Exoskeleton, Distribution, and Movement of the Flexible Setules on the Myodocopine (Ostracoda: Myodocopa) First Antenna

Total Page:16

File Type:pdf, Size:1020Kb

Exoskeleton, Distribution, and Movement of the Flexible Setules on the Myodocopine (Ostracoda: Myodocopa) First Antenna EXOSKELETON, DISTRIBUTION, AND MOVEMENT OF THE FLEXIBLE SETULES ON THE MYODOCOPINE (OSTRACODA: MYODOCOPA) FIRST ANTENNA Andrew R. Parker ABSTRACT The halophore, halothalium, and s-seta are termed herein and occur on the myodocopine first an- tenna, probably the most systematically significant myodocopine appendage. The morphology of Downloaded from https://academic.oup.com/jcb/article/18/1/95/2418948 by guest on 29 September 2021 the exoskeleton and distribution of these structures are described, following scanning electron and light microscopic analyses and literature comparisons. The movements of these and other myo- docopine first antennal structures are studied, using video recordings of an exemplary species. Halo- phores are setules with a characteristic exoskeletal ultrastructure comprising a layer of very fine rings, with walls approximately circular in cross section, covered by an outer, probably elastic, layer or sheath. There is a single pore at the halophore tip. This organization permits great flexi- bility. If dendrites innervate halophores, the flexibility may aid in sampling for water-borne chem- icals or mechanoreception. The s-seta (formerly the sensory seta) is a seta arising from the fifth ar- ticle of the myodocopine first antenna that frequently possesses numerous long halophores. The s- seta is always and only present in the Myodocopina. The collective halophores distributed over the whole of one first antenna are termed the halothalium. Analogies of the structures described in this study are made with other crustacean structures. The ostracod suborder Myodocopina, of at least some of the first antennal setae was within the order Myodocopida, comprises five believed to be tactile (Vannier and Abe, 1993). extant families; Cypridinidae, Cylindrole- In addition, the function of the seta arising berididae, Philomedidae, Rutidermatidae, and from the fifth article has long been designated Sarsiellidae (Kornicker, 1975). Myodoco- as sensory (e.g., Skogsberg, 1920; Sars, 1922). pines occur in marine or brackish environ- However, no such evidence has been pre- ments world-wide at all depths (Cohen, sented to substantiate these sensory claims. 1982). Most (including juveniles) can swim, Presumably, based on morphological simi- but are benthic or epibenthic (only 3-6 of the larities, original assumptions were made from 26 described cypridinid genera are wholly or comparisons with homologous or convergent mostly planktonic) for much of their lives structures in other crustacean taxa. Poulsen (Cohen, 1982). They all exhibit sexual di- (1962) followed the terminology for myo- morphism (Cohen and Morin, 1990). They docopine limbs as established by previous are "filter-feeders" (Kornicker, 1975), or more myodocopine workers, but remained uncon- accurately comb-feeders, because they typi- vinced of the implication about their function. cally operate at low Reynolds numbers (Co- hen, 1989), scavengers, active predators, "col- Morphology of the Myodocopine First An- lectors" (collect detritus from the sediment; tenna.-The myodocopine first antenna con- Walker, 1972), detritus feeders (Cannon, sists of eight articles (some occasionally 1933; Kornicker, 1975), or parasites (Bennett fused). The more proximal articles bear var- et al., 1997). The first antenna is probably the ious (often short) setae, and three of the four most significant appendage in myodocopine distal articles (namely 5, 7, and 8) bear about systematics. seven relatively long setae. It is these longer setae that project through the anterior end of Previous Terminology.-The first antenna the open carapace and probably reach out be- (antennule) of Myodocopina includes about yond the boundary layer of flow (ostracods seven long terminal and subterminal setae of typically operate only at low Reynolds num- previously unconfirmed function (Fig. 1 ). The bers; see Koehl and Strickler, 1981). These first antenna of vargula hilgendorfzi Poulsen setae are historically termed: the sensory seta (Cypridinidae) extended when the animal was (arising from the fifth article); the a- (usu- resting on the substrate. Thus, the function ally short), b- (usually mid-long) and c-setae Downloaded from https://academic.oup.com/jcb/article/18/1/95/2418948 by guest on 29 September 2021 Fig. I. Azygocypridina lowryi, adult female, left first antenna, medial view (eighth article not in view). New termi- nology (for explanation see discussion section) is used in the labeling; traditional terminology of s-seta is within parentheses. (from the seventh article); and the d-, e-, f-, and glion to the muscles, but other antennulary g-setae (from the eighth article) (Fig. 1). Some nerve fibers terminate in cells in the postero- setae are missing in a few myodocopine taxa. medial corner of the ganglion. From here, Most are annulate, and may bear spines, se- other fibers extend to the distal end of the tules, or "suckers" (the last in males only). The ganglion, passing out as a bundle running to sensory seta of the fifth article usually appears the tip of the limb. Between these two bun- morphologically distinct. This seta of medium dles of nerves lies a group of four or five length is sometimes widened (or bulbous) at bipolar cells, giving rise to medium-sized gi- the base or has a separated basal section, and ant fibers (Cannon, 1931). The antennulary usually has at least six long thin flexible se- nerves are similar in the cypridinid Giganto- tules. These setules, previously unconvention- cypris mulleri Skogsberg (see Cannon, 1940). ally termed filaments (see Watling, 1989) have However, nothing more detailed regarding the been described as unringed, although in the lit- precise innervation of the first antennal setae erature they are often illustrated with stippling, has been published. giving them a granular appearance (e.g., Poulsen, 1962). This is how they appear at Aims.-The aims of this study are to: (1) de- magnifications less than about 250x. scribe the morphology of the halophore ex- This study demonstrates that the setules of oskeleton using the scanning electron micro- the b- to g- and the sensory first antennal se- scope (SEM), (2) describe the distributions of tae of Myodocopina share a characteristic ul- halophores within myodocopine taxa using trastructure and all are termed "halophores" the literature and light microscopy, (3) de- herein. The sensory seta is termed the "s-seta." scribe the movement of the myodocopine first The collection of halophores on one first an- antennal setae and setules using video record- tenna is termed the "halothalium." The terms ings, (4) compare the flexible setules of the halophore, s-seta, and halothalium, designated myodocopine first antenna with other crus- in this paper, are used hereafter to avoid un- tacean structures, and (5) review the litera- necessary confusion (an explanation of these ture on, and standardize the terminology of, terms can be found in the discussion section). myodocopine first antennal setae/setules. Techniques suitable for the study of nervous Myodocopine First Antennal Nervous Sys- structures are not employed. tem.-The nervous supply of the first antenna of the cypridinid Doloria levis Skogsberg MATERIALS AND METHODS arises from two swellings on the ventral side Specimens Examined.-Living specimens of Azygo- of the forepart of the nerve ring, marking the cypridina lowryi Kornicker were collected in single- deuterocerebral part of the brain (Cannon, chamber baited traps designed by Keable (1995). These 1931). The antennulary basal ganglion is the were set overnight at depths of 200 m (34°31.48'S, 151°13.22'E) and 300 m (34°31.80'S, 151°15.60'E) off largest in the body of D. levis and occupies the Wollongong (New South Wales, Australia) coast. The most of the basal article. What appear to be ostracods were removed from the traps and immediately motor nerves pass directly through the gan- transported to the laboratory in fresh aerated sea water. Table 1. Material examined (museum specimens fixed in 7% Formalin solution and preserved in 70% ethanol). AM represents Australian Museum (Sydney); NMNH represents National Museum of Natural History (Washington, D.C.). Downloaded from https://academic.oup.com/jcb/article/18/1/95/2418948 by guest on 29 September 2021 Behavioral observations were carried out within 4 h, dur- ing which time the ostracods appeared to be in a healthy condition. Preserved museum specimens (fixed in 7% Formalin solution and preserved in 70% ethanol) of ostracods and other crustaceans were examined (Table 1). Anatomical Study.-For SEM examination, preserved mu- seum specimens (Table 1 ) were cleaned, using 5 half-sec- ond exposures to ultrasound, critical-point dried, using a BioRad CPD 750, then coated with gold. These speci- mens were examined using a Cambridge Instruments S 120 SEM. Fig. 2. Diagrammatic sections of the halophore exo- Accidentally broken halophores of A. lowryi were stud- skeleton. A, longitudinal section (shaded areas represent Downloaded from https://academic.oup.com/jcb/article/18/1/95/2418948 by guest on 29 September 2021 ied to view the internal surface of their exoskeletons. In cross sections of the walls of the rings); B, cross section some cases, the rings which comprise the exoskeleton of through t-t. the halophores were themselves broken, and their inter- nal architecture was opportunely examined. The setae and setules of myodocopine limbs other than the first antennae were also examined under the SEM to The bases of the halophores are not finely an- search for external morphologies similar to those of halo- nulate, except where they arise terminally on phores. Azygocypridina lowryi was mainly used in this a seta. Each halophore bears a thin outer layer investigation because of its relatively large size (carapace (sheath) (Figs. 2, 3F), which follows the length about 11 mm). Preserved museum specimens of grooved external contours of the halophore species from other ostracod taxa and crustacean classes (Table 1) were examined similarly. set by the rings. Some myodocopines bear first antennal setae (other than the b- to g- or Behavioral Study.-Video recordings were made of sev- s-setae) with unringed setules, although these eral living specimens ofA.
Recommended publications
  • Anchialine Cave Biology in the Era of Speleogenomics Jorge L
    International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats.
    [Show full text]
  • Ostracoda an Introduction.Pdf
    The Ostracoda (from Wikipedia, 5/5/2009: http://en.wikipedia.org/wiki/Ostracod) Ostracoda is a class of the Crustacea, sometimes known as the seed shrimp because of their appearance. Ostracods are small crustaceans, typically around one mm in size, but varying between 0.2 to 30 mm, laterally compressed and protected by a bivalve-like, chitinous or calcareous valve or "shell". The hinge of the two valves is in the upper, dorsal region of the body. Some 65,000 species (13,000 of which are extant taxa) have been identified, grouped into several orders. This group may not be monophyletic. Ostracod taxa are grouped into a Class based on gross morphology. Ecologically, marine ostracods can be part of the zooplankton or (most commonly) they are part of the benthos, living on or inside the upper layer of the sea floor. Many ostracods, especially the Podocopida, are also found in fresh water and some are known from humid continental forest soils. The body consists of a cephalon (head), separated from the thorax by a slight constriction. The segmentation is unclear. The abdomen is regressed or absent whereas the adult gonads are relatively large. There are 5–8 pairs of appendages. The branchial plates are responsible for oxygenation. The epidermal cells may also secrete calcium carbonate after the chitinous layer is formed, resulting in a chalk layer enveloped by chitin. This calcification is not equally pronounced in all orders. During every instar transition, the old carapace (chitinous and calcified) is rejected and a new, larger is formed and calcified. The outer lamella calcifies completely, while the inner lamella calcifies partially, with the rest remaining chitinous.
    [Show full text]
  • The North American Ostracod Eusarsiella Zostericola (Cushman, 1906) Arrives in Mainland Europe
    BioInvasions Records (2013) Volume 2, Issue 1: 47–50 Open Access doi: http://dx.doi.org/10.3391/bir.2013.2.1.08 © 2013 The Author(s). Journal compilation © 2013 REABIC Short Communication The North American ostracod Eusarsiella zostericola (Cushman, 1906) arrives in mainland Europe Marco Faasse1,2 1 eCOAST Marine Research, PO Box 149, 4330 AC Middelburg, The Netherlands 2 Naturalis Biodiversity Center, Department of Marine Zoology, PO Box 9517, 2300 RA Leiden, The Netherlands E-mail: [email protected] Received: 3 October 2012 / Accepted: 14 November 2012 / Published online: 16 November 2012 Handling editor: Vadim Panov Abstract In sediment samples collected in the Oosterschelde, a marine embayment in the southwest of The Netherlands (southern North Sea), nine specimens of a non-native myodocopid ostracod were found. The ostracods were identifed as the North American species Eusarsiella zostericola (Cushman, 1906), previously introduced to southeastern England, probably with imported American oysters. Key words: introduction; shellfish; Myodocopida; The Netherlands ostracods of the order Myodocopida from The Introduction Netherlands. They do not belong to any of the native species known from the North Sea area. At least three species introduced to southeast Their similarity to a species introduced to England with oysters from North America have England with oysters from North America was subsequently been recorded from The Nether- immediately evident and this was checked with lands. The American slipper limpet Crepidula the pertinent literature. fornicata (L., 1758) and the American piddock Petricolaria pholadiformis (Lamarck, 1818) Material and methods arrived in The Netherlands, possibly with shellfish imports from England (Wolff 2005), Samples were taken in the southwest delta area and the American oyster drill Urosalpinx cinerea of The Netherlands, on the eastern shore of the (Say, 1822) almost certainly did so (Faasse and Southern Bight of the North Sea.
    [Show full text]
  • Evolutionary Biology and Ecology of Ostracoda
    Evolutionary Biology and Ecology of Ostracoda ~1997 Developments in Hydrobiology 148 Series editor H. J. Dumont Fifteen papers presented under Theme 3 of the 13th International Symposium on Ostracoda (IS097), held at the University of Greenwich, Medway Campus, U.K., from 27 to 31 July, 1997. The conference organizers were David J. Horne and Ian Slipper (University of Greenwich), Alan Lord (University Col­ lege London), Ian Boomer (University of East Anglia1) and Jonathan Holmes (Kingston University). 1 Present address: University of Newcastle. Evolutionary Biology and Ecology of Ostracoda Theme 3 of the 13th International Symposium on Ostracoda (18097) Edited by David J. Horne & Koen Martens Reprinted from Hydrobio/ogia, volume 419 (2000) Springer-Science+Business Media, B.V. Library of Congress Cataloging-in-Publication Data A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-90-481-5499-9 ISBN 978-94-017-1508-9 (eBook) DOI 10.1007/978-94-017-1508-9 Printed an acid-free paper AII Rights reserved © 2000 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2000 Softcover reprint of the hardcover 1st edition 2000 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, record ing or by any information storage and retrieval system, without written permission from the copyright owner. v Contents Preface Ostracoda and the four pillars of evolutionary wisdom K. Martens, D. J. Home Vll-Xl Keynote Paper Open qm~stions in evolutionary ecology: do ostracods have the answers? R.K.
    [Show full text]
  • Syncarid Crustaceans from the Montceau Lagersta¨Tte
    [Palaeontology, Vol. 49, Part 3, 2006, pp. 647–672] SYNCARID CRUSTACEANS FROM THE MONTCEAU LAGERSTA¨ TTE (UPPER CARBONIFEROUS; FRANCE) by VINCENT PERRIER*, JEAN VANNIER*, PATRICK R. RACHEBOEUF , SYLVAIN CHARBONNIER*, DOMINIQUE CHABARDà and DANIEL SOTTYà *Universite´ Claude Bernard Lyon 1, UMR 5125 PEPS ‘Pale´oenvironnements et Pale´obiosphe`re’, Campus scientifique de la Doua, Baˆtiment Ge´ode, 2 rue Raphae¨l Dubois, 69622 Villeurbanne, France; e-mails: [email protected]; [email protected] Universite´ de Bretagne Occidentale, UMR 6538 ‘Domaines Oce´aniques’ – Pale´ontologie, UFR Sciences et Techniques, 6 avenue Le Gorgeu, CS 93837, F-29238 Brest cedex 3, France; e-mail: [email protected] àMuse´e d’Histoire Naturelle d’Autun, 14 rue St-Antoine, 71400 Autun, France Typescript received 28 September 2004; accepted in revised form 17 May 2005 Abstract: Key aspects of the morphology, autecology, sys- suggest a relatively low level of locomotory activity. The tematics and taphonomy of the crustacean syncarids from field of vision may have been large and panoramic (stalked the Montceau Lagersta¨tte (Upper Carboniferous, Stephanian eyes). Rows of pores on 12 trunk segments are interpreted B; France) are presented. Palaeocaris secretanae is the most as possible sensory organs used for current detection. abundant faunal element of the Montceau biota and shows Females were brooding eggs (clusters of eggs preserved striking morphological similarities with Palaeocaris typus along anteroventral trunk). Microprobe analysis indicates from the Mazon Creek Lagersta¨tte (Westphalian D; Illinois, that siderite is the major component of the nodules. Four USA). Palaeocaris secretanae was a shrimp-like animal with events played a key-role in the three-dimensional preserva- a short head (no head shield), large mandibles, 14 trunk tion of syncarids: (1) rapid burial, (2) minimal decomposi- segments (the first one being reduced) and a fan-like caudal tion, (3) phosphatic mineralization shortly after the termination.
    [Show full text]
  • Vertical Distribution and Population Structure of the Three Dominant Planktonic Ostracods (Discoconchoecia Pseudodiscophora
    Plankton Biol. Ecol. 49 (2): 66-74, 2002 plankton biology & ecology K> The Plankton Society of Japan 2002 Vertical distribution and population structure of the three dominant planktonic ostracods (Discoconchoecia pseudodiscophora, Orthoconchoecia haddoni and Metaconchoecia skogsbergi) in the Oyashio region, western North Pacific Hideki Kaeriyama & Tsutomu Ikeda Marine Biodiversity Laboratory, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate, Hokkaido 041-0821, Japan Received 19 November 2001; accepted 4 April 2002 Abstract: Diel and seasonal vertical distribution and population structure of Discoconchoecia pseu- dodiscophora (Rudjakov), Orthoconchoecia haddoni (Brady & Norman) and Metaconchoecia skogs bergi (lies) were investigated in the Oyashio region during September 1996 through October 1997. Monthly samples were collected with 0.1 mm mesh closing nets hauled vertically through five con tiguous discrete depths between the surface and ~2000 m. D. pseudodiscophora occurred predomi nantly from the base of the thermocline to a depth of 500 m. O. haddoni and M. skogsbergi occurred somewhat deeper at depths of 250 to 1000 m, but were also moderately abundant below 1000 m. Sampling was undertaken both by day and by night during December 1996, April and October 1997 to assess diel vertical migration activity, but revealed no appreciable day/night differences in the ver tical distributions of the ostracods. All the instars sampled [instars II through VIII (adults) of D. pseu dodiscophora and O. haddoni, and instars III through VIII (adults) of M. skogsbergi] were collected throughout the entire period of the study. All three species showed evidence of ontogenetic vertical migration—the ranges of these migrations being from 300-1000 m in D.
    [Show full text]
  • Proceedings Biological Society of Washington
    Vol. 81, pp. 439-472 30 December 1968 PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BATHYAL MYODOCOPID OSTRACODA FROM THE NORTHEASTERN GULF OF MEXICO BY LOUIS S. KORNJCKEB Smithsonian Institution, Washington, D. C. Myodocopid ostracods of the deeper waters of the Gulf of Mexico are virtually unknown . only 1 species, Cypridina fla- tus Tressler, 1949, having been previously reported from 1200 meters near Tortugas (Tressler, 1949, p. 336, p. 431). There- fore, I was quite pleased to receive from Dr. Willis E. Pequeg- nat and Mr. Thomas J. Bright a small collection containing myodocopid ostracods collected in a mid-water trawl that acci- dentally dragged along the bottom at a depth of 1000-1200 meters for 1.5 hours during the Texas A&M University cruise 66-A-9 of the R/V Alaminos on July 11, 1966. The Myodo- copida are described in the systematic part of this paper. Os- tracods in the sample are listed below: Order Myodocopida Suborder Myodocopina Superfamily Cypridinacea Tetragonodon rhamphodes new species 19 Paramekodon poidseni new species 19 Bathyvargula optilus new species 299,1 juv. Suborder Halocypridina Superfamily Halocypridacea Conchoecia atlantica (Lubbock) 2 9 9 Conchoecia valdimae Muller 2 9 9 Conchoecia macrocheira Muller 1 9 45—PROC. BIOL. SOC. WASH., VOL. 81, 1968 (439) 440 Proceedings of the Biological Society of Washington Order Poclocopida (ident. by Drs. R. H. Benson and R. F. Maddocks) Suborder Podocopina Bairdoppilata ?hirsuta (Brady) 19,4 MT shells Bairdia new species 29 9,9 MT shells. 2 single valves Echinocythereis echinata (Sars) 1 single valve Four specimens of bottom fish collected in the trawl con- tained ostracods in their stomachs or intestines: Nezumia hildebrandi (2 specimens), Dicrolene intronigra (1 specimen), and Dicromita agassizii (1 specimen).
    [Show full text]
  • A New Genus and Two New Species of Cypridinidae (Crustacea: Ostracoda: Myodocopina) from Australia
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Parker, A. R., 1998. A new genus and two new species of Cypridinidae (Crustacea: Ostracoda: Myodocopina) from Australia. Records of the Australian Museum 50(1): 1–17. [13 May 1998]. doi:10.3853/j.0067-1975.50.1998.1271 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia Records of the Australian Museum (1998) Vol. 50: 1-17. ISSN 0067-1975 A New Genus and Two New Species of Cypridinidae (Crustacea: Ostracoda: Myodocopina) from Australia A.R. PARKER Division of Invertebrate Zoology, Australian Museum, 6 College Street, Sydney, NSW 2000, Australia [email protected] ABSTRACT. A new genus and two new species of Cypridinidae, Lowrya taiti and Lowrya kornickeri, are described from New South Wales, Australia. Both species are scavengers. They possess an elongate frontal knob and a structurally coloured red area on the rostrum of the carapace. The adult males of these species bear large compound eyes with very large dorsal ommatidia and very large "suckers" arising from cup-shaped processes near the base of the c-setae of the first antennae. Lowrya taiti possesses "coelotrichs", which are unusual evagination/setal sensillae of the carapace (Parker, submitted), and a concave anterior margin of the left rostrum only. Lowrya kornickeri is unusual because it bears an additional small "sucker" distal to the large basal "sucker" on the basal setule of the b-seta of the male first antenna.
    [Show full text]
  • Laboratory Culture of the California Sea Firefly Vargula Tsujii (Ostracoda: Cypridinidae)
    bioRxiv preprint doi: https://doi.org/10.1101/708065; this version posted July 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Running title: Complete life cycle of the bioluminescent California Sea Firefly 2 3 4 Laboratory culture of the California Sea Firefly Vargula tsujii (Ostracoda: Cypridinidae): 5 Developing a model system for the evolution of marine bioluminescence 6 7 Jessica A. Goodheart1, Geetanjali Minsky1, Mira N. Brynjegard-Bialik1, Michael S. Drummond1, J. David 8 Munoz2, Timothy R. Fallon3,4, Darrin T. Schultz5,6, Jing-Ke Weng3,4, Elizabeth Torres2 & Todd H. 9 Oakley*1 10 11 1 Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa 12 Barbara, CA 93106 13 2 Department of Biological Sciences, California State University, Los Angeles, CA 90032-8201, USA 14 3 Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA 15 4 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA 16 5 Monterey Bay Aquarium Research Institute, Moss Landing, CA 95060, USA 17 6 Department of Biomolecular Engineering and Bioinformatics, University of California, Santa Cruz, 18 Santa Cruz, CA 96060, USA 19 20 21 *Corresponding author: [email protected] 22 23 24 25 26 bioRxiv preprint doi: https://doi.org/10.1101/708065; this version posted July 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • The Taxonomy and Biogeography of Macrofaunal Ostracod Crustaceans
    The taxonomy and biogeography of macrofaunal ostracod crustaceans, with focus on the abyssal benthic Pacific fauna relevant to the CCFZ Ivana Karanovic Hanyang University, Department of Life Science, College of Natural Sciences, Seoul 133-791, Korea University of Tasmania, IMAS, Hobart, TAS, 7001, Australia e-mail: [email protected] Few words about myself Italy(Salerno, 2 years) Serbia (Novi Sad, born) Australia (Perth & Hobart, 10 years) Germany (Hamburg, 2 years) South Korea (Seoul, 3.5 years) • Started working on ostracods 15 years ago • Worked on faunas from all continents (including Antarctica) • and from all environments: from freshwater puddles to deep sea • I don’t particularly like ostracods • I like the fact that ostracods give insight into many aspects of biology General information on ostracods • Named in 1802 by Latreille • Name comes from the Greek óstrakon, meaning shell or tile • Common name in English: “mussel shrimp” or “seed shrimp” • In German it is “Muschelkrebse” • Live in all aquatic habitats on the planet Fossil record Systematics • Previously in the class Maxillopoda • Currently recognized as one of the 7 classes of the phylum Crustacea Currently divided into two subclasses 1. Myodocopa 2. Podocopa Systematics cont. 4a. 1. Subclass Myodocopa 1. Order Myodocopina 2. Order Halocyprida 4b. a) Suborder Halocypridina b) Suborder Cladocopina 2a. Subclass Podocopa 3. Order Platycopida 4. Order Podocopida 4c. a) Suborder Bairdiocopina b) Suborder Cytherocopina 2b. c) Suborder Darwinulocopina d) Suborder Cypridocopina 4d. e) Suborder Sigilliocopina 3. Photo credits: 4e. 1, 2: S.N. Brandao 3: Brandao & Yasuhara 4b, c: D. Keyser 4e: From Maddocks (1972) Morphology a.
    [Show full text]
  • Two New Xylophile Cytheroid Ostracods (Crustacea) from Kuril
    Arthropod Systematics & Phylogeny 79, 2021, 171–188 | DOI 10.3897/asp.79.e62282 171 Two new xylophile cytheroid ostracods (Crustacea) from Kuril-Kamchatka Trench, with remarks on the systematics and phylogeny of the family Keysercytheridae, Limno cy- theridae, and Paradoxostomatidae Hayato Tanaka1, Hyunsu Yoo2, Huyen Thi Minh Pham3, Ivana Karanovic3,4 1 Tokyo Sea Life Park, 6-2-3 Rinkai-cho, Edogawa-ku, Tokyo 134-8587, Japan 2 Marine Environmental Research and Information Laboratory (MERIL), 17, Gosan-ro, 148 beon-gil, Gun-po-si, Gyoenggi-do, 15180, South Korea 3 Department of Life Science, Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, South Korea 4 Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia http://zoobank.org/E29CD94D-AF08-45D2-A319-674F8282D7F2 Corresponding author: Hayato Tanaka ([email protected]) Received 20 December 2020 Accepted 11 May 2021 Academic Editors Anna Hundsdörfer, Martin Schwentner Published 9 June 2021 Citation: Tanaka H, Yoo H, Pham HTM, Karanovic I (2021) Two new xylophile cytheroid ostracods (Crustacea) from Kuril-Kamchatka Trench, with remarks on the systematics and phylogeny of the family Keysercytheridae, Limnocytheridae, and Paradoxostomatidae. Arthropod Systematics & Phylogeny 79: 171–188. https://doi.org/10.3897/asp.79.e62282 Abstract Keysercythere reticulata sp. nov. and Redekea abyssalis sp. nov., collected from the wood fall submerged in the Kuril-Kamchatka Trench (Northwestern Pacific), are only the second records of the naturally occurring, wood-associated ostracod fauna from a depth of over 5000 m. At the same time, K. reticulata is the second and R. abyssalis is the third representative of their respective genera.
    [Show full text]
  • Sarsiellidae of the Western Atlantic and Northern Gulf of Mexico, and Revision of the Sarsiellinae (Ostracoda: Myodocopina)
    Sarsiellidae of the Western Atlantic and Northern Gulf of Mexico, and Revision of the Sarsiellinae (Ostracoda: Myodocopina) LOUIS S. KORNICKER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 415 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]