Stanford Lepton-Photon Symposium

Total Page:16

File Type:pdf, Size:1020Kb

Stanford Lepton-Photon Symposium Stanford Lepton-Photon Symposium Stanford Lepton-Hhoton Symposium sum- marizer Frank Sciulli of Columbia looked for• ward to an 'era of discovery' in the 1990s. With CERN's new LEP electron- come from the big experiments at positron collider poised to make its the proton-antiproton colliders at physics debut (September, page 1), CERN and Fermilab. (The particles the physics at the 14th Inter• were discovered at the CERN col• national Symposium on Lepton and lider in 1983.) Here, the Ws and Zs Photon Interactions, held at Stan• are fingerprinted through decays ford from 7-12 August, featured a producing easily identifiable leptons ripple of new results on the Z and (electrons and muons). Their de• W bosons, the carriers of respect• cays into strongly interacting parti• ively the electrically neutral and cles (hadrons) are difficult to sepa• :harged components of the weak rate from the mainstream proton- nuclear force. antiproton collision products. How• These new W and Z results, ever these hadronic decays in fact combined with refined measure• dominate the Mark II Z sample. ments in other sectors, have inter• Alan Weinstein of Caltech showed esting implications for expected how this provides a new window but as yet unseen particles, notably on underlying quark mechanisms. the sixth ('top') quark. Clearly this will be a feature of the The Mark II detector at Stan• physics emerging over the next ford's SLC linear collider has made few months. its initial scan of the Z, the first The Mark II Z sample shows a time this particle has been seen in bit of scatter among the three lep• electron-positron annihilations ton channels (electron, muon and (September, page 12). By the time tau). For instance 15 tau pairs are of the Stanford meeting, Mark ll's seen when only about half this sample of 106 Z events had climbed to 233, and Gary Feldman reported a mass centred around 91.17 GeV and a width of 1.95 eV, giving an upper limit for the possible number of different types of neutrino as 4.4 and a value as low as 3 ± 0.9. In other words, there is very little room for more types of neutrino in Nature other than the three currently known - electron-, muon-, and tau-type. However the limit still gives a bit of additional neutrino elbow room and it will take a lot of Zs before a fourth type of neutrino can be ruled out. (The Mark II limit has been subsequently tightened - more news next month.) Until the arrival of the SLC, all di• rect W and Z information had A scan of the Z particle, the electrically neu• tral carrier of the weak nuclear force, as seen by the Mark II detector working at the SLC Stanford Linear Collider. The curve is a 'Standard Model Fit', using five quarks, three charged leptons and three neutrinos. CERN Courier, October 1989 A good fix on the Z particle by the Mark II detector at Stanford's SLC linear collider was reported by Gary Feldman. number are expected, but this is the fifth ('beauty'-b) quark behaves being played down. like one of a pair. With big data samples from their Once thought to be just round recent lengthy runs (September, the corner, the top quark stubborn• page 13), improved Z measure• ly refuses to come out into the ments came from the UA2 (Antho• open. Strict limits from CDF (Pekka ny Weidberg, CERN) and CDF (My• Sinervo, Pennsylvania) put it above ron Campbell, Chicago) experi• 80 GeV, however consistency ar• ments at CERN and Fermilab guments using the new Z mass va• pspectively. With 132 decays into lues together with data from preci• nuon pairs and 64 into electrons, sion studies of neutrino scattering the latter had already reported a Z (results reported by Jaap Panman mass of 90.9 ± 0.3 GeV. At Stan• of CERN) and other electroweak in• ford, UA2 gave a Z mass of 90.5 put now suggest that the top quark ± 0.5 from an 85-event sample. could be considerably heavier than These values complement the new 100 GeV. 'This is depressing news fix from SLC. if it is taken seriously', commented However these proton-antipro- Conference summarizer Frank Sciul- ton collider experiments also home li of Columbia, intimating that some in on the W, the electrically calculations and predictions might charged partner of the Z, produced need to be overhauled to take ac• in pairs in particle-antiparticle anni• count of a heavyweight quark. hilations. Although the W is slightly Hadron production levels at lighter than the Z, W pairs are out TRISTAN show a slight surge of reach of SLC and LEP, at least around 60 GeV, and this had once for the time being. New W mass been a talking point. Thoughts of values announced at Stanford were an early top have now been dis• and from Tokyo's Institute for Nu• 80.0 ± 0.4 from 1185 UA2 ev• pelled, even though the surge is clear Study (less than 11 eV). Ac• ents and 80.2 ± 0.2 from CDF ev- still there. cording to some observers, these its with electrons. Results from However the top quark is being new numbers must be approaching the CDF muon sample should fol• squeezed from all sides. Guido Al- the absolute limit with which the low soon. tarelli of CERN explained how an neutrino mass can be measured di• Until LEP's energy is boosted, upper limit of around 200 GeV for rectly. proton-antiproton studies have a the missing quark comes from tak• There are still not enough neutri• monopoly on the W, and new ing account of the subtle radiative nos seen coming from the sun (the measurements will provide a useful corrections to electroweak effects. 'solar neutrino problem'). This complement to the new Z informa• Combined with precision electro• long-standing enigma had shown tion. weak measurements, this cramps signs last year of resolving itself, With just three types of neutrino the space remaining for the top with bursts of activity reported looking increasingly probable, an quark. from new solar neutrino measure• underlying physics picture of six ments at both the Japanese Kamio- types of quark grouped pairwise kande underground detector and Lepton sector into three 'generations' continues from the classic study led by Ray to sell well. Particles containing five Davies of Brookhaven (October types of quark are known, and ex• At Stanford, lepton (weakly in• 1988, page 2). However this year periments at the TRISTAN elec• teracting particle) properties were the Kamiokande neutrino levels tie tron-positron collider at the Japa• covered by Marty Perl of SLAC, in with the previous enigmatic lev• nese KEK Laboratory (Akihiro Maki, who had news of fresh limits on els. Further solar neutrino informa• KEK), although not seeing the sixth the mass of the electron-type neu• tion will come from a new genera• ('top') quark at collision energies trino from experiments at Los Ala• tion of experiments being prepared exceeding 60 GeV, suggest that mos (less than 13.4 electron volts) using special detector materials. CERN Courier, October 1989 3 A talking point. CP violation parameter (ver• tical axis) as measured by the NA31 experi• ment at CERN and the E731 experiment at Fermilab (preliminary result only), compared with the theoretically expected value, which depends on the mass of the so-far unseen sixth ('top') quark. In inter-quark transformations, ARGUS at the DORIS ring at the German DESY Laboratory in Ham• burg (Michael Danilov, Moscow) and CLEO at Cornell's CESR ring (David Kreinick) could both report that in analysis of B meson decays (containing the b quark) around the broad (4S) upSilon resonance, the level of transformations of b quark to light ('up') quarks was about ter per cent that of beauty to charm. This is the level needed to accom• modate CP violation in a six-quark picture. Several years ago an initial ARGUS measurement had seen an anomalously large effect. Like the neutral kaons, the neu- Stanford Symposium In keeping with the tradition Singly-charged particle decay at CERN reported a new slant on of the Lepton-Photon Sympo• modes of the heavy tau lepton are CP violation (July/August 1988, sia, the Stanford meeting in• not seen quite as frequently as ex• page 7), with the decays of short• cluded only plenary sessions, pected, but Perl speculated as to lived and long-lived neutral kaons making for simpler coverage how this 'Gilman anomaly' might into charged and neutral pion pairs but with a single speaker on be fixed up. In looking to build up showing a small but significant each topic there is an ever- an accurate picture of the tau, Perl bias. This result was reiterated at present risk of overindulgent underlined the need for a Stanford by Daniel Fournier of Or- subjectivity. tau/charm factory to mass produce say, however the E731 study at In addition to a solid scien• this rare particle (July/August, Fermilab, reported by Bruce Win- tific content and good partici• page 29). stein of Chicago, sees a much pation, the imagination of the smaller effect in a preliminary sam• Stanford organizers resulted ple of 20 per cent of the data col• in a number of innovations, lected in a recent long run. The including TV retransmission data should be completely analysed of talks to a nearby room Twenty-five years after the dis• next year. In the meantime NA31 is with lots of desk space and a covery of the subtle violation in also analysing new data and is zoom lens making over• neutral kaon decays of the com• busy collecting even more with crowded transparencies ea• bined 'CP' symmetry of particle- CERN's SPS proton synchrotron sier to follow.
Recommended publications
  • Standard Model Festival
    Standard Model festival The Hamburg Lepîon-Photon Symposium also marked the tenth anniversary of the discovery at Fermilab of the upsilon particle (beauty quark and antiquark bound together). At a Fermilab celebration of the discovery earlier this year were (left to right) Alvin Tollestrup, Sandy Anderson (with balloon), Hwa Yoh, Leon Lederman, Janine Tollestrup, Drummond Rennie, Martyl Langsdorf and Vivian Bull. The 'Standard Model' of modern particle physics, with the quantum chromodynamics (QCD) theory of inter-quark forces superimposed on the unified electroweak picture, is still unchallenged, but it is not the end of physics. This was the message at the big International Symposium on Lepton and Photon Interactions at High Energies, held in Hamburg from 27-31 July. The conference is a celebration of the Standard Model', admitted Graham Ross of Oxford, given the task of looking beyond. He pointed out a few interesting clouds on the horizon, and echoed the in­ creasing belief that experiments at higher collision energies (1000 GeV for constituent quarks inside nucléons or for electrons) would probe deep inside the Standard Model and reveal some­ thing new. Carlo Rubbia of CERN flew in at the end of the meeting with some suggestions for future machines to explore these far horizons. 'However our preoccupation with high energy should not exclude other interesting topics,' he warned, mentioning solar neutrino dronic events per day, and are plained single muons accompany­ studies, particle mixing, CP viola­ providing interesting new informa­ ing produced hadrons, reported tion, the search for proton decay tion to take over where the elec­ by some studies at the PETRA ring and supernova detection ('We tron-positron machines at Stanford at DESY (see September issue, should be better prepared next (US) and DESY (Hamburg) left off.
    [Show full text]
  • Epn2006-37-2.Pdf
    europhysicsnews Fermionic atoms in an optical lattice 37/2 The origin of the Earth’s magnetic field 2006 I V 9 n CP violation in weak decays of neutral K mesons 9 o s l t e u i u t m u r o Physics in daily life: Cycling in the wind t e i s o 3 n p 7 a e l An interview with Sir Anthony Leggett r • s y n u e u b a m s r c b r i e p r t i 2 o n p r i c e : http://www.europhysicsnews.org Article available at European Physical Society contents europhysicsnews 2006 • Volume 37 • number 2 cover picture: © CNRS Photothèque - ROBERT Patrick Laboratory: CETP, Velizy, Velizy Villacoublay. Three-dimensional representation of the Terrestrial magnetic field, according to the model of Tsyganenko 87. The magnetic field is visualized in the form of "magnetic shells" of which the feet of the tension fields on the surface of the Earth have the same magnetic latitude. The sun is on the right. EDITORIAL 05 Physics in Europe Ove Poulsen HIGHLIGHTS 06 The origami of life A high-resolution Ramsey-Bordé spectrometer for optical clocks ... 07 Transportation of nitrogen atoms in an atmospheric pressure... ᭡ PAGE 06 Refractive index gradients in TiO2 thin films grown by atomic layer deposition Highlights: transportation of NEWS 08 2006 Agilent Technologies Europhysics Prize nitrogen atoms 09 Letters on the EPN 36/6 Special Issue 12 Report on ICALEPCS’2005 14 Discovery Space 15 EPS sponsors physics students to participate in the reunion of Nobel Laureates 16 EPS Accelerator Group and European Particle Accelerator Conference 17 Report on the 1st European Physics Education Conference FEATURES 18 Fermionic atoms in an optical lattice: a new synthetic material ᭡ PAGE 18 Michael Köhl and Tilman Esslinger Fermionic atoms in an 22 The origin of the Earth’s magnetic field: fundamental or environmental research? optical lattice: a new Emmanuel Dormy 26 First observation of direct CP violation in weak decays of neutral K mesons synthetic material Konrad Kleinknecht and Heinrich Wahl 29 Physics in daily life: Cycling in the wind L.J.F.
    [Show full text]
  • Discovery of Gluon
    Discovery of the Gluon Physics 290E Seminar, Spring 2020 Outline – Knowledge known at the time – Theory behind the discovery of the gluon – Key predicted interactions – Jet properties – Relevant experiments – Analysis techniques – Experimental results – Current research pertaining to gluons – Conclusion Knowledge known at the time The year is 1978, During this time, particle physics was arguable a mature subject. 5 of the 6 quarks were discovered by this point (the bottom quark being the most recent), and the only gauge boson that was known was the photon. There was also a theory of the strong interaction, quantum chromodynamics, that had been developed up to this point by Yang, Mills, Gell-Mann, Fritzsch, Leutwyler, and others. Trying to understand the structure of hadrons. Gluons can self-interact! Theory behind the discovery Analogous to QED, the strong interaction between quarks and gluons with a gauge group of SU(3) symmetry is known as quantum chromodynamics (QCD). Where the force mediating particle is the gluon. In QCD, we have some quite particular features such as asymptotic freedom and confinement. 4 α Short range:V (r) = − s QCD 3 r 4 α Long range: V (r) = − s + kr QCD 3 r (Between a quark and antiquark) Quantum fluctuations cause the bare color charge to be screened causes coupling strength to vary. Features are important for an understanding of jet formation. Theory behind the discovery John Ellis postulated the search for the gluon through bremsstrahlung radiation in electron- proton annihilation processes in 1976. Such a process will produce jets of hadrons: e−e+ qq¯g Furthermore, Mary Gaillard, Graham Ross, and John Ellis wrote a paper (“Search for Gluons in e+e- Annihilation.”) that described that the PETRA collider at DESY and the PEP collider at SLAC should be able to observe this process.
    [Show full text]
  • Direct CP Violation in K 0 → Ππ
    IFIC/17-56, FTUV/17-1218 Direct CP violation in K0 ! ππ: Standard Model Status Hector Gisbert and Antonio Pich Departament de F´ısicaTe`orica,IFIC, Universitat de Val`encia{ CSIC Apt. Correus 22085, E-46071 Val`encia,Spain Abstract In 1988 the NA31 experiment presented the first evidence of direct CP violation in the K0 ! ππ decay amplitudes. A clear signal with a 7:2 σ statistical significance was later established with the full data samples from the NA31, E731, NA48 and KTeV experiments, confirming that CP violation is associated with a ∆S = 1 quark transition, as predicted by the Standard Model. However, the theoretical prediction for the measured ratio "0=" has been a subject of strong controversy along the years. Although the underlying physics was already clarified in 2001, the recent release of improved lattice data has revived again the theoretical debate. We review the current status, discussing in detail the different ingredients that enter into the calculation of this observable and the reasons why seemingly contradictory predictions were obtained in the past by several groups. An update of the Standard Model prediction is presented and the prospects for future improvements are analysed. Taking into account all known short-distance and long-distance contributions, one obtains Re ("0=") = (15 ± 7) · 10−4, in good agreement with the experimental measurement. arXiv:1712.06147v1 [hep-ph] 17 Dec 2017 Contents Page 1 Historical prelude 2 2 Isospin decomposition of the K ! ππ amplitudes 5 3 Short-distance contributions 7 4 Hadronic matrix elements 10 5 Effective field theory description 12 5.1 Chiral perturbation theory .
    [Show full text]
  • Spring 2007 Prizes & Awards
    APS Announces Spring 2007 Prize and Award Recipients Thirty-nine prizes and awards will be presented theoretical research on correlated many-electron states spectroscopy with synchrotron radiation to reveal 1992. Since 1992 he has been a Permanent Member during special sessions at three spring meetings of in low dimensional systems.” the often surprising electronic states at semicon- at the Kavli Institute for Theoretical Physics and the Society: the 2007 March Meeting, March 5-9, Eisenstein received ductor surfaces and interfaces. His current interests Professor at the University of California at Santa in Denver, CO, the 2007 April Meeting, April 14- his PhD in physics are self-assembled nanostructures at surfaces, such Barbara. Polchinski’s interests span quantum field 17, in Jacksonville, FL, and the 2007 Atomic, Mo- from the University of as magnetic quantum wells, atomic chains for the theory and string theory. In string theory, he dis- lecular and Optical Physics Meeting, June 5-9, in California, Berkeley, in study of low-dimensional electrons, an atomic scale covered the existence of a certain form of extended Calgary, Alberta, Canada. 1980. After a brief stint memory for testing the limits of data storage, and structure, the D-brane, which has been important Citations and biographical information for each as an assistant professor the attachment of bio-molecules to surfaces. His in the nonperturbative formulation of the theory. recipient follow. The Apker Award recipients ap- of physics at Williams more than 400 publications place him among the His current interests include the phenomenology peared in the December 2006 issue of APS News College, he moved to 100 most-cited physicists.
    [Show full text]
  • U. E. R Institut National De De Physique Nucléaire Université Paris-Sud Et De Physique Des Particules
    LAL 92-26 Gestion INIS May 1992 Doe. enreg. Ie N* TFW : 0L Destination : I,t+D,D NEW RESULTS ON DIRECT CP VIOLATION FROM THE NA31 EXPERIMENT Olivier PERDEREAU For the NA31 collaboration CERN, Edinburgh. Main/., Orsay, Pisa and Sicg cn Talk given at the XXVIlth Rencontres de Moriond Uectroweak Interactions and Unified Theories" Les Arcs, Savoie, March 15-22,1992 U. E. R Institut National de de Physique Nucléaire Université Paris-Sud et de Physique des Particules Bâtiment 200 - 91405 ORSAY Cedex LAL 92-26 May 1992 New results on direct CP violation from the NA31 experiment O. Perdereau Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université de Paris-Sud, F-91405 Orsay Cedex, France. For the NA31 collaboration : CERN, Edinburgh, Mainz, Orsay, Pisa and Siegen Abstract The NA31 experiment has published the first evidence for direct CP violation by measuring a non-zero value for the X(e'/e) parameter. Further data-taking periods took place in 1988 and 1989, producing two datasets with statistics comparable to the original one. This paper presents the final result of the anal- ysis of tbe 1988 dataset together with a preliminary result of the analysis of the 1989 one. The combined, preliminary, measurement of NA31 is R(e'/e) = (2.3 ± 0.7 ) 10~3, thus confirming our initial measurement and also in agree- ment with the standard model. Introduction Since its discovery, 28 years ago, the non respect of the discrete CP symetry, so-called "CP violation", has up to now been observed only in neutral Kaon decays.
    [Show full text]
  • Results on Direct CP Violation from NA48 1 Introduction
    Results on Direct CP Violation from NA48 Giles Barr NA48 Collaboration CERN, Geneva, Switzerland 1 Introduction A long-standing question in high energy physics has been the origin of the phe- nomenon of CP violation. CP violation was first observed in the decay KL → + − 0 0 π π [1]. Effects have subsequently been found in KL → π π [2], the charge ± ∓ ± ∓ + − asymmetry of KL → e π ν (Ke3) [3] and KL → µ π ν (Kµ3) [4], KL → π π γ [5] and most recently in KL → ππee [6]. All of these effects can be explained by applying a single CP violating effect in the mixing between K0 and K0 which pro- ceeds through the box Feynman diagram and are characterized by the parameter ε. A second form of CP violation with different characteristics can also be in- vestigated in the decay of the neutral K-mesons. The CP =−1 kaon state (the K2) can decay directly into a 2π final state without first mixing into a kaon with CP =+1. This effect, referred to as direct CP violation, may proceed by the pen- guin Feynman diagram, and is characterized by the parameter ε. The measured quantity is the double ratio of the decay widths, which, in the NA48 experiment is equivalent to the double ratio of four event-counts Γ (K → π 0π 0)/ Γ (K → π 0π 0) R ≡ L S + − + − Γ (KL → π π )/ Γ (KS → π π ) N(K → π 0π 0)/ N(K → π 0π 0) = L S (1) + − + − N(KL → π π )/ N(KS → π π ) 1 − 6Re(ε/ε).
    [Show full text]
  • Mass Determination of New Particle States
    Mass Determination of New Particle States Mario A Serna Jr Wadham College University of Oxford arXiv:0905.1425v1 [hep-ph] 9 May 2009 A thesis submitted for the degree of Doctor of Philosophy Trinity 2008 This thesis is dedicated to my wife for joyfully supporting me and our daughter while I studied. Mass Determination of New Particle States Mario Andres Serna Jr Wadham College Thesis submitted for the degree of Doctor of Philosophy Trinity Term 2008 Abstract We study theoretical and experimental facets of mass determination of new particle states. Assuming supersymmetry, we update the quark and lepton mass matri- ces at the grand unification scale accounting for threshold corrections enhanced by large ratios of the vacuum expectation value of the two supersymmetric Higgs fields vu=vd ≡ tan β. From the hypothesis that quark and lepton masses satisfy a classic set of relationships suggested in some Grand Unified Theories (GUTs), we predict tan β needs to be large, and the gluino's soft mass needs to have the opposite sign to the wino's soft mass. Existing tools to measure the phase of the gluino's mass at upcoming hadron colliders require model-independent, kinematic techniques to determine the masses of the new supersymmetric particle states. The mass deter- mination is made difficult because supersymmetry is likely to have a dark-matter particle which will be invisible to the detector, and because the reference frame and energy of the parton collisions are unknown at hadron colliders. We discuss the current techniques to determine the mass of invisible particles. We review the transverse mass kinematic variable MT 2 and the use of invariant-mass edges to find relationships between masses.
    [Show full text]
  • Lawrence Berkeley Laboratory UNIVERSITY of CALIFORNIA
    t.,t(> ~Yd LBL- 2 0 7 4 7 ~ I Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA 1 . '' r, ·) t· Physics Division ·• ... ' ;..; ;] 1986 :BRARY AND -"'TS S'=r..,...f('" • Lectures given at the Summer School on 'Architecture of Fundamental Interactions', Les Houches, France, July-August 1985 THE QUEST FOR SUPERSYMMETRY I. Hinchliffe December 1985 - Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. "") •.~ t ~ -- December 1985 LBL-20747 Table of Contents 1. Introduction THE QUEST FOR SUPERSYMMETRY* 2. Cosmological Bounds 3. Supersymmetry in e+ e- Annihilation Lectures given at the Summer School on 'Architecture of Fundamental 4.
    [Show full text]
  • Theoretical Summary Lecture for EPS HEP99
    SLAC-PUB-8351 February, 2000 Theoretical Summary Lecture for EPS HEP99 Michael E. Peskin1 Stanford Linear Accelerator Center Stanford University, Stanford, California 94309 USA ABSTRACT This is the proceedings article for the concluding lecture of the 1999 High En- ergy Physics Conference of the European Physical Society. In this article, I review a number of topics that were highlighted at the meeting and have more general importance in high energy physics. The major topics discussed are (1) precision electroweak physics, (2) CP violation, (3) new directions in QCD, (4) supersym- metry spectroscopy, and (5) the experimental physics of extra dimensions. arXiv:hep-ph/0002041v2 31 May 2000 invited lecture presented at the International Europhysics Conference on High-Energy Physics July 15-21, 1999, Tampere, Finland 1Work supported by the Department of Energy, contract DE–AC03–76SF00515. 1 Introduction In this theoretical summary lecture at the High Energy Physics 99 conference of the Eu- ropean Physical Society, I am charged to review some of the new conceptual developments presented at this conference. At the same time, I would like to review more generally the progress of high-energy physics over the past year, and to highlight areas in which our basic understanding has been affected by the new developments. There is no space here for a sta- tus report on the whole field. But I would like to give extended discussion to five areas that I think have special importance this year. These are (1) precision electroweak physics, which celebrates its tenth anniversary this summer; (2) CP violation, which entered a new era this summer with the inauguration of the SLAC and KEK B-factories; (3) QCD, which now branches into new lines of investigation; and two rapidly developing topics from physics be- yond the Standard Model, (4) supersymmetry spectroscopy and (5) the experimental study of extra dimensions.
    [Show full text]
  • List of Publications of Konrad Kleinknecht A. Books 1
    - 1 - List of publications of Konrad Kleinknecht A. Books 1. Detektoren für Teilchenstrahlung, K. Kleinknecht, Teubner Studienbücher, 296 Seiten mit 154 Abbildungen und 20 Tabellen, Teubner Verlag, Stuttgart 1984, 3. Auflage 1992, 4. Auflage 2005 2. Detectors for Particle Radiation, Cambridge University Press, Cambridge 1986; second edition 1998 3. Kohlrausch, Praktische Physik, 23. Auflage, Kapitel 9.7: Nachweis hochenergetischer Teilchenstrahlung, Teubner Verlag, Stuttgart 1984 4. Proceedings of the 11th International Conference on Neutrino Physics and Astrophysics, Nordkirchen, June 11-16, 1984, ed. by K. Kleinknecht and E.A. Paschos, World Scientific Publ. Co. Singapore 1984 5. Particles and Detectors, Festschrift für Jack Steinberger, Springer Tracts in Modern Physics Vol. 108, editors: K. Kleinknecht and T.D. Lee, Heidelberg 1986 6. Ryuushisen Kenshutsu-Ki, K. Kleinknecht, 222 Seiten mit 150 Abbildungen und 20 Tabellen, Japanische Übersetzung des Buches "Detektoren für Teilchenstrahlung", übers. von K. Takahashi und H. Yoshiki, Baifukan Verlag, Tokyo, 1987 7. CP Violation, ed. by C. Jarlskog, World Scientific Publ. Co., Singapore 1988, chapter "CP Violation in the K 0 - K 0 , System", p.41 – 104. 8. Proton-Antiproton Interactions and Fundamental Symmetries, Proc. of the IXth European Symp. on Proton-Antiproton Interactions and Fundamental Symmetries, Mainz, 5-10 Sept. 1988, ed. by K. Kleinknecht und E. Klempt, Nucl.Phys.B (Proc.Suppl.) 8(2989) June 1989 9. Detektori korpuskularnich islutchennii, Russische Übersetzung des Buches "Detektoren für Teilchenstrahlung", Mir Verlag, Moskau, 1990 10. „Uncovering CP Violation“, Experimental Clarification in the Neutral K Meson and B Meson Systems, Springer Tracts in Modern Physics, 2004 11. „Wer im Treibhaus sitzt“ (2007), Piper Verlag München 12.
    [Show full text]
  • Memories of a Theoretical Physicist
    Memories of a Theoretical Physicist Joseph Polchinski Kavli Institute for Theoretical Physics University of California Santa Barbara, CA 93106-4030 USA Foreword: While I was dealing with a brain injury and finding it difficult to work, two friends (Derek Westen, a friend of the KITP, and Steve Shenker, with whom I was recently collaborating), suggested that a new direction might be good. Steve in particular regarded me as a good writer and suggested that I try that. I quickly took to Steve's suggestion. Having only two bodies of knowledge, myself and physics, I decided to write an autobiography about my development as a theoretical physicist. This is not written for any particular audience, but just to give myself a goal. It will probably have too much physics for a nontechnical reader, and too little for a physicist, but perhaps there with be different things for each. Parts may be tedious. But it is somewhat unique, I think, a blow-by-blow history of where I started and where I got to. Probably the target audience is theoretical physicists, especially young ones, who may enjoy comparing my struggles with their own.1 Some dis- claimers: This is based on my own memories, jogged by the arXiv and IN- SPIRE. There will surely be errors and omissions. And note the title: this is about my memories, which will be different for other people. Also, it would not be possible for me to mention all the authors whose work might intersect mine, so this should not be treated as a reference work.
    [Show full text]