JSON As an XML Alternative

Total Page:16

File Type:pdf, Size:1020Kb

JSON As an XML Alternative JSON The Fat-Free Alternative to XML { “Lecture”: 27, “Course”: “CSC375”, “Days”: ”TTh", “Instructor”: “Haidar Harmanani” } JSON as an XML Alternative • JSON is a light-weight alternative to XML for data- interchange • JSON = JavaScript Object Notation – It’s really language independent – most programming languages can easily read it and instantiate objects or some other data structure • Defined in RFC 4627 • Started gaining tracking ~2006 and now widely used • http://json.org/ has more information JSON as an XML Alternative • What is JSON? – JSON is language independent – JSON is "self-describing" and easy to understand – *JSON uses JavaScript syntax for describing data objects, but JSON is still language and platform independent. JSON parsers and JSON libraries exists for many different programming languages. • JSON -Evaluates to JavaScript Objects – The JSON text format is syntactically identical to the code for creating JavaScript objects. – Because of this similarity, instead of using a parser, a JavaScript program can use the built-in eval() function and execute JSON data to produce native JavaScript objects. Example {"firstName": "John", l This is a JSON object "lastName" : "Smith", "age" : 25, with five key-value pairs "address" : l Objects are wrapped by {"streetAdr” : "21 2nd Street", curly braces "city" : "New York", "state" : "NY", l There are no object IDs ”zip" : "10021"}, l Keys are strings "phoneNumber": l Values are numbers, [{"type" : "home", "number": "212 555-1234"}, strings, objects or {"type" : "fax", arrays "number” : "646 555-4567"}] l Aarrays are wrapped by } square brackets The BNF is simple When to use JSON? • SOAP is a protocol specification for exchanging structured information in the implementation of Web Services. • SOAP internally uses XML to send data back and forth. • REST is a design concept. – You are not limited to picking XML to represent data, you could pick anything really (JSON included). JSON example { "firstName": "John", "lastName": "Smith", "age": 25, "address": { "streetAddress": "21 2nd Street", "city": "New York", "state": "NY", "postalCode": 10021 }, "phoneNumbers": [ { "type": "home", "number": "212 555-1234" }, { "type": "fax", "number": "646 555-4567" } ] } JSON to XML <?xml version="1.0" encoding="UTF-8"?> <persons> <person> <firstName>John</firstName> <lastName>Smith</lastName> <age>25</age> <address> <streetAddress>21 2nd Street</streetAddress> <city>New York</city> <state>NY</state> <postalCode>10021</postalCode> </address> <phoneNumbers> <phoneNumber> <number>212 555-1234</number> <type>home</type> </phoneNumber> <phoneNumber> <number>646 555-4567</number> <type>fax</type> </phoneNumber> </phoneNumbers> </person> </persons> JSON vs XML size • XML: 549 characters, 549 bytes • JSON: 326 characters, 326 bytes • XML ~68,4 % larger than JSON! • But large data set is going to be large regardless of the data format you use. • Most servers gzip or otherwise compress content before sending it out, the difference between gzipped JSON and gzipped XML isn’t nearly as drastic as the difference between standard JSON and XML. JSON Values • JSON values can be: – A number (integer or floating point) – A string (in double quotes) – A boolean (true or false) – An array (in square brackets) – An object (in curly brackets) – null Why JSON? • For AJAX applications, JSON is faster and easier than XML • Using XML – Fetch an XML document – Use the XML DOM to loop through the document – Extract values and store in variables • Using JSON – Fetch a JSON string – eval() the JSON string Security problems • The eval() function can compile and execute any JavaScript. This represents a potential security problem. • It is safer to use a JSON parser to convert a JSON text to a JavaScript object. A JSON parser will recognize only JSON text and will not compile scripts. • In browsers that provide native JSON support, JSON parsers are also faster. • Native JSON support is included in newer browsers and in the newest ECMAScript (JavaScript) standard. JSON vs XML • Favor XML over JSON when any of these is true: – You need message validation – You're using XSLT – Your messages include a lot of marked-up text – You need to interoperate with environments that don't support JSON • Favor JSON over XML when all of these are true: – Messages don't need to be validated, or validating their deserialization is simple – You're not transforming messages, or transforming their deserialization is simple – Your messages are mostly data, not marked-up text – The messaging endpoints have good JSON tools JSON Schema • Describes your JSON data format • http://jsonschemalint.com/ • http://json-schema.org/implementations • http://en.wikipedia.org/wiki/JSON#Schema_and_M etadata JSON vs XML • "Some people, when confronted with a problem, think "I know, I'll use XML." Now they have two problems. " • "XML is like violence. If it doesn't solve your problem, you're not using enough of it. " • "I use JSON unless I'm required to use XML. " • " I don't hate XML and I don't find it frustrating. I sure as hell hate people that try to solve every problem in the world with XML. " Evaluation • JSON is simpler than XML and more compact – No closing tags, but if you compress XML and JSON the difference is not so great – XML parsing is hard because of its complexity • JSON has a better fit for OO systems than XML • JSON is not as extensible as XML • Preferred for simple data exchange by many • Less syntax, no semantics • Schemas? We don’t need no stinkin schemas! • Transforms? Write your own. • Worse is better #mongodb MongoDB Modified from slides provided by S. Parikh, A. Im, G. Cai, H. Tunc, J. Stevens, Y. Barve, S. Hei History • mongoDB = “Humongous DB” – Open-source – Document-based – “High performance, high availability” – Automatic scaling – C-P on CAP Motivations • Problems with SQL – Rigid schema – Not easily scalable (designed for 90’s technology or worse) – Requires unintuitive joins • Perks of mongoDB – Easy interface with common languages (Java, Javascript, PHP, etc.) – DB tech should run anywhere (VM’s, cloud, etc.) – Keeps essential features of RDBMS’s while learning from key-value noSQL systems Design Goals • Scale horizontally over commodity systems • Incorporate what works for RDBMSs – Rich data models, ad-hoc queries, full indexes • Move away from what doesn’t scale easily – Multi-row transactions, complex joins • Use idomatic development APIs • Match agile development and deployment workflows Key Features • Data stored as documents (JSON) – Dynamic-schema • Full CRUD support (Create, Read, Update, Delete) – Ad-hoc queries: Equality, RegEx, Ranges, Geospatial – Atomic in-place updates • Full secondary indexes – Unique, sparse, TTL • Replication –redundancy, failover • Sharding –partitioning for read/write scalability MongoDB Drivers and Shell Drivers Drivers for most popular Java Ruby programming languages and frameworks JavaScript Perl Python Haskell > db.collection.insert({product:“MongoDB”, Shell type:“Document Database”}) > > db.collection.findOne() Command-line shell for interacting { “_id” : ObjectId(“5106c1c2fc629bfe52792e86”), “product” : “MongoDB” directly with database “type” : “Document Database” } Getting Started with Mongo Installation • Install Mongo from: http://www.mongodb.org/downloads – Extract the files – Create a data directory for Mongo to use • Open your mongodb/bin directory and run the binary file (name depends on the architecture) to start the database server. • To establish a connection to the server, open another command prompt window and go to the same directory, entering in mongo.exe or mongo for macs and Linuxes. • This engages the mongodb shell—it’s that easy! MongoDB Design Model Mongo Data Model • Document-Based (max 16 MB) • Documents are in BSON format, consisting of field- value pairs • Each document stored in a collection • Collections – Have index set in common – Like tables of relational db’s. – Documents do not have to have uniform structure JSON • “JavaScript Object Notation” • Easy for humans to write/read, easy for computers to parse/generate • Objects can be nested • Built on – name/value pairs – Ordered list of values BSON • “Binary JSON” • Binary-encoded serialization of JSON-like docs • Also allows “referencing” • Embedded structure reduces need for joins • Goals – Lightweight – Traversable – Efficient (decoding and encoding) BSON Example { "_id" : "37010" "city" : "ADAMS", "pop" : 2660, "state" : "TN", “councilman” : { name: “John Smith” address: “13 Scenic Way” } } BSON Types Type Number Double 1 String 2 Object 3 Array 4 Binary data 5 Object id 7 The number can Boolean 8 Date 9 be used with the Null 10 $type operator to Regular Expression 11 JavaScript 13 query by type! Symbol 14 JavaScript (with scope) 15 32-bit integer 16 Timestamp 17 64-bit integer 18 Min key 255 Max key 127 http://docs.mongodb.org/manual/reference/bson-types/ The _id Field • By default, each document contains an _id field. This field has a number of special characteristics: – Value serves as primary key for collection. – Value is unique, immutable, and may be any non-array type. – Default data type is ObjectId, which is “small, likely unique, fast to generate, and ordered.” Sorting on an ObjectId value is roughly equivalent to sorting on creation time. MongoDB vs. Relational Databases Why Databases Exist in the First Place? • Why can’t we just write programs that operate on objects? – Memory limit – We cannot swap back from disk merely by OS for the page based memory management mechanism • Why can’t
Recommended publications
  • Document Databases, JSON, Mongodb 17
    MI-PDB, MIE-PDB: Advanced Database Systems http://www.ksi.mff.cuni.cz/~svoboda/courses/2015-2-MIE-PDB/ Lecture 13: Document Databases, JSON, MongoDB 17. 5. 2016 Lecturer: Martin Svoboda [email protected] Authors: Irena Holubová, Martin Svoboda Faculty of Mathematics and Physics, Charles University in Prague Course NDBI040: Big Data Management and NoSQL Databases Document Databases Basic Characteristics Documents are the main concept Stored and retrieved XML, JSON, … Documents are Self-describing Hierarchical tree data structures Can consist of maps, collections, scalar values, nested documents, … Documents in a collection are expected to be similar Their schema can differ Document databases store documents in the value part of the key-value store Key-value stores where the value is examinable Document Databases Suitable Use Cases Event Logging Many different applications want to log events Type of data being captured keeps changing Events can be sharded by the name of the application or type of event Content Management Systems, Blogging Platforms Managing user comments, user registrations, profiles, web-facing documents, … Web Analytics or Real-Time Analytics Parts of the document can be updated New metrics can be easily added without schema changes E-Commerce Applications Flexible schema for products and orders Evolving data models without expensive data migration Document Databases When Not to Use Complex Transactions Spanning Different Operations Atomic cross-document operations Some document databases do support (e.g., RavenDB) Queries against Varying Aggregate Structure Design of aggregate is constantly changing → we need to save the aggregates at the lowest level of granularity i.e., to normalize the data Document Databases Representatives Lotus Notes Storage Facility JSON JavaScript Object Notation Introduction • JSON = JavaScript Object Notation .
    [Show full text]
  • Niklas Appelmann
    Niklas Appelmann Full-Stack Web Developer [email protected] https://niklasappelmann.de +49 151 6469 0684 Nationality German Education Bachelor of Science Computer Science Certificates Company Data Protection Officer IHK / Betrieblicher Datenschutzbeauftragter IHK (June 2018) Languages English (fluent) German (native) Skills Project Management Agile, Scrum, Kanban Frameworks and Tools AWS, Docker, Selenium, Puppeteer, MongoDB Programming Languages / Frameworks React, Meteor, Node.js, JavaScript, Python, Clojure, ClojureScript, CoffeeScript, TypeScript Relevant 3.5 years Experience Project examples since 01/2020 Fullstack Development, Freelance Various engagements in web development. • Automation of lead generation and business processes using Python, Selenium and Puppeteer. • Frontend development using ClojureScript and Reagent • Backend development using Node.js, Clojure and MongoDB • DevOps and Backend development at the government hackathon #wirvsvirus (2020) • AWS consulting (S3, Lambda, EC2, ECS, Route53, SQS, SES, Lightsail, DynamoDB, CloudFront) • Serverless fullstack architecture using AWS Team members: Other freelancers and remote contributors Technologies / Python, Selenium, Puppeteer, ClojureScript, Clojure, reagent, MongoDB, Tools Node.js, Meteor 03/2018 - Fullstack-Developer, blink.it GmbH & Co. KG 12/2019 Development of a progressive Meteor web application in a fast paced startup environment. • Built frontend functionality with React (JavaScript, CoffeeScript), Blaze, HTML5, SCSS/CSS • Built backend functionality with Node.js, Python and MongoDB • Worked on performance optimiziation on a large scale multi-tenant reactive application • Developed tools for data migration and automation of internal processes with Python • Developed an internal solution to migrate Pipedrive leads to Hubspot for a large set of leads and past deal flows Team members: 10 Technologies / React, AWS, JavaScript, CoffeeScript, Python, MongoDB, Node.js, Blaze, Tools HTML5, SCSS/CSS, Selenium, SCORM 10/2016 - Software Engineer (working student), blink.it GmbH & Co.
    [Show full text]
  • Smart Grid Serialization Comparison
    Downloaded from orbit.dtu.dk on: Sep 28, 2021 Smart Grid Serialization Comparison Petersen, Bo Søborg; Bindner, Henrik W.; You, Shi; Poulsen, Bjarne Published in: Computing Conference 2017 Link to article, DOI: 10.1109/SAI.2017.8252264 Publication date: 2017 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Petersen, B. S., Bindner, H. W., You, S., & Poulsen, B. (2017). Smart Grid Serialization Comparison. In Computing Conference 2017 (pp. 1339-1346). IEEE. https://doi.org/10.1109/SAI.2017.8252264 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Computing Conference 2017 18-20 July 2017 | London, UK Smart Grid Serialization Comparision Comparision of serialization for distributed control in the context of the Internet of Things Bo Petersen, Henrik Bindner, Shi You Bjarne Poulsen DTU Electrical Engineering DTU Compute Technical University of Denmark Technical University of Denmark Lyngby, Denmark Lyngby, Denmark [email protected], [email protected], [email protected] [email protected] Abstract—Communication between DERs and System to ensure that the control messages are received within a given Operators is required to provide Demand Response and solve timeframe, depending on the needs of the power grid.
    [Show full text]
  • Spindle Documentation Release 2.0.0
    spindle Documentation Release 2.0.0 Jorge Ortiz, Jason Liszka June 08, 2016 Contents 1 Thrift 3 1.1 Data model................................................3 1.2 Interface definition language (IDL)...................................4 1.3 Serialization formats...........................................4 2 Records 5 2.1 Creating a record.............................................5 2.2 Reading/writing records.........................................6 2.3 Record interface methods........................................6 2.4 Other methods..............................................7 2.5 Mutable trait...............................................7 2.6 Raw class.................................................7 2.7 Priming..................................................7 2.8 Proxies..................................................8 2.9 Reflection.................................................8 2.10 Field descriptors.............................................8 3 Custom types 9 3.1 Enhanced types..............................................9 3.2 Bitfields..................................................9 3.3 Type-safe IDs............................................... 10 4 Enums 13 4.1 Enum value methods........................................... 13 4.2 Companion object methods....................................... 13 4.3 Matching and unknown values...................................... 14 4.4 Serializing to string............................................ 14 4.5 Examples................................................. 14 5 Working
    [Show full text]
  • Rdf Repository Replacing Relational Database
    RDF REPOSITORY REPLACING RELATIONAL DATABASE 1B.Srinivasa Rao, 2Dr.G.Appa Rao 1,2Department of CSE, GITAM University Email:[email protected],[email protected] Abstract-- This study is to propose a flexible enable it. One such technology is RDF (Resource information storage mechanism based on the Description Framework)[2]. RDF is a directed, principles of Semantic Web that enables labelled graph for representing information in the information to be searched rather than queried. Web. This can be perceived as a repository In this study, a prototype is developed where without any predefined structure the focus is on the information rather than the The information stored in the traditional structure. Here information is stored in a RDBMS’s requires structure to be defined structure that is constructed on the fly. Entities upfront. On the contrary, information could be in the system are connected and form a graph, very complex to structure upfront despite the similar to the web of data in the Internet. This tremendous potential offered by the existing data is persisted in a peculiar way to optimize database systems. In the ever changing world, querying on this graph of data. All information another important characteristic of information relating to a subject is persisted closely so that in a system that impacts its structure is the reqeusting any information of a subject could be modification/enhancement to the system. This is handled in one call. Also, the information is a big concern with many software systems that maintained in triples so that the entire exist today and there is no tidy approach to deal relationship from subject to object via the with the problem.
    [Show full text]
  • CBOR (RFC 7049) Concise Binary Object Representation
    CBOR (RFC 7049) Concise Binary Object Representation Carsten Bormann, 2015-11-01 1 CBOR: Agenda • What is it, and when might I want it? • How does it work? • How do I work with it? 2 CBOR: Agenda • What is it, and when might I want it? • How does it work? • How do I work with it? 3 Slide stolen from Douglas Crockford History of Data Formats • Ad Hoc • Database Model • Document Model • Programming Language Model Box notation TLV 5 XML XSD 6 Slide stolen from Douglas Crockford JSON • JavaScript Object Notation • Minimal • Textual • Subset of JavaScript Values • Strings • Numbers • Booleans • Objects • Arrays • null Array ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"] [ [0, -1, 0], [1, 0, 0], [0, 0, 1] ] Object { "name": "Jack B. Nimble", "at large": true, "grade": "A", "format": { "type": "rect", "width": 1920, "height": 1080, "interlace": false, "framerate": 24 } } Object Map { "name": "Jack B. Nimble", "at large": true, "grade": "A", "format": { "type": "rect", "width": 1920, "height": 1080, "interlace": false, "framerate": 24 } } JSON limitations • No binary data (byte strings) • Numbers are in decimal, some parsing required • Format requires copying: • Escaping for strings • Base64 for binary • No extensibility (e.g., date format?) • Interoperability issues • I-JSON further reduces functionality (RFC 7493) 12 BSON and friends • Lots of “binary JSON” proposals • Often optimized for data at rest, not protocol use (BSON ➔ MongoDB) • Most are more complex than JSON 13 Why a new binary object format? • Different design goals from current formats – stated up front in the document • Extremely small code size – for work on constrained node networks • Reasonably compact data size – but no compression or even bit-fiddling • Useful to any protocol or application that likes the design goals 14 Concise Binary Object Representation (CBOR) 15 “Sea Boar” “Sea Boar” 16 Design goals (1 of 2) 1.
    [Show full text]
  • JSON JSON (Javascript Object Notation) Ecmascript Javascript
    ECMAScript JSON ECMAScript is standardized JavaScript. The current version is the 12th edition: Péter Jeszenszky Ecma International, ECMAScript 2021 Language Specification, Standard ECMA-262, 12th ed., June 2021. https://www.ecma- international.org/publications-and-standards/standards/ecma-262/ October 8, 2021 The next version currently under development is ECMAScript 2022: ECMAScript 2022 Language Specification https://tc39.es/ecma262/ Péter Jeszenszky JSON October 8, 2021 1 / 94 Péter Jeszenszky JSON October 8, 2021 3 / 94 JSON (JavaScript Object Notation) JavaScript Lightweight, textual, and platform independent data exchange format. Used for representing structured data. The term JavaScript is used for the implementations of ECMAScript by different vendors. Can be read and written easily by humans. See also: JavaScript technologies overview Can be generated and processed easily by computer programs. https://developer.mozilla.org/en- US/docs/Web/JavaScript/JavaScript_technologies_overview Originates from the ECMAScript programming language. Website: https://www.json.org/ Péter Jeszenszky JSON October 8, 2021 2 / 94 Péter Jeszenszky JSON October 8, 2021 4 / 94 JavaScript Engines (1) Node.js (1) SpiderMonkey (written in: C/C++; license: Mozilla Public License 2.0) https://spidermonkey.dev/ A JavaScript runtime environment built on the V8 JavaScript engine The JavaScript engine of the Mozilla Project. that is designed to build scalable network applications. V8 (written in: C++; license: New BSD License) https://v8.dev/ Website: https://nodejs.org/ https://github.com/nodejs/node https://github.com/v8/v8/ License: MIT License The JavaScript engine of Chromium. Written in: C++, JavaScript JavaScriptCore (written in: C++; license: LGPLv2) https://developer.apple.com/documentation/javascriptcore https: Platform: Linux, macOS, Windows //github.com/WebKit/webkit/tree/master/Source/JavaScriptCore The JavaScript engine developed for the WebKit rendering engine.
    [Show full text]
  • E-Commerce Application Using MERN Stack
    Quang Nhat Mai E-commerce Application using MERN stack Metropolia University of Applied Sciences Bachelor of Engineering Information Technology Bachelor’s Thesis 30 August 2018 Abstract Author Quang Nhat Mai Title E-commerce Application using MERN stack Number of Pages 36 pages + x appendices Date 30 August 2020 Degree Bachelor of Engineering Degree Programme Information Technology Professional Major Software Engineering Instructors Janne Salonen This thesis is about studying the basic components of MERN Stack technology such as: MongoDB, ExpressJS framework, ReactJS library, and NodeJS platform. Discussing the basic functions of an e-commerce web application such as sign up, sign in, showing dash- boards, displaying store categories and products Using MERN Stack technology in conjunc- tion with Braintree to build a web application to search for product stores and payment gate- way. Develop administrative functions for the website such as: user management, store management, statistics, and reports. Since then, this topic is declared to research and create an online product search website so that small grocery stores and groceries can post and manage their products right on the website. website system and branding. At the same time, the store can link to its own website (if any). For customers, they can quickly search for urgent products from their nearby stores. Based on the search results, customers can directly contact the store owner to discuss more about the product they are looking for. Keywords Contents List of Abbreviations 1 Introduction
    [Show full text]
  • Fat-Free Framework 1.4.1 Quick Reference Akismet Auth Data
    Akismet Data An API wrapper that you can use during input validation to Input data handlers and validators. determine if a blog comment, trackback, or pingback contains spam. This plug-in requires a key from akismet.com. input( string fields, mixed handler, [ string tags ],[ integer filter ], [ array options ] ); check( string text, string author, string email, string url ); Assign handler to HTML form fields for validation and Submit content (usually a blog comment) to akismet.com. manipulation. handler may be an anonymous or named function, Returns TRUE if the content is determined as spam. a single or daisy-chained string of named functions similar to the route() method. This command passes two arguments to handler ham( string text, string author, string email, string url ); function: value and field name. HTML and PHP tags are stripped Report content as a false positive. If the argument tags is not specified. PHP validation/sanitize filters, filter flags, and options may be passed as additional spam( string text, string author, string email, string url ); Quick Reference Quick Reference arguments. See the PHP filter_var() function for more details on Report content that was not marked as spam. filter types. verify( string key ); scrub( mixed value, [ string tags ] ); Secure approval from akismet.com to use the public API for Remove all HTML tags to protect against XSS/SQL injection spam checking. A valid key is required to use the API. Returns attacks. tags , if specified, will be preserved. If value is an array, TRUE if authentication succeeds. 1.4.1 1.4.1 HTML tags in all string elements will be scrubbed.
    [Show full text]
  • Stupeflask Documentation
    Stupeflask Documentation Numberly Jan 20, 2020 Contents 1 Install 3 2 Comparison 5 3 Tests 7 4 License 9 5 Documentation 11 5.1 Better application defaults........................................ 11 5.2 Easier collection of configuration values................................. 13 5.3 Native ObjectId support......................................... 13 5.4 API Reference.............................................. 14 5.5 Cursor support.............................................. 18 6 Indices and tables 19 Python Module Index 21 Index 23 i ii Stupeflask Documentation a.k.a. « Flask on steroids » An opinionated Flask extension designed by and for web developers to reduce boilerplate code when working with Marshmallow, MongoDB and/or JSON. Documentation: https://flask-stupe.readthedocs.io • Return any object type in views, and it will be coerced to a flask.Response • Validate payloads through Marshmallow schemas • Easily add JSON converters for any custom type • Fetch all the blueprints from a whole module in one line • Native ObjectId support for both Flask and Marshmallow • Powerful configuration management • Decorators to handle authentication, permissions, and pagination • 100% coverage and no dependency Contents 1 Stupeflask Documentation 2 Contents CHAPTER 1 Install $ pip install flask-stupe 3 Stupeflask Documentation 4 Chapter 1. Install CHAPTER 2 Comparison Here is a comparison of a bare Flask application and its equivalent Stupeflask version. They both rely on MongoDB, handle input and output in JSON, and allow to create a user and retrieve
    [Show full text]
  • Advanced JSON Handling in Go 19:40 05 Mar 2020 Jonathan Hall Devops Evangelist / Go Developer / Clean Coder / Salsa Dancer About Me
    Advanced JSON handling in Go 19:40 05 Mar 2020 Jonathan Hall DevOps Evangelist / Go Developer / Clean Coder / Salsa Dancer About me Open Source contributor; CouchDB PMC, author of Kivik Core Tech Lead for Lana Former eCommerce Dev Manager at Bugaboo Former backend developer at Teamwork.com Former backend developer at Booking.com Former tech lead at eFolder/DoubleCheck 2 Show of hands Who has... ...used JSON in a Go program? ...been frustrated by Go's strict typing when dealing with JSON? ...felt limited by Go's standard JSON handling? What have been your biggest frustrations? 3 Today's Topics Very brief intro to JSON in Go Basic use of maps and structs Handling inputs of unknown type Handling data with some unknown fields 4 A brief intro to JSON JavaScript Object Notation, defined by RFC 8259 Human-readable, textual representation of arbitrary data Limted types: null, Number, String, Boolean, Array, Object Broad applications: Config files, data interchange, simple messaging 5 Alternatives to JSON YAML, TOML, INI BSON, MessagePack, CBOR, Smile XML ProtoBuf Custom/proprietary formats Many principles discussed in this presentation apply to any of the above formats. 6 Marshaling JSON Creating JSON from a Go object is (usually) very straight forward: func main() { x := map[string]string{ "foo": "bar", } data, _ := json.Marshal(x) fmt.Println(string(data)) } Run 7 Marshaling JSON, #2 Creating JSON from a Go object is (usually) very straight forward: func main() { type person struct { Name string `json:"name"` Age int `json:"age"` Description string `json:"descr,omitempty"` secret string // Unexported fields are never (un)marshaled } x := person{ Name: "Bob", Age: 32, secret: "Shhh!", } data, _ := json.Marshal(x) fmt.Println(string(data)) } Run 8 Unmarshaling JSON Unmarshaling JSON is often a bit trickier.
    [Show full text]
  • Open Source Used in Cisco DNA Center Release 1.3.X
    Open Source Used In Cisco DNA Center NXP 1.3.1.0 Cisco Systems, Inc. www.cisco.com Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco website at www.cisco.com/go/offices. Text Part Number: 78EE117C99-201847078 Open Source Used In Cisco DNA Center 1.3.1.0 1 This document contains licenses and notices for open source software used in this product. With respect to the free/open source software listed in this document, if you have any questions or wish to receive a copy of any source code to which you may be entitled under the applicable free/open source license(s) (such as the GNU Lesser/General Public License), please contact us at [email protected]. In your requests please include the following reference number 78EE117C99-201847078 Contents 1.1 1to2 1.0.0 1.1.1 Available under license 1.2 @amcharts/amcharts3-react 2.0.7 1.2.1 Available under license 1.3 @babel/code-frame 7.0.0 1.3.1 Available under license 1.4 @babel/highlight 7.0.0 1.4.1 Available under license 1.5 @babel/runtime 7.3.4 1.5.1 Available under license 1.6 @mapbox/geojson-types 1.0.2 1.6.1 Available under license 1.7 @mapbox/mapbox-gl-style-spec 13.3.0 1.7.1 Available under license 1.8 @mapbox/mapbox-gl-supported 1.4.0 1.8.1 Available under license 1.9 @mapbox/whoots-js 3.1.0 1.9.1 Available under license 1.10 abab 2.0.0 1.10.1 Available under license 1.11 abbrev 1.1.1 1.11.1 Available under license 1.12 abbrev 1.1.0 1.12.1 Available under license 1.13 absurd 0.3.9 1.13.1 Available under license
    [Show full text]