Peter Binev . 21 A2 { Computational Algebraic Geometry Organizers: Marta Casanellas { Agnes Szanto { Thorsten Theobald . 36 A3 { Computational Number Theory Organizers: Christophe Ritzenhaler { Enric Nart { Tanja Lange . 50 A4 { Computational Geometry and Topology Organizers: Joel Hass { Herbert Edelsbrunner { Gunnar Carlsson . 56 A5 { Geometric Integration and Computational Mechanics Organizers: Fernando Casas { Elena Celledoni { David Martin de Diego .
    [Show full text]
  • Focm 2017 Foundations of Computational Mathematics Barcelona, July 10Th-19Th, 2017 Organized in Partnership With
    FoCM 2017 Foundations of Computational Mathematics Barcelona, July 10th-19th, 2017 http://www.ub.edu/focm2017 Organized in partnership with Workshops Approximation Theory Computational Algebraic Geometry Computational Dynamics Computational Harmonic Analysis and Compressive Sensing Computational Mathematical Biology with emphasis on the Genome Computational Number Theory Computational Geometry and Topology Continuous Optimization Foundations of Numerical PDEs Geometric Integration and Computational Mechanics Graph Theory and Combinatorics Information-Based Complexity Learning Theory Plenary Speakers Mathematical Foundations of Data Assimilation and Inverse Problems Multiresolution and Adaptivity in Numerical PDEs Numerical Linear Algebra Karim Adiprasito Random Matrices Jean-David Benamou Real-Number Complexity Alexei Borodin Special Functions and Orthogonal Polynomials Mireille Bousquet-Mélou Stochastic Computation Symbolic Analysis Mark Braverman Claudio Canuto Martin Hairer Pierre Lairez Monique Laurent Melvin Leok Lek-Heng Lim Gábor Lugosi Bruno Salvy Sylvia Serfaty Steve Smale Andrew Stuart Joel Tropp Sponsors Shmuel Weinberger Wifi access Network: wifi.ub.edu Open a Web browser At the UB authentication page put Identifier: aghnmr.tmp Password: aqoy96 Venue FoCM 2017 will take place in the Historical Building of the University of Barcelona, located at Gran Via de les Corts Catalanes 585. Mapa The plenary lectures will be held in the Paraninf (1st day of each period) and Aula Magna (2nd and 3rd day of each period). Both auditorium are located in the first floor. The poster sessions (2nd and 3rd day of each period) will be at the courtyard of the Faculty of Mathematics, at the ground floor. Workshops will be held in the lecture rooms B1, B2, B3, B5, B6, B7 and 111 in the ground floor, and T1 in the second floor.
    [Show full text]
  • 40 IS10 Abstracts
    40 IS10 Abstracts IP1 age and video restoration. I will present the framework Approximate Inference in Graphical Models: The and provide numerous examples showing state-of-the-art Fenchel Duality Perspective results. I will then briefly show how to extend this to im- age classification, deriving energies and optimization pro- Quite a number of problems involving inference from data, cedures that lead to learning non-parametric dictionaries whether visual data or otherwise, can be set as a prob- for sparse representations optimized for classification. I lem of finding the most likely setting of variables of a will conclude by showing results on the extension of this to joint distribution over locally interacting variables. These sensing and the learning of incoherent dictionaries. Models include stereopsis, figure-ground segmentation, model-to- derived from universal coding are presented as well. The image matching, super-resolution, and so forth. Inference work I present in this talk is the result of great collabo- over locally interacting variables can be naturally repre- rations with J. Mairal, F. Rodriguez, J. Martin-Duarte, I. sented by a graphical model, however exact inference over Ramirez, F. Lecumberry, F. Bach, M. Elad, J. Ponce, and general graphs is computationally unwieldy. In the context A. Zisserman. of approximate inference, I will describe a general scheme for message passing update rules based on the framework Guillermo Sapiro of Fenchel duality. Using the framework we derive all University of Minnesota past inference algorithms like the Belief Propagation sum- Dept Electrical & Computer Engineering product and max-product, the Tree-Re-Weighted (TRW) [email protected] model as well as new convergent algorithms for maximum- a-posteriori (MAP) and marginal estimation using ”convex free energies”.
    [Show full text]
  • Future Directions in Compressed Sensing and the Integration of Sensing and Processing What Can and Should We Know by 2030?
    Future Directions in Compressed Sensing and the Integration of Sensing and Processing What Can and Should We Know by 2030? Robert Calderbank, Duke University Guillermo Sapiro, Duke University Workshop funded by the Basic Research Office, Office of the Assistant Prepared by Brian Hider and Jeremy Zeigler Secretary of Defense for Research & Engineering. This report does not Virginia Tech Applied Research Corporation necessarily reflect the policies or positions of the US Department of Defense Preface OVER THE PAST CENTURY, SCIENCE AND TECHNOLOGY HAS BROUGHT REMARKABLE NEW CAPABILITIES TO ALL SECTORS of the economy; from telecommunications, energy, and electronics to medicine, transportation and defense. Technologies that were fantasy decades ago, such as the internet and mobile devices, now inform the way we live, work, and interact with our environment. Key to this technological progress is the capacity of the global basic research community to create new knowledge and to develop new insights in science, technology, and engineering. Understanding the trajectories of this fundamental research, within the context of global challenges, empowers stakeholders to identify and seize potential opportunities. The Future Directions Workshop series, sponsored by the Basic Research Office of the Office of the Assistant Secretary of Defense for Research and Engineering, seeks to examine emerging research and engineering areas that are most likely to transform future technology capabilities. These workshops gather distinguished academic and industry researchers from the world’s top research institutions to engage in an interactive dialogue about the promises and challenges of these emerging basic research areas and how they could impact future capabilities. Chaired by leaders in the field, these workshops encourage unfettered considerations of the prospects of fundamental science areas from the most talented minds in the research community.
    [Show full text]
  • Computational Methods for Sparse Solution of Linear Inverse Problems Joel A
    PROCEEDINGS OF THE IEEE. SPECIAL ISSUE ON APPLICATIONS OF SPARSE REPRESENTATION AND COMPRESSIVE SENSING, VOL. XX, NO. YY, MONTH 20091 Computational Methods for Sparse Solution of Linear Inverse Problems Joel A. Tropp, Member, IEEE and Stephen J. Wright Abstract—The goal of the sparse approximation problem is find good solutions to large sparse approximation problems in to approximate a target signal using a linear combination of a reasonable time. few elementary signals drawn from a fixed collection. This paper In this paper, we give an overview of algorithms for sparse surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circum- approximation, describing their computational requirements stances in which individual methods tend to perform well, and to and the relationships between them. We also discuss the the theoretical guarantees available. Many fundamental questions types of problems for which each method is most effective in electrical engineering, statistics, and applied mathematics in practice. Finally, we sketch the theoretical results that can be posed as sparse approximation problems, making these justify the application of these algorithms. Although low- algorithms versatile and relevant to a plethora of applications. rank regularization also falls within the sparse approximation Index Terms—Sparse Approximation, Compressed Sensing, framework, the algorithms we describe do not apply directly Matching Pursuit, Convex Optimization to this class of problems. Subsection I-A describes “ideal” formulations of sparse I. INTRODUCTION approximation problems and some common features of algo- INEAR inverse problems arise throughout engineering rithms that attempt to solve these problems. Section II provides L and the mathematical sciences.
    [Show full text]
  • Anna C. Gilbert
    Anna C. Gilbert Dept. of Mathematics University of Michigan 530 Church Street Ann Arbor, MI 48109-1109 [email protected] 734-763-5728 (phone) http://www.math.lsa.umich.edu/~annacg 734-763-0937 (fax) Revision date: 10 August, 2017. Research • General interests: analysis, probability, signal processing, and algorithms. • Specialization: randomized algorithms with applications to massive datasets and signal processing. Education • Ph.D., Mathematics, Princeton University, June 1997, Multiresolution homogenization schemes for differential equations and applications, Professor Ingrid Daubechies, advisor. • S.B., Mathematics (with honors), University of Chicago, June 1993. Positions Held • Herman H. Goldstine Collegiate Professor. Department of Mathematics, University of Michigan, 2014{ present. • Full Professor (Courtesy appointment). Division of Electrical and Computer Engineering, University of Michigan, 2010{present. • Full Professor. Department of Mathematics, University of Michigan, 2010{present. • Associate Professor (Courtesy appointment). Division of Electrical and Computer Engineering, Uni- versity of Michigan, 2008{2010. • Associate Professor. Department of Mathematics, University of Michigan, 2007{2010. • Assistant Professor. Department of Mathematics, University of Michigan, 2004{2007. • Principal technical staff member. Internet and Network Systems Research Center, AT&T Labs-Research, 2002{2004. • Senior technical staff member. Information Sciences Research Center, AT&T Labs-Research, 1998{ 2002. • Visiting instructor. Department of Mathematics, Stanford University, Winter quarter 2000. • Postdoctoral research associate. Yale University and AT&T Labs-Research, 1997{1998. • Intern. Lucent Technologies Bell Laboratories, summer 1996. • Research assistant. Princeton University, 1994{1995. • Intern. AT&T Bell Laboratories, summers 1993{1995. Publications Refereed Journal Publications • F. J. Chung, A. C. Gilbert, J. G. Hoskins, and J. C. Schotland, \Optical tomography on graphs", Inverse Problems, Volume 33, Number 5, 2017.
    [Show full text]
  • 32 IS06 Abstracts
    32 IS06 Abstracts CP1 lem from Surface Measurements Adaptive Finite Element Methods for Inverse Imaging Problems Assuming that the heat capacity of a body is negligible outside certain inclusions the heat equation degenerates to In many realistic 3d imaging problems, such as biomedical a parabolic-elliptic interface problem. For the case that the tumor diagnostics or underground imaging, the resolution heat conductivity is higher inside the inclusions we show by requested by practitioners is unachiavable using globally an adaptation of the so-called Factorization Method that refined meshes. However, while now the leading paradigm the locations of the interfaces are uniquely determined by in PDE solvers, adaptivity has not been widely used for thermal measurements on the surface of the body. We also inverse problems. We will present a mathematical frame- present some numerical results for this inverse problem. work for imaging applications using automatically adapted meshes, and present results obtained in optical tomography Otmar Scherzer for tumor detection and sound wave imaging applications. University Innsbruck [email protected] Wolfgang Bangerth Texas A&M University Bastian Gebauer [email protected] Institut f¨ur Mathematik, Joh. Gutenberg-Universit¨at Mainz, Germany [email protected] CP1 A New Approach to Inverse Problem Solving Using Florian Fr¨uhauf Radon-Based Representations Department of Computer Science, University of Innsbruck, Austria We carry out image deconvolution by transforming the fl[email protected] data into a new general discrete Radon domain that can handle any assumed boundary condition for the associ- ated matrix inversion problem. For each associated angular CP1 segment, one can apply deconvolution routines to smaller A Threshold-Based Method for Inverse Solutions (and possibly better) conditioned matrix inversion prob- to Reconstruct Complex Obstacles, with Applica- lems than the matrix inversion problem for the entire im- tion to the Inverse Problem of Electrocardiography age.
    [Show full text]
  • Computational Methods for Sparse Solution of Linear Inverse Problems Joel A
    PROCEEDINGS OF THE IEEE. SPECIAL ISSUE ON APPLICATIONS OF SPARSE REPRESENTATION AND COMPRESSIVE SENSING, VOL. XX, NO. YY, MONTH 20091 Computational Methods for Sparse Solution of Linear Inverse Problems Joel A. Tropp, Member, IEEE and Stephen J. Wright Abstract—The goal of the sparse approximation problem is find good solutions to large sparse approximation problems in to approximate a target signal using a linear combination of a reasonable time. few elementary signals drawn from a fixed collection. This paper In this paper, we give an overview of algorithms for sparse surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circum- approximation, describing their computational requirements stances in which individual methods tend to perform well, and to and the relationships between them. We also discuss the the theoretical guarantees available. Many fundamental questions types of problems for which each method is most effective in electrical engineering, statistics, and applied mathematics in practice. Finally, we sketch the theoretical results that can be posed as sparse approximation problems, making these justify the application of these algorithms. Although low- algorithms versatile and relevant to a plethora of applications. rank regularization also falls within the sparse approximation Index Terms—Sparse Approximation, Compressed Sensing, framework, the algorithms we describe do not apply directly Matching Pursuit, Convex Optimization to this class of problems. Subsection I-A describes “ideal” formulations of sparse I. INTRODUCTION approximation problems and some common features of algo- INEAR inverse problems arise throughout engineering rithms that attempt to solve these problems. Section II provides L and the mathematical sciences.
    [Show full text]
  • The Sixth Vasil Popov Prize Awarded to Joel A. Tropp of California Institute of Technology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Appl. Comput. Harmon. Anal. 29 (2010) 1 Contents lists available at ScienceDirect Applied and Computational Harmonic Analysis www.elsevier.com/locate/acha Announcement The Sixth Vasil Popov Prize awarded to Joel A. Tropp of California Institute of Technology Thirteenth International Conference in Approximation Theory San Antonio, Texas, March 8, 2010 The Popov Prize honors the memory of Vasil A. Popov (1942–1990), the Bulgarian analyst best known for his work in Nonlinear Approximation. The Prize is awarded every third year to a young mathematician (less than six years removed from the Ph.D.) for outstanding research contributions to Approximation Theory and/or related ar- eas. Previous Popov Prize winners are Albert Cohen (Paris), Arno Kuijlaars (The Netherlands), Emmanuel Candes (Stan- ford), Serguei Denissov (Wisconsin–Madison), and Mauro Maggioni (Duke). Joel Tropp was recognized for his outstanding contribu- tions to the development of sparse reconstruction methods in the context of approximation from redundant systems, greedy algorithms, and most recently compressed sens- ing. In particular, he has shown that greedy algorithms will with high probability exactly recover sparse vectors from random measurements, e.g., based on Gaussian or Bernoulli distributions. This was a cornerstone result in showing the efficacy of greedy algorithms for decoding in compressed sensing. Another impressive result by Joel Tropp is the now famous COSAMP algorithm of Needell and Tropp, which were the first to establish the opti- mal performance of greedy decoding in 2. Tropp’s work has significantly advanced the understanding of greedy al- Joel Tropp is an Assistant Professor of Applied and Computational Math- ematics at the California Institute of Technology.
    [Show full text]
  • Randomized Algorithms for Scientific Computing (RASC)
    Randomized Algorithms for Scientific Computing (RASC) Report from the DOE ASCR Workshop held December 2–3, 2020, and January 6–7, 2021 Prepared for U.S. Department of Energy Office of Science Advanced Scientific Computing Research Program RASC Report Authors Aydın Bulu¸c(co-chair), Lawrence Berkeley National Laboratory Tamara G. Kolda (co-chair), Sandia National Laboratories Stefan M. Wild (co-chair), Argonne National Laboratory Mihai Anitescu, Argonne National Laboratory Anthony DeGennaro, Brookhaven National Laboratory John Jakeman, Sandia National Laboratories Chandrika Kamath, Lawrence Livermore National Laboratory Ramakrishnan (Ramki) Kannan, Oak Ridge National Laboratory Miles E. Lopes, University of California, Davis Per-Gunnar Martinsson, University of Texas, Austin Kary Myers, Los Alamos National Laboratory Jelani Nelson, University of California, Berkeley Juan M. Restrepo, Oak Ridge National Laboratory C. Seshadhri, University of California, Santa Cruz Draguna Vrabie, Pacific Northwest National Laboratory Brendt Wohlberg, Los Alamos National Laboratory Stephen J. Wright, University of Wisconsin, Madison Chao Yang, Lawrence Berkeley National Laboratory Peter Zwart, Lawrence Berkeley National Laboratory arXiv:2104.11079v1 [cs.AI] 19 Apr 2021 DOE/ASCR Point of Contact Steven Lee Randomized Algorithms for Scientific Computing i Additional Report Authors This report was a community effort, collecting inputs in a variety formats. We have taken many of the ideas in this report from the thesis statements collected from registrants of “Part 2” of the workshop. We further solicited input from community members with specific expertise. Much of the input came from discussions at the workshop, so we must credit the entire set of participants listed in full in AppendixB. Although we cannot do justice to the origination of every idea contained herein, we highlight those whose contributions were explicitly solicited or whose submissions were used nearly verbatim.
    [Show full text]