Tilburg University Graphs with Constant and Van Dam, E.R

Total Page:16

File Type:pdf, Size:1020Kb

Tilburg University Graphs with Constant and Van Dam, E.R Tilburg University Graphs with constant and van Dam, E.R.; Haemers, W.H. Publication date: 1995 Link to publication in Tilburg University Research Portal Citation for published version (APA): van Dam, E. R., & Haemers, W. H. (1995). Graphs with constant μ and μ. (Research memorandum / Tilburg University, Faculty of Economics and Business Administration; Vol. FEW 688). Unknown Publisher. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 01. okt. 2021 Graphs with constant µ and µ EDWIN R. VAN DAM WILLEM H. HAEMERS Tilburg University, Department of Econometrics, P.O. Box 90153, 5000 LE Tilburg, The Netherlands Abstract. A graph G has constant µ = µ(G) if any two vertices that are not adjacent have µ common neighbours. G has constant µ and µ if G has constant µ = µ(G), and its complement G has constant µ = µ(G). If such a graph is regular, then it is strongly regular, otherwise precisely two vertex degrees occur. We shall prove that a graph has constant µ and µ if and only if it has two distinct restricted Laplace eigenvalues. Bruck-Ryser type conditions are found. Several constructions are given and characterized. A list of feasible parameter sets for graphs with at most 40 vertices is generated. 1. Introduction We say that a noncomplete graph G has constant µ = µ(G) if any two vertices that are not adjacent have µ common neighbours. A graph G has constant µ and µ if G has constant µ = µ(G), and its complement G has constant µ = µ(G). It turns out that only two vertex degrees can occur. Moreover, we shall prove that a graph has constant µ and µ if and only if it has two distinct restricted Laplace eigenvalues. The Laplace eigenvalues of a graph are the eigenvalues of its Laplace matrix. This is a square matrix Q indexed by the vertices, with Qxx = kx, the degree of x, Qxy =−1ifxand y are adjacent, and Qxy =0ifx and y are not adjacent. Note that if G has v vertices and Laplace matrix Q, then its complement G has Laplace matrix vI − J − Q. Since the Laplace matrix has row sums zero, it has an eigenvalue 0 with the all-one vector as eigenvector. The eigenvalues with eigenvectors orthogonal to the all-one vector are called restricted. The restricted multiplicity of an eigenvalue is the dimension of the eigenspace orthogonal to the all-one vector. Note that the graphs with one restricted Laplace eigenvalue are the complete and the empty graphs. Graphs with constant µ and µ form a common generalization of two known families of graphs. The regular ones are precisely the strongly regular graphs and for µ = 1 we have the (nontrivial) geodetic graphs of diameter two. Some similarities with so-called neighbourhood-regular or Γ∆-regular graphs (see [4, 7]) occur. These graphs can be defined as graphs G with constant λ and λ, that is, in G any two adjacent vertices have λ common neighbours, and in G any two adjacent vertices have λ common neighbours. Here also only two vertex degrees can occur, but there is no easy 1 algebraic characterization. 2. Laplace eigenvalues and vertex degrees In this section we shall derive some basic properties of graphs with constant µ and µ.We start with an algebraic characterization. THEOREM 2.1. Let G be a graph on v vertices. Then G has constant µ and µ if and only if θ θ G has two distinct restricted Laplace eigenvalues 1 and 2. If so then only two vertex θ θ degrees k1 and k2 can occur, and 1 + 2 = k1 + k2 +1=µ+v−µ and θ θ 1 2 =k1k2 +µ=µv. Proof. Let G have Laplace matrix Q. Suppose that G has two distinct restricted Laplace θ θ θ θ θ θ 1 v−1 eigenvalues 1 and 2. Then (Q − 1I)(Q − 2I) has spectrum {[ 1 2] , [0] } and row θ θ θ θ θθ sums 1 2, so it follows that (Q − 1I)(Q − 2I)=( 1 2/v)J.Ifxis not adjacent to y,so 2 θ θ θ θ Qxy = 0 then Q xy = 1 2/v, and so µ = 1 2/v is constant. Since the complement of G has θ θ distinct restricted Laplace eigenvalues v − 1 and v − 2, it follows that θ θ µ =(v− 1)(v − 2)/v is also constant. 2 Now suppose that µ and µ are constant. If x and y are adjacent then (vI − J − Q) xy = µ, 2 2 2 so µ =(vI+vJ + Q −2vJ −2vQ)xy = Q xy + v, and if x and y are not adjacent, then 2 2 2 Q xy = µ. Furthermore Q xx = kx + kx. Now 2 2 Q =(µ−v)(diag(kx)−Q)+µ(J−I− diag(kx)+Q) + diag(kx + kx) 2 =(µ+v−µ)Q+ diag(kx − kx(µ + v − µ −1)−µ)+µJ. 2 2 Since Q and Q have row sums zero, it follows that kx − kx(µ + v − µ −1)−µ+µv =0 2 θ θ for every vertex x.SoQ−(µ+v−µ)Q+µvI = µJ. Now let 1 and 2 be such that θ θ θ θ θ θ θθ 1 + 2 = µ + v − µ and 1 2 = µv, then (Q − 1I)(Q − 2I)=( 1 2/v)J,soGhas distinct θ θ restricted Laplace eigenvalues 1 and 2. As a side result we obtained that all vertex degrees kx satisfy the same quadratic equation, thus kx can only take two values k1 and k2, and the formulas readily follow. Note that if the restricted Laplace eigenvalues are not integral, then they have multiplicities m1 = m2 =(v− 1)/2. If the Laplace eigenvalues are integral, then their multiplicities are not necessarily fixed by v, µ and µ. For example, there are graphs on 16 vertices with constant µ = 2 and µ = 6 with Laplace spectrum {[8]m, [4]15−m, [0]1} for m =5,6,7,8and9. The following lemma implies that the numbers of vertices of the respective degrees follow from the Laplace spectrum. 2 LEMMA 2.2. Let G be a graph on v vertices with two distinct restricted Laplace θ θ eigenvalues 1 and 2 with restricted multiplicities m1 and m2, respectively. Suppose there are n1 vertices of degree k1 and n2 vertices of degree k2. Then m1 + m2 +1=n1 +n2 =v θ θ and m1 1 + m2 2 = n1k1 + n2k2. Proof. The first equation is trivial, the second follows from the trace of the Laplace matrix. The number of common neighbours of two adjacent vertices is in general not constant, but depends on the degrees of the vertices. LEMMA 2.3. Let G be a graph with constant µ and µ, and vertex degrees k1 and k2. λ Suppose x and y are two adjacent vertices. Then the number of common neighbours xy of x and y equals λ µ 1 k k if x and y both have degree k , 11 1 2 1 λ λ µ 1 if x and y have different degrees, xy 12 λ 22 µ 1 k2 k1 if x and y both have degree k2. Proof. Suppose x and y have vertex degrees kx and ky, respectively. The number of vertices that are not adjacent to both x and y equals µ. The number of vertices adjacent to x but λ not to y equals kx −1− xy, and the number of vertices adjacent to y but not to x equals λ λ λ λ ky −1− xy. Now we have that v =2+ xy + µ + kx −1− xy + ky −1− xy. Thus λ xy = µ − v + kx + ky. By using that k1 + k2 = µ + v − µ − 1, the result follows. Both Theorem 2.1 and Lemma 2.3 imply the following. COROLLARY 2.4. A graph with constant µ and µ is regular if and only if it is strongly regular. 2 Observe that G is regular if and only if (µ + v − µ −1) =4µ(v−1)orn1 =0orn2 =0. Since we can express all parameters in terms of the Laplace spectrum, it follows that it can be recognized from the Laplace spectrum whether a graph is strongly regular or not. This is no surprise, since it is in general true that regularity of a graph follows from its Laplace spectrum. Before proving the next lemma we first look at the disconnected graphs. Since the number of components of a graph equals the multiplicity of its Laplace eigenvalue 0, a graph with constant µ and µ is disconnected if and only if one of its restricted Laplace eigenvalues equals 0. Consequently this is the case if and only if µ =0.Soina disconnected graph G with constant µ and µ any two vertices that are not adjacent have no common neighbours.
Recommended publications
  • Graphs with Few Eigenvalues
    Graphs with few eigenvalues An interplay between combinatorics and algebra Graphs with few eigenvalues An interplay between combinatorics and algebra Proefschrift ter verkrijging van de graad van doctor aan de Katholieke Universiteit Brabant, op gezag van de rector magnificus, prof. dr. L.F.W. de Klerk, in het openbaar te verdedigen ten overstaan van een door het college van dekanen aangewezen commissie in de aula van de Universiteit op vrijdag 4 oktober 1996 om 14.15 uur door Edwin Robert van Dam geboren op 27 augustus 1968 te Valkenswaard Promotor: Prof. dr. S.H. Tijs Copromotor: Dr. ir. W.H. Haemers Ter nagedachtenis van Opa Vogel Acknowledgements During the past four years I have had the pleasure to work on this thesis under the supervision of Willem Haemers. His support and guidance have always been stimulating, and I have found Willem always available. So thanks Willem, I had a great time. I also wish to thank Stef Tijs, for being my promoter, and the other members of the thesis committee: Andries Brouwer, Giel Paardekooper, Lex Schrijver and Ted Spence. Special thanks go to Ted Spence for the enjoyable cooperation in the past years, and for always providing me with interesting combinatorial data. Furthermore I would like to thank Jaap Seidel for inspiring me, D.G. Higman for his inspiring manuscript on rank four association schemes, and all other people who showed interest in my work. During the past years I attended several graduate courses with great pleasure, and I thank the organizers and lecturers of LNMB and EIDMA for those.
    [Show full text]
  • Steiner Wiener Index of Block Graphs
    Steiner Wiener index of block graphs MatjaˇzKovˇse, Rasila V A, Ambat Vijayakumar Abstract Let S be a set of vertices of a connected graph G. The Steiner distance of S is the minimum size of a connected subgraph of G containing all the vertices of S. The Steiner k-Wiener index is the sum of all Steiner distances on sets of k vertices of G. Different simple methods for calculating the Steiner k-Wiener index of block graphs are presented. MR Subject Classifications: 05C12 Keywords: Distance in graphs; Steiner distance; Wiener index; Steiner k-Wiener index; block graphs; poset of block graphs. 1 Introduction All graphs in this paper are simple, finite and undirected. Unless stated otherwise let n = jV (G)j and m = jE(G)j, hence n denotes the order and m size of a graph G. If G is a connected graph and u; v 2 V (G), then the (geodetic) distance dG(u; v) (or simply d(u; v) if there is no confusion about G) between u and v is the number of edges on a shortest path connecting u and v. The Wiener index W (G) of a connected graph G is defined as X W (G) = d(u; v): fu;vg2V (G) The first investigation of this distance-based graph invariant was done by Wiener in 1947, who realized in [21] that there exist correlations between the boiling points of paraffins and their molecular structure and noted that in the case of a tree it can be easily calculated from the edge contributions by the following formula: X W (T ) = n(T1)n(T2); (1) e2E(T ) where n(T1) and n(T2) denote the number of vertices in connected components T1 and T2 formed by removing an edge e from the tree T .
    [Show full text]
  • Geodetic Graphs of Diameter Two and Some Related Structures*
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector IOURNAL OF COMBINATORIAL THEORY, Series B 41. 218-229 (1986) Geodetic Graphs of Diameter Two and Some Related Structures* RAFFAELE SCAPELLATO Dipartimento di Mafematica, Universitci di Parma, 43100 Parma, kaiy Communicated by the Managing Editors Received March 30, 1985 We show a connection between 2-connected geodetic graphs of diameter two and certain geometric structures; we apply this result, proving that these graphs fall into three classes: (1) strongly regular graphs with p= I; (2) pyramids; (3) A- graphs. (The definitions for (I), (2), and (3) are given in the text.) We also give some results on graphs of type (3), including some non-existence conditions. Finally, we consider a more general class of graphs, showing a connection between some of them and Sperner spaces. 0 1986 Academic Press, Inc. A (finite, simple, undirected) graph is said to be geodetic if every pair of its vertices is connected by one and only one shortest path. Recently many authors have worked on geodetic graphs (see, e.g., [2, 7, 10, 11, 121). In the first section of this paper we give constructions and results on some classes of graphs, which we will apply in what follows. Next we present a classification of geodetic 2-connected graphs of diameter two. We also show (section 2) how geodetic graphs of diameter two with certain parameters are obtained from afflne planes. Finally, in Section 3 we deal with a larger class of graphs (F-geodetic), which are a natural generalization of both geodetic and distance-regular graphs; among other things, it is proved that there is a connection between some of these graphs and Sperner spaces.
    [Show full text]
  • Spectra of Graphs
    Spectra of graphs Andries E. Brouwer Willem H. Haemers 2 Contents 1 Graph spectrum 11 1.1 Matricesassociatedtoagraph . 11 1.2 Thespectrumofagraph ...................... 12 1.2.1 Characteristicpolynomial . 13 1.3 Thespectrumofanundirectedgraph . 13 1.3.1 Regulargraphs ........................ 13 1.3.2 Complements ......................... 14 1.3.3 Walks ............................. 14 1.3.4 Diameter ........................... 14 1.3.5 Spanningtrees ........................ 15 1.3.6 Bipartitegraphs ....................... 16 1.3.7 Connectedness ........................ 16 1.4 Spectrumofsomegraphs . 17 1.4.1 Thecompletegraph . 17 1.4.2 Thecompletebipartitegraph . 17 1.4.3 Thecycle ........................... 18 1.4.4 Thepath ........................... 18 1.4.5 Linegraphs .......................... 18 1.4.6 Cartesianproducts . 19 1.4.7 Kronecker products and bipartite double. 19 1.4.8 Strongproducts ....................... 19 1.4.9 Cayleygraphs......................... 20 1.5 Decompositions............................ 20 1.5.1 Decomposing K10 intoPetersengraphs . 20 1.5.2 Decomposing Kn into complete bipartite graphs . 20 1.6 Automorphisms ........................... 21 1.7 Algebraicconnectivity . 22 1.8 Cospectralgraphs .......................... 22 1.8.1 The4-cube .......................... 23 1.8.2 Seidelswitching. 23 1.8.3 Godsil-McKayswitching. 24 1.8.4 Reconstruction ........................ 24 1.9 Verysmallgraphs .......................... 24 1.10 Exercises ............................... 25 3 4 CONTENTS 2 Linear algebra 29 2.1
    [Show full text]
  • Strong Geodetic Cores and Cartesian Product Graphs Valentin Gledel, Vesna Iršič, Sandi Klavžar
    Strong geodetic cores and Cartesian product graphs Valentin Gledel, Vesna Iršič, Sandi Klavžar To cite this version: Valentin Gledel, Vesna Iršič, Sandi Klavžar. Strong geodetic cores and Cartesian product graphs. 2018. hal-01756450 HAL Id: hal-01756450 https://hal.archives-ouvertes.fr/hal-01756450 Preprint submitted on 2 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Strong geodetic cores and Cartesian product graphs Valentin Gledel a Vesna Irˇsiˇc b,c Sandi Klavˇzar b,c,d March 30, 2018 a Univ Lyon, Universit´eLyon 1, LIRIS UMR CNRS 5205, F-69621, Lyon, France b Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia c Faculty of Mathematics and Physics, University of Ljubljana, Slovenia d Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia Abstract The strong geodetic problem on a graph G is to determine a smallest set of vertices such that by fixing one shortest path between each pair of its vertices, all vertices of G are covered. To do this as efficiently as possible, strong geodetic cores and related numbers are introduced. Sharp upper and lower bounds on the strong geodetic core number are proved.
    [Show full text]
  • Download (1077Kb)
    A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/108882 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Interactions between large-scale invariants in infinite graphs by Bruno Federici Thesis Submitted to the University of Warwick for the degree of Doctor of Philosophy Warwick Mathematical Institute December 2017 Contents List of Figures iii Acknowledgments iv Declarations v Abstract vi Chapter 1 Introduction 1 1.1 Hyperbolicity vs. Amenability for plane graphs . 1 1.2 A Liouville hyperbolic souvlaki . 3 1.3 The set of all graphs as a pseudometric space . 4 1.4 GeodeticCayleygraphs ............................ 4 1.5 Embedding Z in Z2 with large distortion . 5 Chapter 2 Hyperbolicity vs. Amenability for planar graphs 6 2.1 Introduction................................... 6 2.1.1 Tightness of Theorem 3 . 7 2.2 Definitions.................................... 9 2.3 Hyperbolicity and uniform isoperimetricity imply bounded codegree . 11 2.4 Non-amenability and bounded codegree imply hyperbolicity . 16 2.5 Hyperbolicity and uniform isoperimetricity imply non-amenability . 19 2.6 Graphs with unbounded degrees . 25 Chapter 3 A Liouville hyperbolic souvlaki 26 3.1 Introduction................................... 26 3.2 Definitions and basic facts . 27 3.3 The hyperbolic Souvlaki .
    [Show full text]
  • Strong Geodetic Problem in Networks
    Strong geodetic problem in networks Paul Manuel a Sandi Klavˇzar b;c;d Antony Xavier e Andrew Arokiaraj e Elizabeth Thomas e a Department of Information Science, College of Computing Science and Engineering, Kuwait University, Kuwait [email protected] b Faculty of Mathematics and Physics, University of Ljubljana, Slovenia [email protected] c Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia d Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia e Department of Mathematics, Loyola College, Chennai, India Abstract In order to model certain social network problems, the strong geodetic problem and its related invariant, the strong geodetic number, are introduced. The problem is conceptually similar to the classical geodetic problem but seems intrinsically more difficult. The strong geodetic number is compared with the geodetic number and with the isometric path number. It is deter- mined for several families of graphs including Apollonian networks. Applying Sierpi´nskigraphs, an algorithm is developed that returns a minimum path cover of Apollonian networks corresponding to the strong geodetic number. It is also proved that the strong geodetic problem is NP-complete. Keywords: geodetic problem; strong geodetic problem; Apollonian networks; Sierpi´nski graphs; computational complexity AMS Subj. Class.: 05C12, 05C70, 68Q17 1 Introduction Shortest paths play a significant role in graph theory due to its strategic applications in several domains such as transportation problems, communication problems, etc. In the literature, shortest paths are also known as geodesics as well as isometric paths. 1 The following social network problem was considered in [21]. A vertex repre- sents a member of the social network and an edge represents direct communication between two members of the social network.
    [Show full text]
  • Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition
    Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition Maryam Bahrani∗ Jérémie Lumbroso∗ Abstract As far as we know, while these notions are part and parcel Forbidden characterizations may sometimes be the most nat- of the work of graph theorists, they are usually not exploited ural way to describe families of graphs, and yet these char- by analytic combinatorists. For forbidden minors, there is acterizations are usually very hard to exploit for enumerative the penetrating article of Bousquet-Mélou and Weller [4]. purposes. For forbidden subgraphs or forbidden induced subgraphs, we By building on the work of Gioan and Paul (2012) and know of few papers, except because of the simple nature of Chauve et al. (2014), we show a methodology by which we graphs [31], or because some other, alternate property is used constrain a split-decomposition tree to avoid certain patterns, instead [5], or only asymptotics are determined [32]. thereby avoiding the corresponding induced subgraphs in the We are concerned, in this paper, with forbidden induced original graph. subgraphs. We thus provide the grammars and full enumeration for a wide set of graph classes: ptolemaic, block, and variants Split-decomposition and forbidden induced subgraphs. of cactus graphs (2,3-cacti, 3-cacti and 4-cacti). In certain Chauve et al. [7] observed that relatively well-known graph cases, no enumeration was known (ptolemaic, 4-cacti); in decomposition, called the split-decomposition, could be a other cases, although the enumerations were known, an fruitful means to enumerate a certain class called distance- abundant potential is unlocked by the grammars we provide hereditary graphs, of which the enumeration had until then (in terms of asymptotic analysis, random generation, and not been known (since the best known result was the bound parameter analyses, etc.).
    [Show full text]
  • Geodetic Graphs and Convexity. Michael Franklyn Bridgland Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1983 Geodetic Graphs and Convexity. Michael Franklyn Bridgland Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Bridgland, Michael Franklyn, "Geodetic Graphs and Convexity." (1983). LSU Historical Dissertations and Theses. 3917. https://digitalcommons.lsu.edu/gradschool_disstheses/3917 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • Drawing Shortest Paths in Geodetic Graphs?
    Drawing Shortest Paths in Geodetic Graphs? Sabine Cornelsen1[0000−0002−1688−394X], Maximilian Pfister2[0000−0002−7203−0669], Henry F¨orster2[0000−0002−1441−4189], Martin Gronemann3[0000−0003−2565−090X], Michael Hoffmann4[0000−0001−5307−7106], Stephen Kobourov5[0000−0002−0477−2724], and Thomas Schneck2[0000−0003−4061−8844] 1 University of Konstanz, Germany [email protected] 2 University of T¨ubingen,Germany fpfister,foersth,[email protected] 3 University of Osnabr¨uck, Germany [email protected] 4 Department of Computer Science, ETH Z¨urich, Switzerland [email protected] 5 Department of Computer Science, University of Arizona, USA [email protected] Abstract. Motivated by the fact that in a space where shortest paths are unique, no two shortest paths meet twice, we study a question posed by Greg Bodwin: Given a geodetic graph G, i.e., an unweighted graph in which the shortest path between any pair of vertices is unique, is there a philogeodetic drawing of G, i.e., a drawing of G in which the curves of any two shortest paths meet at most once? We answer this question in the negative by showing the existence of geodetic graphs that require some pair of shortest paths to cross at least four times. The bound on the number of crossings is tight for the class of graphs we construct. Furthermore, we exhibit geodetic graphs of diameter two that do not admit a philogeodetic drawing. Keywords: Edge crossings · Unique Shortest Paths · Geodetic graphs. 1 Introduction arXiv:2008.07637v1 [cs.DM] 17 Aug 2020 Greg Bodwin [1] examined the structure of shortest paths in graphs with edge weights that guarantee that the shortest path between any pair of vertices is unique.
    [Show full text]
  • The Upper and Lower Geodetic Numbers of Graphs ∗
    The Upper and Lower Geodetic Numbers of Graphs ¤ Lin Dong Changhong Lu y Xiao Wang Department of Mathematics East China Normal University Shanghai, 200062, P.R.China Abstract For any two vertices u and v in a graph G (digraph D, respectively), a u-v geodesic is a shortest path between u and v (from u to v, respectively). Let I(u; v)(ID(u; v), respectively) denote the set of all vertices lying on a u-v geodesic. For a vertex subset S, let IG(S)(ID(S), respectively) denote the union of all IG(u; v) (ID(u; v), respectively) for u; v 2 S. The geodetic number g(G)(g(D), respectively) of a graph G (digraph D, respectively) is the minimum cardinality of a set S with IG(S) = V (G)(ID(S) = V (D), respectively). The geodetic spectrum of a graph G, denote by S(G), is the set of geodetic numbers of all orientations of graph G. The lower geodetic number is g¡(G) = minS(G). The upper geodetic number is g+(G) = maxS(G). The main purpose of this paper is to investigate lower and upper geodetic numbers of graphs. Our main results in this paper are: (i) For any connected graph G and any spanning tree T of G, g¡(G) · l(T ), where l(T ) is the number of leaves of T . (ii) The conjecture g+(G) ¸ g(G) is true for chordal graphs or graphs with no 3-cycle or graphs of 4-colorable. Keywords: Convex set; Digraph; Distance; Geodesic; Geodetic number 1 Introduction The graphs considered here are finite and simple (no loops or parallel edges).
    [Show full text]
  • Drawing Shortest Paths in Geodetic Graphs⋆
    Lines: 200 Drawing Shortest Paths in Geodetic Graphs? Sabine Cornelsen1??, Maximilian Pfister2, Henry F¨orster2, Martin Gronemann3, Michael Hoffmann4???, Stephen Kobourov5, and Thomas Schneck2 1 University of Konstanz, Germany 2 University of T¨ubingen,Germany 3 University of Osnabr¨uck, Germany 4 Department of Computer Science, ETH Z¨urich, Switzerland 5 Department of Computer Science, University of Arizona, USA 1 Abstract. Motivated by the fact that in a space where shortest paths 2 are unique, no two shortest paths meet twice, we study a question posed 3 by Greg Bodwin: Given a geodetic graph G, i.e., an unweighted graph in 4 which the shortest path between any pair of vertices is a unique, is there 5 a philogeodetic drawing of G, i.e., a drawing of G in which the curves 6 of any two shortest paths meet at most once? We answer this question 7 in the negative by showing the existence of geodetic graphs that require 8 some pair of shortest paths to cross at least four times. The bound on 9 the number of crossings is tight for the class of graphs we construct. 10 Furthermore, we exhibit geodetic graphs of diameter two that do not 11 admit a philogeodetic drawing. Keywords: Edge crossings · Unique Shortest Paths · Geodetic graphs. 12 1 Introduction 13 Greg Bodwin [1] examined the structure of shortest paths in graphs with edge 14 weights that guarantee that the shortest path between any pair of vertices is 15 unique. Motivated by the fact that a set of unique shortest paths is consistent in 16 the sense that no two such paths can \intersect, split apart, and then intersect 17 again" he conjectured that if the shortest path between any pair of vertices in a 18 graph is unique then the graph can be drawn so that any two shortest paths meet 2 19 at most once.
    [Show full text]