Apolipoprotein E (APOE) Genotyping, Alzheimer Disease Risk

Total Page:16

File Type:pdf, Size:1020Kb

Apolipoprotein E (APOE) Genotyping, Alzheimer Disease Risk Apolipoprotein E (APOE) Genotyping, Alzheimer Disease Risk Incidence of AD Indications for Ordering • 65-74 years – 1/500 • Supports a clinical diagnosis of Alzheimer disease (AD) in • 75-84 years – 1/76 symptomatic individuals • ≥85 years – 1/25 • NOT recommended for predicting risk for AD in APOE allele frequencies asymptomatic individuals • e2 – 10% • NOT performed on individuals <18 years or on fetal • e3 – 75% specimens • e4 – 15% 30-60% of individuals with AD have at least one e4 allele Test Description o o e4/e4 is found in Polymerase chain reaction and fluorescence monitoring using . ~13% of AD population hybridization probes for APOE gene . 20% of familial AD population • Variants tested . 1-2% of general population o c.388T>C (rs429358, p.Cys130Arg) Age of onset – typically >65 years c.526C>T (rs7412, p.Arg176Cys) o Symptoms • Alleles • Cognitive decline o e2 allele (cysteine at codons 130 and 176) o Progressive memory loss o e3 allele (cysteine at codon 130, arginine at codon 176) o Confusion and disorientation o e4 allele (arginine at codons 130 and 176) o Personality changes Tests to Consider o Problems with executive function • Neurological findings Primary test o Seizures APOE Apolipoprotein E ( ) Genotyping, Alzheimer Disease Risk o Parkinsonism 2013341 o Psychiatric disturbance • Determines APOE genotype in context of evaluation for • Progression of symptoms can last 8-25 years AD • Death typically occurs due to malnutrition, pneumonia, or • See 2013337 below for cardiovascular risk assessment secondary infections • Genetic counseling and informed consent are strongly Diagnostic issues recommended prior to ordering and posttest to discuss results • Diagnosing AD in symptomatic individuals o Probable diagnosis of AD can be made based on Related test combination of clinical findings, neuroimaging, and Apolipoprotein E (APOE) Genotyping, Cardiovascular Risk exclusion of other causes of dementia 2013337 . An antemortem diagnosis of AD is correct 80-90% of • Provides supporting evidence for a diagnosis of type III the time hyperlipoproteinemia for evaluation of premature . Presence of e4/e4 APOE genotype increases diagnostic coronary heart disease certainty to ~97% • Use for cardiovascular disease risk assessment only o Diagnosis is confirmed postmortem by neuropathologic examination Disease Overview o APOE genotyping can be used to support the clinical Prevalence of AD diagnosis of AD in symptomatic individuals if one or • ≥65 years – 1/9 more e4 alleles are present, but e4 is neither necessary nor sufficient to diagnose AD • ≥85 years – 1/3 OCTOBER 2016 | © 2016 ARUP LABORATORIES | ARUP is a nonprofit enterprise of the University of Utah and its Department of Pathology. 500 Chipeta Way, Salt Lake City, UT 84108 | (800) 522-2787 | (801) 583-2787 | www.aruplab.com | www.arupconsult.com • Predicting AD risk in asymptomatic individuals Test Interpretation o APOE genotyping is not recommended for predictive testing in asymptomatic individuals due to Sensitivity/specificity . Low sensitivity and specificity • Analytical sensitivity/specificity – 99% . Lack of preventive options Results . Difficulty quantifying individual risk • APOE e2/e2 AD risk is multifactorial o o Not associated with increased risk for AD, but has been . Determined by multiple genes, age, gender, ethnicity, associated with increased risk for type III family history, and environment hyperlipoproteinemia o In rare cases of early onset familial AD, presymptomatic • APOE e3/e3 and e2/e3 testing is possible if the familial variant is known o Not associated with increased risk for AD, but does not . APP, PSEN1, and PSEN2 genes, which are associated exclude a diagnosis of AD with early onset AD, are not included in this test • APOE e4/e4 Pathophysiology o Adds substantial support to a clinical diagnosis of AD in symptomatic individuals Etiology of AD is largely unknown • APOE e2/e4 and e3/e4 • Symptoms are thought to be caused by abnormal Adds support to a clinical diagnosis of AD in accumulation of beta-amyloid plaques and neurofibrillary o symptomatic individuals tangles of tau protein in the brain that cause neuronal damage and death Limitations • Presence of one or more APOE e4 alleles is considered a Genetics risk factor but is not diagnostic for AD APOE Gene – APOE o e4 is neither necessary nor sufficient to diagnose AD Inheritance of AD – multifactorial • Other APOE alleles and variants in other genes associated Inheritance of APOE e4 – semidominant with AD are not analyzed • Diagnostic errors can occur due to rare sequence Penetrance – incomplete and age dependent variations Variants • APOE e2 References o Associated with decreased risk for AD • Alzheimer’s Association. 2015 Alzheimer’s disease facts • APOE e3 and figures (www.alz.org/facts/) o Most common APOE allele in the general population • Bird TD. Alzheimer Disease Overview. 1998 Oct 23 • APOE e4 [Updated 2015 Sept 24]. In: Pagon RA, Adam MP, Ardinger o Associated with increased risk for AD HH, et al., editors. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2016 (www.ncbi.nlm.nih.gov/books/NBK1161/) OCTOBER 2016 | © 2016 ARUP LABORATORIES .
Recommended publications
  • Plasma Phospholipid Transfer Protein (PLTP) Modulates Adaptive Immune Functions Through Alternation of T Helper Cell Polarization
    Cellular & Molecular Immunology (2016) 13, 795–804 OPEN ß 2016 CSI and USTC. All rights reserved 1672-7681/16 $32.00 www.nature.com/cmi RESEARCH ARTICLE Plasma phospholipid transfer protein (PLTP) modulates adaptive immune functions through alternation of T helper cell polarization Catherine Desrumaux1,2,3, Ste´phanie Lemaire-Ewing1,2,3,4, Nicolas Ogier1,2,3, Akadiri Yessoufou1,2,3, Arlette Hammann1,3,4, Anabelle Sequeira-Le Grand2,5, Vale´rie Deckert1,2,3, Jean-Paul Pais de Barros1,2,3, Naı¨g Le Guern1,2,3, Julien Guy4, Naim A Khan1,2,3 and Laurent Lagrost1,2,3,4 Objective: Plasma phospholipid transfer protein (PLTP) is a key determinant of lipoprotein metabolism, and both animal and human studies converge to indicate that PLTP promotes atherogenesis and its thromboembolic complications. Moreover, it has recently been reported that PLTP modulates inflammation and immune responses. Although earlier studies from our group demonstrated that PLTP can modify macrophage activation, the implication of PLTP in the modulation of T-cell-mediated immune responses has never been investigated and was therefore addressed in the present study. Approach and results: In the present study, we demonstrated that PLTP deficiency in mice has a profound effect on CD41 Th0 cell polarization, with a shift towards the anti-inflammatory Th2 phenotype under both normal and pathological conditions. In a model of contact hypersensitivity, a significantly impaired response to skin sensitization with the hapten-2,4-dinitrofluorobenzene (DNFB) was observed in PLTP-deficient mice compared to wild-type (WT) mice. Interestingly, PLTP deficiency in mice exerted no effect on the counts of total white blood cells, lymphocytes, granulocytes, or monocytes in the peripheral blood.
    [Show full text]
  • The Crucial Roles of Apolipoproteins E and C-III in Apob Lipoprotein Metabolism in Normolipidemia and Hypertriglyceridemia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Sacks, Frank M. 2015. “The Crucial Roles of Apolipoproteins E and C-III in apoB Lipoprotein Metabolism in Normolipidemia and Hypertriglyceridemia.” Current Opinion in Lipidology 26 (1) (February): 56–63. doi:10.1097/mol.0000000000000146. Published Version doi:10.1097/MOL.0000000000000146 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:30203554 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP HHS Public Access Author manuscript Author Manuscript Author ManuscriptCurr Opin Author Manuscript Lipidol. Author Author Manuscript manuscript; available in PMC 2016 February 01. Published in final edited form as: Curr Opin Lipidol. 2015 February ; 26(1): 56–63. doi:10.1097/MOL.0000000000000146. The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia Frank M. Sacks Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA Abstract Purpose of review—To describe the roles of apolipoprotein C-III (apoC-III) and apoE in VLDL and LDL metabolism Recent findings—ApoC-III can block clearance from the circulation of apolipoprotein B (apoB) lipoproteins, whereas apoE mediates their clearance.
    [Show full text]
  • Lrp1 Modulators
    Last updated on February 14, 2021 Cognitive Vitality Reports® are reports written by neuroscientists at the Alzheimer’s Drug Discovery Foundation (ADDF). These scientific reports include analysis of drugs, drugs-in- development, drug targets, supplements, nutraceuticals, food/drink, non-pharmacologic interventions, and risk factors. Neuroscientists evaluate the potential benefit (or harm) for brain health, as well as for age-related health concerns that can affect brain health (e.g., cardiovascular diseases, cancers, diabetes/metabolic syndrome). In addition, these reports include evaluation of safety data, from clinical trials if available, and from preclinical models. Lrp1 Modulators Evidence Summary Lrp1 has a variety of essential functions, mediated by a diverse array of ligands. Therapeutics will need to target specific interactions. Neuroprotective Benefit: Lrp1-mediated interactions promote Aβ clearance, Aβ generation, tau propagation, brain glucose utilization, and brain lipid homeostasis. The therapeutic effect will depend on the interaction targeted. Aging and related health concerns: Lrp1 plays mixed roles in cardiovascular diseases and cancer, dependent on context. Lrp1 is dysregulated in metabolic disease, which may contribute to insulin resistance. Safety: Broad-spectrum Lrp1 modulators are untenable therapeutics due to the high potential for extensive side effects. Therapies that target a specific Lrp1-ligand interaction are expected to have a better therapeutic profile. 1 Last updated on February 14, 2021 Availability: Research use Dose: N/A Chemical formula: N/A S16 is in clinical trials MW: N/A Half life: N/A BBB: Angiopep is a peptide that facilitates BBB penetrance by interacting with Lrp1 Clinical trials: S16, an Lrp1 Observational studies: sLrp1 levels are agonist was tested in healthy altered in Alzheimer’s disease, volunteers (n=10) in a Phase 1 cardiovascular disease, and metabolic study.
    [Show full text]
  • Apolipoprotein A4 Gene (APOA4) (Chromosome 11/Haplotypes/Intron Loss/Coronary Artery Disease/Apoal-APOC3 Deficiency) Sotirios K
    Proc. Natl. Acad. Sci. USA Vol. 83, pp. 8457-8461, November 1986 Biochemistry Structure, evolution, and polymorphisms of the human apolipoprotein A4 gene (APOA4) (chromosome 11/haplotypes/intron loss/coronary artery disease/APOAl-APOC3 deficiency) SOTIRios K. KARATHANASIS*t, PETER OETTGEN*t, ISSAM A. HADDAD*t, AND STYLIANOS E. ANTONARAKISt *Laboratory of Molecular and Cellular Cardiology, Department of Cardiology, Children's Hospital and tDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115; and tDepartment of Pediatrics, Genetics Unit, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205 Communicated by Donald S. Fredrickson, July 11, 1986 ABSTRACT The genes coding for three proteins of the APOC3 deficiency and premature coronary artery disease plasma lipid transport system-apolipoproteins Al (APOAI), (13-15), hypertriglyceridemia (16), and hypoalphalipopro- C3 (APOC3), and A4 (APOA4)-are closely linked and teinemia (17). tandemly organized on the long arm ofhuman chromosome 11. In this report the nucleotide sequence of the human In this study the human APOA4 gene has been isolated and APOA4 gene has been determined. The results suggest that characterized. In contrast to APOAl and APOC3 genes, which the APOAI, APOC3, and APOA4 genes were derived from a contain three introns, the APOA4 gene contains only two. An common evolutionary ancestor and indicate that during intron interrupting the 5' noncoding region of the APOA1 and evolution the APOA4 gene lost one of its ancestral introns. APOC3 mRNAs is absent from the corresponding position of Screening of the APOA4 gene region for polymorphisms the APOA4 mRNA. However, similar to APOAI and APOC3 showed that two different Xba I restriction endonuclease genes, the introns of the APOA4 gene separate nucleotide sites are polymorphic in Mediterranean and Northern Euro- sequences coding for the signal peptide and the amphipathic pean populations.
    [Show full text]
  • Common Genetic Variations Involved in the Inter-Individual Variability Of
    nutrients Review Common Genetic Variations Involved in the Inter-Individual Variability of Circulating Cholesterol Concentrations in Response to Diets: A Narrative Review of Recent Evidence Mohammad M. H. Abdullah 1 , Itzel Vazquez-Vidal 2, David J. Baer 3, James D. House 4 , Peter J. H. Jones 5 and Charles Desmarchelier 6,* 1 Department of Food Science and Nutrition, Kuwait University, Kuwait City 10002, Kuwait; [email protected] 2 Richardson Centre for Functional Foods & Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 6C5, Canada; [email protected] 3 United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; [email protected] 4 Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; [email protected] 5 Nutritional Fundamentals for Health, Vaudreuil-Dorion, QC J7V 5V5, Canada; [email protected] 6 Aix Marseille University, INRAE, INSERM, C2VN, 13005 Marseille, France * Correspondence: [email protected] Abstract: The number of nutrigenetic studies dedicated to the identification of single nucleotide Citation: Abdullah, M.M.H.; polymorphisms (SNPs) modulating blood lipid profiles in response to dietary interventions has Vazquez-Vidal, I.; Baer, D.J.; House, increased considerably over the last decade. However, the robustness of the evidence-based sci- J.D.; Jones, P.J.H.; Desmarchelier, C. ence supporting the area remains to be evaluated. The objective of this review was to present Common Genetic Variations Involved recent findings concerning the effects of interactions between SNPs in genes involved in cholesterol in the Inter-Individual Variability of metabolism and transport, and dietary intakes or interventions on circulating cholesterol concen- Circulating Cholesterol trations, which are causally involved in cardiovascular diseases and established biomarkers of Concentrations in Response to Diets: cardiovascular health.
    [Show full text]
  • Apoa4 Antibody Cat
    ApoA4 Antibody Cat. No.: 6269 Western blot analysis of ApoA4 in chicken small intestine tissue lysate with ApoA4 antibody at 1 μg/mL Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Chicken, Human ApoA4 antibody was raised against a 20 amino acid synthetic peptide near the carboxy terminus of chicken ApoA4. IMMUNOGEN: The immunogen is located within the last 50 amino acids of ApoA4. TESTED APPLICATIONS: ELISA, WB ApoA4 antibody can be used for detection of ApoA4 by Western blot at 1 μg/mL. APPLICATIONS: Antibody validated: Western Blot in chicken samples. All other applications and species not yet tested. POSITIVE CONTROL: 1) Chicken Small Intestine Lysate Properties PURIFICATION: ApoA4 Antibody is affinity chromatography purified via peptide column. CLONALITY: Polyclonal ISOTYPE: IgG September 24, 2021 1 https://www.prosci-inc.com/apoa4-antibody-6269.html CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: ApoA4 Antibody is supplied in PBS containing 0.02% sodium azide. CONCENTRATION: 1 mg/mL ApoA4 antibody can be stored at 4˚C for three months and -20˚C, stable for up to one STORAGE CONDITIONS: year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: APOA4 ALTERNATE NAMES: ApoA4 Antibody: Apolipoprotein A-IV, Apolipoprotein A4, Apo-AIV ACCESSION NO.: NP_990269 PROTEIN GI NO.: 71773110 GENE ID: 337 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References ApoA4 Antibody: Apolipoprotein A4 (also known as ApoA-IV) is a plasma protein that is O- linked glycoprotein after proteolytic processing.
    [Show full text]
  • Apoe Lipidation As a Therapeutic Target in Alzheimer's Disease
    International Journal of Molecular Sciences Review ApoE Lipidation as a Therapeutic Target in Alzheimer’s Disease Maria Fe Lanfranco, Christi Anne Ng and G. William Rebeck * Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA; [email protected] (M.F.L.); [email protected] (C.A.N.) * Correspondence: [email protected]; Tel.: +1-202-687-1534 Received: 6 August 2020; Accepted: 30 August 2020; Published: 1 September 2020 Abstract: Apolipoprotein E (APOE) is the major cholesterol carrier in the brain, affecting various normal cellular processes including neuronal growth, repair and remodeling of membranes, synaptogenesis, clearance and degradation of amyloid β (Aβ) and neuroinflammation. In humans, the APOE gene has three common allelic variants, termed E2, E3, and E4. APOE4 is considered the strongest genetic risk factor for Alzheimer’s disease (AD), whereas APOE2 is neuroprotective. To perform its normal functions, apoE must be secreted and properly lipidated, a process influenced by the structural differences associated with apoE isoforms. Here we highlight the importance of lipidated apoE as well as the APOE-lipidation targeted therapeutic approaches that have the potential to correct or prevent neurodegeneration. Many of these approaches have been validated using diverse cellular and animal models. Overall, there is great potential to improve the lipidated state of apoE with the goal of ameliorating APOE-associated central nervous system impairments. Keywords: apolipoprotein E; cholesterol; lipid homeostasis; neurodegeneration 1. Scope of This Review In this review, we will first consider the role of apolipoprotein E (apoE) in lipid homeostasis in the central nervous system (CNS).
    [Show full text]
  • Additive Effects of LPL, APOA5 and APOE Variant Combinations On
    Ariza et al. BMC Medical Genetics 2010, 11:66 http://www.biomedcentral.com/1471-2350/11/66 RESEARCH ARTICLE Open Access AdditiveResearch article effects of LPL, APOA5 and APOE variant combinations on triglyceride levels and hypertriglyceridemia: results of the ICARIA genetic sub-study María-José Ariza*1, Miguel-Ángel Sánchez-Chaparro1,2,3, Francisco-Javier Barón4, Ana-María Hornos2, Eva Calvo- Bonacho2, José Rioja1, Pedro Valdivielso1,3, José-Antonio Gelpi2 and Pedro González-Santos1,3 Abstract Background: Hypertriglyceridemia (HTG) is a well-established independent risk factor for cardiovascular disease and the influence of several genetic variants in genes related with triglyceride (TG) metabolism has been described, including LPL, APOA5 and APOE. The combined analysis of these polymorphisms could produce clinically meaningful complementary information. Methods: A subgroup of the ICARIA study comprising 1825 Spanish subjects (80% men, mean age 36 years) was genotyped for the LPL-HindIII (rs320), S447X (rs328), D9N (rs1801177) and N291S (rs268) polymorphisms, the APOA5- S19W (rs3135506) and -1131T/C (rs662799) variants, and the APOE polymorphism (rs429358; rs7412) using PCR and restriction analysis and TaqMan assays. We used regression analyses to examine their combined effects on TG levels (with the log-transformed variable) and the association of variant combinations with TG levels and hypertriglyceridemia (TG ≥ 1.69 mmol/L), including the covariates: gender, age, waist circumference, blood glucose, blood pressure, smoking and alcohol consumption. Results: We found a significant lowering effect of the LPL-HindIII and S447X polymorphisms (p < 0.0001). In addition, the D9N, N291S, S19W and -1131T/C variants and the APOE-ε4 allele were significantly associated with an independent additive TG-raising effect (p < 0.05, p < 0.01, p < 0.001, p < 0.0001 and p < 0.001, respectively).
    [Show full text]
  • Apolipoprotein B: a Risk-Enhancing Factor in the Primary Prevention of Cardiovascular Disease
    Apolipoprotein B: a Risk-enhancing Factor in the Primary Prevention of Cardiovascular Disease The American College of Cardiologists and the American Heart • elevated high-sensitivity C-reactive Protein (≥ 2.0 mg/L); Association recently issued an updated guideline to help address • elevated Lipoprotein(a) – ≥ 50 mg/dL constitutes risk-enhancing the primary prevention of cardiovascular disease at population and factor; relative indication for measurement is family history of individual patient levels. This 2019 guideline combines existing premature ASCVD; scientific statements, expert consensus, and clinical practice guidelines • elevated Apolipoprotein B (≥ 130 mg/dL constitutes risk- and adds new recommendations for physical activity, aspirin use, enhancing factor; relative indication for measurement is and tobacco use. Suggestions for team-based care, shared decision triglyceride ≥ 200 mg/dL (≥ 130 mg/dL corresponds to LDL-C > making, and assessment of social determinants of health round out a 160 mg/dL). comprehensive but focused approach to primary prevention.1 The role of low-density lipoprotein (LDL) particles has been To enhance clinician-patient discussions and help inform prevention documented to elevate patient risk for ASCVD and is well known in strategies, the guideline advocates, among other things, estimating the development and progression of ASCVD.3 As stated in the Journal an individual’s 10-year risk for atherosclerotic cardiovascular disease of Family Medicine, LDL particles move into the arterial wall via a (ASCVD) to1: gradient-driven process. Once inside the intima, LDL particles that bind to the arterial wall are oxidized and subsequently taken up by • match the intensity of interventions with patient’s risk, macrophages to form foam cells.3 The greater the circulating levels • maximize the expected benefit, and of LDL over time, the greater the acceleration of this process and the • minimize possible harm from overtreatment.
    [Show full text]
  • Apolipoprotein and LRP1-Based Peptides As New Therapeutic Tools in Atherosclerosis
    Journal of Clinical Medicine Review Apolipoprotein and LRP1-Based Peptides as New Therapeutic Tools in Atherosclerosis Aleyda Benitez Amaro 1,2, Angels Solanelles Curco 2, Eduardo Garcia 1,2, Josep Julve 3,4 , Jose Rives 5,6, Sonia Benitez 7,* and Vicenta Llorente Cortes 1,2,8,* 1 Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; [email protected] (A.B.A.); [email protected] (E.G.) 2 Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; [email protected] 3 Metabolic Basis of Cardiovascular Risk Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; [email protected] 4 CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain 5 Biochemistry Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; [email protected] 6 Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08016 Barcelona, Spain 7 Cardiovascular Biochemistry Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain 8 CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain * Correspondence: [email protected] (S.B.); [email protected] or [email protected] (V.L.C.) Abstract: Apolipoprotein (Apo)-based mimetic peptides have been shown to reduce atherosclerosis. Most of the ApoC-II and ApoE mimetics exert anti-atherosclerotic effects by improving lipid profile. ApoC-II mimetics reverse hypertriglyceridemia and ApoE-based peptides such as Ac-hE18A-NH2 Citation: Benitez Amaro, A.; reduce cholesterol and triglyceride (TG) levels in humans.
    [Show full text]
  • Apolipoprotein A-IV: a Multifunctional Protein Involved in Protection Against Atherosclerosis and Diabetes
    cells Review Apolipoprotein A-IV: A Multifunctional Protein Involved in Protection against Atherosclerosis and Diabetes Jie Qu 1, Chih-Wei Ko 1, Patrick Tso 1 and Aditi Bhargava 2,* 1 Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA; [email protected] (J.Q.); [email protected] (C.-W.K.); [email protected] (P.T.) 2 Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA * Correspondence: [email protected]; Tel.: +1-415-502-8453 Received: 9 March 2019; Accepted: 2 April 2019; Published: 5 April 2019 Abstract: Apolipoprotein A-IV (apoA-IV) is a lipid-binding protein, which is primarily synthesized in the small intestine, packaged into chylomicrons, and secreted into intestinal lymph during fat absorption. In the circulation, apoA-IV is present on chylomicron remnants, high-density lipoproteins, and also in lipid-free form. ApoA-IV is involved in a myriad of physiological processes such as lipid absorption and metabolism, anti-atherosclerosis, platelet aggregation and thrombosis, glucose homeostasis, and food intake. ApoA-IV deficiency is associated with atherosclerosis and diabetes, which renders it as a potential therapeutic target for treatment of these diseases. While much has been learned about the physiological functions of apoA-IV using rodent models, the action of apoA-IV at the cellular and molecular levels is less understood, let alone apoA-IV-interacting partners. In this review, we will summarize the findings on the molecular function of apoA-IV and apoA-IV-interacting proteins.
    [Show full text]
  • Genetic Association of APOA5 and APOE with Metabolic Syndrome And
    Son et al. Lipids in Health and Disease (2015) 14:105 DOI 10.1186/s12944-015-0111-5 RESEARCH Open Access Genetic association of APOA5 and APOE with metabolic syndrome and their interaction with health-related behavior in Korean men Ki Young Son1,6†, Ho-Young Son2†, Jeesoo Chae3, Jinha Hwang3, SeSong Jang3, Jae Moon Yun1,6, BeLong Cho1,6, Jin Ho Park1,6* and Jong-Il Kim2,3,4,5* Abstract Background: Genome-wide association studies have been used extensively to identify genetic variants linked to metabolic syndrome (MetS), but most of them have been conducted in non-Asian populations. This study aimed to evaluate the association between MetS and previously studied single nucleotide polymorphisms (SNPs), and their interaction with health-related behavior in Korean men. Methods: Seventeen SNPs were genotyped and their association with MetS and its components was tested in 1193 men who enrolled in the study at Seoul National University Hospital. Results: We found that rs662799 near APOA5 and rs769450 in APOE had significant association with MetS and its components. The SNP rs662799 was associated with increased risk of MetS, elevated triglyceride (TG) and low levels of high-density lipoprotein, while rs769450 was associated with a decreased risk of TG. The SNPs showed interactions between alcohol drinking and physical activity, and TG levels in Korean men. Conclusions: We have identified the genetic association and environmental interaction for MetS in Korean men. These results suggest that a strategy of prevention and treatment should be tailored to personal genotype and the population. Keywords: APOA5, APOE, Health behavior, Metabolic syndrome, Triglyceride Background MetS is caused by multiple genetic and environmental According to a World Health Organization report, car- risk factors, and an interaction between the factors has diovascular diseases were the cause of 30 % of all deaths been widely postulated.
    [Show full text]