J. Symbolic Computation (1997) 0, 1–000. To appear. Factoring in Skew-Polynomial Rings over Finite Fields† MARK GIESBRECHT Department of Computer Science, University of Manitoba Winnipeg, Manitoba, Canada, R3T 2N2
[email protected] (Received April 10, 1994) Efficient algorithms are presented for factoring polynomials in the skew-polynomial ring F[x; σ], a non-commutative generalization of the usual ring of polynomials F[x], where F is a finite field and σ: F → F is an automorphism (iterated Frobenius map). Ap- plications include fast functional decomposition algorithms for a class of polynomials in F[x] whose decompositions are “wild” and previously thought to be difficult to compute. A central problem in computer algebra is factoring polynomials in F[x], where x is an ∼ l ∈ N indeterminate and F = Fq is a finite field with q = p for some prime p .Inthispaper we present efficient factorization algorithms in a natural non-commutative generalization of the ring F[x], the skew-polynomial ring F[x; σ], where σ: F → F is a field automorphism. F[x; σ] is the ring of all polynomials in F[x] under the usual component-wise addition, ∼ and multiplication defined by xa = σ(a)x for any a ∈ F.Moreover,sinceF = Fq is finite, pξ σ(a)=a for some ξ ∈ N. For example, if 2 f =x + a1x + a0 ∈ F[x; σ], g =x + b0 ∈ F[x; σ], then 2 f + g =x +(a1 +1)x +(a0 + b0), 3 2 2 fg =x +(a1 + σ (b0))x +(a1σ(b0)+a0)x + a0b0, 3 2 gf =x +(σ(a1)+b0)x +(a1b0 + σ(a0))x + a0b0, where σ2(a)=σ(σ(a)) for any a ∈ F.Whenσ = id, the identity automorphism on F, the ring F[x; σ] is the usual ring of polynomials F[x]withxa = ax for all a ∈ F.