1610.0231V1.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantum Computing a New Paradigm in Science and Technology
Quantum computing a new paradigm in science and technology Part Ib: Quantum computing. General documentary. A stroll in an incompletely explored and known world.1 Dumitru Dragoş Cioclov 3. Quantum Computer and its Architecture It is fair to assert that the exact mechanism of quantum entanglement is, nowadays explained on the base of elusive A quantum computer is a machine conceived to use quantum conjectures, already evoked in the previous sections, but mechanics effects to perform computation and simulation this state-of- art it has not impeded to illuminate ideas and of behavior of matter, in the context of natural or man-made imaginative experiments in quantum information theory. On this interactions. The drive of the quantum computers are the line, is worth to mention the teleportation concept/effect, deeply implemented quantum algorithms. Although large scale general- purpose quantum computers do not exist in a sense of classical involved in modern cryptography, prone to transmit quantum digital electronic computers, the theory of quantum computers information, accurately, in principle, over very large distances. and associated algorithms has been studied intensely in the last Summarizing, quantum effects, like interference and three decades. entanglement, obviously involve three states, assessable by The basic logic unit in contemporary computers is a bit. It is zero, one and both indices, similarly like a numerical base the fundamental unit of information, quantified, digitally, by the two (see, e.g. West Jacob (2003). These features, at quantum, numbers 0 or 1. In this format bits are implemented in computers level prompted the basic idea underlying the hole quantum (hardware), by a physic effect generated by a macroscopic computation paradigm. -
Mock Moonshine by Prof. Kishore Marathe City University of New
Mock Moonshine by Prof. Kishore Marathe City University of New York, Brooklyn College International Conference on Recebt Developments in String Theory Congressi Stefano Franscini - Monte Verita, Switzerland July 21 to 25, 2014 ====================== 1 Thirty years ago some very surprising relations between the Fourier coefficients of the Jacobi Hauptmodul or the J-function and represen- tations of the largest finite simple sporadic group, the Monster were discovered. Precise formulation of these relations is now called the ’Monstrous Moonshine’. It has given rise to a large body of new mathematics. The moonshine correspondence has been extended to other groups revealing unexpected relations to conformal field theory, gravity and string theory in physics and to Ramanujan’s mock theta functions and its extensions in mathe- matics. We call these results which have been discoverd in the last 30 years ’ Mock Moon- shine’. We will survey some recent develop- ments related to Mock Moonshine and indicate directions for future research. 2 List of Topics 1. Some Historical Remarks 2. Modular objects 3. Monstrous Moonshine Conjectures 4. Monstrous Moonshine and Vertex Algebras 5. Moonshine for other groups 6. Mock Moonshine and Field Theories 3 The following historical material is taken from [4]. Recall that a group is called simple if it has no proper non-trivial normal subgroup. Thus an abelian group is simple if and only if it is isomorphic to one of the groups Zp, for p a prime number. This is the simplest example of an infinite family of finite simple groups. An- other infinite family of finite simple groups is the family of alternating groups An,n> 4 that we study in the first course in algebra. -
Construction of an Umbral Module
Thank the Organizers Construction of an Umbral module With John Duncan J. Harvey, Eurostrings 2015 OUTLINE 1. Moonshine, Monstrous and Umbral 2. A free fermion trick 3. The 3E8 example of Umbral Moonshine 4. Indefinite lattice theta functions 5. A Vertex Operator Algebra for indefinite lattices 6. Putting the pieces together 7. What does it mean for string theory? M O O N S H I N E M (Mock)ModularForms G S Groups (Finite) String theory A Algebras (VOA) The original example of this structure is Monstrous Moonshine G The Monster sporadic group M The weight zero modular function 1 2⇡i⌧ J(⌧)=q− + 196884q + ,q= e ··· A Vertex Operator Algebra (OPE of chiral Vertex operators) S Bosonic or Heterotic String on an asymmetric orbifold background 24 (R /ΛL)/(Z/2) We now have Mathieu Moonshine and its extension to Umbral Moonshine. We know the extension for two of these objects: G : M24 or more generally GX = Aut(LX )/W X M : A weight 1/2 mock modular form whose coefficients count the multiplicities of massive Eguchi, N=4 SCA characters in the elliptic genus of K3 Ooguri, Tachikawa (2) 1/8 2 3 H (⌧)=2q− 1 + 45q + 231q + 770q + − ··· or more generally, a weight 1/2, m-1 component X vector-valued mock modular form Hr (⌧) Here L X is one of the 23, rank 24 Niemeier lattices and m = m ( X ) is its Coxeter number. Are there analogs of the VOA algebraic structure and/or a string theoretic interpretation of these structures? More specifically, is there an explicit construction of the infinite-dimensional G X modules implied by these constructions along with an explicit action of G X ? That is, the M24 mock modular form suggests that there exists an infinite set of vector spaces (2) (2) (2) K 1/8,K7/8,K15/8, − ··· of dimension 2, 2x45, 2x231, …that provide representations of M24 and should be combined into (2) (2) 1 K = n=0 Kn 1/8 − L In Monstrous Moonshine we have \ V = Vn n 1 M≥− 1 n dimVn = c(n),J(q)= c(n)q n= 1 X− with V n the vector space of states of conformal dimension n c/ 24 in the Monster CFT. -
String Theory Moonshine
Strings 2014, Princeton Umbral Moonshine and String Theory Miranda Cheng University of Amsterdam* *: on leave from CNRS, France. A Myseros Story Abot Strings on K3 Finite Moonshine Modular Groups Objects symmetries of interesting objects functions with special symmetries K3 Sigma-Model 2d sigma models: use strings to probe the geometry. M = K3 Σ N=(4,4) superconformal Elliptic Genus of 2d SCFT In a 2d N>=(2,2) SCFT, susy states are counted by the elliptic genus: q = e2⇡i⌧ ,y = e2⇡iz • holomorphic [Schellekens–Warner, Witten ’87] • modular SL(2,Z) •topological EG = EG ⇣ ⌘ ⇣ ⌘ K3 Sigma-Model 2d sigma model on K3 is a N=(4,4) SCFT. ⇒ The spectrum fall into irred. representations of the N=4 SCA. 4 2 J +J¯ J L c/24 L c/24 ✓i(⌧,z) EG(⌧,z; K3) = Tr ( 1) 0 0 y 0 q 0− q¯ 0− =8 HRR − ✓ (⌧, 0) i=2 i ⇣ ⌘ X ✓ ◆ = 24 massless multiplets + tower of massive multiplets 1 2 ✓ (⌧,z) 1/8 2 3 = 1 24 µ(⌧,z)+2 q− ( 1 + 45 q + 231 q + 770 q + ...) ⌘3(⌧) − “Appell–Lerch⇣ sum” numbers of massive N=4 multiplets ⌘ also dimensions of irreps of M24, ! an interesting finite group with ~108 elements [Eguchi–Ooguri–Tachikawa ’10] Why EG(K3) ⟷ M24? Q: Is there a K3 surface M whose symmetry (that preserves the hyperKähler structure) is M24? [Mukai ’88, Kondo ’98] No! M24 elements symmetries of M2 symmetries of M1 Q: Is there a K3 sigma model whose symmetry is M24? [Gaberdiel–Hohenegger–Volpato ’11] No! M24 elements possible symmetries of K3 sigma models 3. -
Classical, Quantum and Total Correlations
Classical, quantum and total correlations L. Henderson∗ and V. Vedral∗∗ ∗Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW ∗∗Optics Section, Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ Abstract We discuss the problem of separating consistently the total correlations in a bipartite quantum state into a quantum and a purely classical part. A measure of classical correlations is proposed and its properties are explored. In quantum information theory it is common to distinguish between purely classical information, measured in bits, and quantum informa- tion, which is measured in qubits. These differ in the channel resources required to communicate them. Qubits may not be sent by a classical channel alone, but must be sent either via a quantum channel which preserves coherence or by teleportation through an entangled channel with two classical bits of communication [?]. In this context, one qubit is equivalent to one unit of shared entanglement, or `e-bit', together with two classical bits. Any bipartite quantum state may be used as a com- munication channel with some degree of success, and so it is of interest to determine how to separate the correlations it contains into a classi- cal and an entangled part. A number of measures of entanglement and of total correlations have been proposed in recent years [?, ?, ?, ?, ?]. However, it is still not clear how to quantify the purely classical part of the total bipartite correlations. In this paper we propose a possible measure of classical correlations and investigate its properties. We first review the existing measures of entangled and total corre- lations. -
On the Hardness of the Quantum Separability Problem and the Global Power of Locally Invariant Unitary Operations
On the Hardness of the Quantum Separability Problem and the Global Power of Locally Invariant Unitary Operations by Sevag Gharibian A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics in Computer Science Waterloo, Ontario, Canada, 2008 c Sevag Gharibian 2008 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Given a bipartite density matrix ρ of a quantum state, the Quantum Separability problem (QUSEP) asks — is ρ entangled, or separable? In this thesis, we first strengthen Gurvits’ 2003 NP-hardness result for QUSEP by showing that the Weak Membership problem over the set of separable bipartite quantum states is strongly NP-hard, meaning it is NP-hard even when the error margin is as large as inverse polynomial in the dimension, i.e. is “moderately large”. Previously, this NP- hardness was known only to hold in the case of inverse exponential error. We observe the immediate implication of NP-hardness of the Weak Membership problem over the set of entanglement-breaking maps, as well as lower bounds on the maximum (Euclidean) distance possible between a bound entangled state and the separable set of quantum states (assuming P 6= NP ). We next investigate the entanglement-detecting capabilities of locally invariant unitary operations, as proposed by Fu in 2006. Denoting the subsystems of ρ as B A and B, such that ρB = TrA(ρ), a locally invariant unitary operation U is one B B† with the property U ρBU = ρB. -
K3 Elliptic Genus and an Umbral Moonshine Module
UvA-DARE (Digital Academic Repository) K3 Elliptic Genus and an Umbral Moonshine Module Anagiannis, V.; Cheng, M.C.N.; Harrison, S.M. DOI 10.1007/s00220-019-03314-w Publication date 2019 Document Version Final published version Published in Communications in Mathematical Physics License CC BY Link to publication Citation for published version (APA): Anagiannis, V., Cheng, M. C. N., & Harrison, S. M. (2019). K3 Elliptic Genus and an Umbral Moonshine Module. Communications in Mathematical Physics, 366(2), 647-680. https://doi.org/10.1007/s00220-019-03314-w General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:27 Sep 2021 Commun. Math. Phys. 366, 647–680 (2019) Communications in Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-019-03314-w Mathematical Physics K3 Elliptic Genus and an Umbral Moonshine Module Vassilis Anagiannis1, Miranda C. -
Umbral Moonshine and K3 Surfaces Arxiv:1406.0619V4 [Hep-Th] 18 Jul 2017
Umbral Moonshine and K3 Surfaces Miranda C. N. Cheng∗1 and Sarah Harrisony2 1Institute of Physics and Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, the Netherlandsz 2Stanford Institute for Theoretical Physics, Department of Physics, and Theory Group, SLAC, Stanford University, Stanford, CA 94305, USA Abstract Recently, 23 cases of umbral moonshine, relating mock modular forms and finite groups, have been discovered in the context of the 23 even unimodular Niemeier lattices. One of the 23 cases in fact coincides with the so-called Mathieu moonshine, discovered in the context of K3 non-linear sigma models. In this paper we establish a uniform relation between all 23 cases of umbral moonshine and K3 sigma models, and thereby take a first step in placing umbral moonshine into a geometric and physical context. This is achieved by relating the ADE root systems of the Niemeier lattices to the ADE du Val singularities that a K3 surface can develop, and the configuration of smooth rational curves in their resolutions. A geometric interpretation of our results is given in terms of the marking of K3 surfaces by Niemeier lattices. arXiv:1406.0619v4 [hep-th] 18 Jul 2017 ∗[email protected] [email protected] zOn leave from CNRS, Paris. 1 Umbral Moonshine and K3 Surfaces 2 Contents 1 Introduction and Summary 3 2 The Elliptic Genus of Du Val Singularities 8 3 Umbral Moonshine and Niemeier Lattices 14 4 Umbral Moonshine and the (Twined) K3 Elliptic Genus 20 5 Geometric Interpretation 27 6 Discussion 30 A Special Functions 32 B Calculations and Proofs 34 C The Twining Functions 41 References 49 Umbral Moonshine and K3 Surfaces 3 1 Introduction and Summary Mock modular forms are interesting functions playing an increasingly important role in various areas of mathematics and theoretical physics. -
Entanglement Theory 2 Contents
1 Quantum information theory (20110401) Lecturer: Jens Eisert Chapter 5: Entanglement theory 2 Contents 5 Entanglement theory 5 5.1 Pure state entanglement . .5 5.1.1 Definition of pure state entanglement . .5 5.1.2 Entropy of entanglement quantifying pure state entanglement6 5.1.3 Typical sequences . .8 5.1.4 Central limit theorem . .9 5.1.5 Putting it all together: Pure state entanglement manipulation . 10 5.1.6 Pure state distillable entanglement . 11 5.1.7 Pure state entanglement dilution . 14 5.1.8 Asymptotic reversibility . 15 5.2 Mixed state entanglement . 15 5.2.1 Definition of mixed-state entanglement . 16 5.2.2 Entanglement criteria . 16 5.2.3 Entanglement witnesses . 18 5.2.4 Distillable and bound entanglement for mixed states . 19 3 4 CONTENTS Chapter 5 Entanglement theory Entanglement is the key feature of quantum mechanics that renders it different from a classical statistical theory. Bell’s theorem that shows that a classical statistical inter- pretation of quantum mechanics is not compatible with experimental findings resorts to notions of entanglement. Practically speaking, entanglement is the main resource in quantum information theory. Quantum key distribution requires entanglement, quan- tum computers cannot outperform classical machines without entanglement. In quan- tum error correction entangled states are of major importance. Sensing protocols can also only outperform classical ones when entanglement is present. Indeed, basically all advantages of protocols in quantum information theory can be traced back to en- tanglement being available in one way or the other. Hence, it makes a lot of sense to carefully consider notions of entanglement in quantitative terms. -
Modular Forms in String Theory and Moonshine
(Mock) Modular Forms in String Theory and Moonshine Miranda C. N. Cheng Korteweg-de-Vries Institute of Mathematics and Institute of Physics, University of Amsterdam, Amsterdam, the Netherlands Abstract Lecture notes for the Asian Winter School at OIST, Jan 2016. Contents 1 Lecture 1: 2d CFT and Modular Objects 1 1.1 Partition Function of a 2d CFT . .1 1.2 Modular Forms . .4 1.3 Example: The Free Boson . .8 1.4 Example: Ising Model . 10 1.5 N = 2 SCA, Elliptic Genus, and Jacobi Forms . 11 1.6 Symmetries and Twined Functions . 16 1.7 Orbifolding . 18 2 Lecture 2: Moonshine and Physics 22 2.1 Monstrous Moonshine . 22 2.2 M24 Moonshine . 24 2.3 Mock Modular Forms . 27 2.4 Umbral Moonshine . 31 2.5 Moonshine and String Theory . 33 2.6 Other Moonshine . 35 References 35 1 1 Lecture 1: 2d CFT and Modular Objects We assume basic knowledge of 2d CFTs. 1.1 Partition Function of a 2d CFT For the convenience of discussion we focus on theories with a Lagrangian description and in particular have a description as sigma models. This in- cludes, for instance, non-linear sigma models on Calabi{Yau manifolds and WZW models. The general lessons we draw are however applicable to generic 2d CFTs. An important restriction though is that the CFT has a discrete spectrum. What are we quantising? Hence, the Hilbert space V is obtained by quantising LM = the free loop space of maps S1 ! M. Recall that in the usual radial quantisation of 2d CFTs we consider a plane with 2 special points: the point of origin and that of infinity. -
Umbral Moonshine
communications in number theory and physics Volume 8, Number 2, 101–242, 2014 Umbral moonshine Miranda C. N. Cheng, John F. R. Duncan and Jeffrey A. Harvey We describe surprising relationships between automorphic forms of various kinds, imaginary quadratic number fields and a certain system of six finite groups that are parameterized naturally by the divisors of 12. The Mathieu group correspondence recently discov- ered by Eguchi–Ooguri–Tachikawa is recovered as a special case. We introduce a notion of extremal Jacobi form and prove that it characterizes the Jacobi forms arising by establishing a connection to critical values of Dirichlet series attached to modular forms of weight 2. These extremal Jacobi forms are closely related to certain vector-valued mock modular forms studied recently by Dabholkar– Murthy–Zagier in connection with the physics of quantum black holes in string theory. In a manner similar to monstrous moon- shine the automorphic forms we identify constitute evidence for the existence of infinite-dimensional graded modules for the six groups in our system. We formulate an Umbral moonshine conjecture that is in direct analogy with the monstrous moonshine conjec- ture of Conway–Norton. Curiously, we find a number of Ramanu- jan’s mock theta functions appearing as McKay–Thompson series. A new feature not apparent in the monstrous case is a property which allows us to predict the fields of definition of certain homo- geneous submodules for the groups involved. For four of the groups in our system we find analogues of both the classical McKay cor- respondence and McKay’s monstrous Dynkin diagram observation manifesting simultaneously and compatibly. -
Dissertation Automorphic Forms in String Theory: from Moonshine To
Dissertation Automorphic forms in string theory: From Moonshine to Wall Crossing Ausgef¨uhrtzum Zwecke der Erlangung des Akademischen Grades eines Doktors der technischen Wissenschaften unter der Leitung von Prof. Dr. Anton Rebhan & Univ. Asst. Timm Wrase (PhD) E{136 Institut f¨urTheoretische Physik Technische Universit¨atWien, AT eingereicht an der Technischen Universit¨atWien Fakult¨atf¨urPhysik von Abhiram Mamandur Kidambi (MSci, MSc) Matrikelnummer: 01634389 Hernalser G¨urtel2/2/27, 1080 Wien Wien, am 25.08.2020 Timm Wrase, PhD Prof. Dr. Gabriel Cardoso Prof. Dr. Justin David (TU Wien & Lehigh) (IST Lisbon) (IISc, Bangalore) (Betreuer) (Gutachter) (Gutachter) Automorphic Forms in String Theory: From Moonshine to Wall Crossing Abhiram M Kidambi Institute for Theoretical Physics, Technical University of Vienna & Stanford Institute for Theoretical Physics, Stanford University Email address: [email protected] Dedicated to the memory of M. K. Vijayaraghavan Contents List of Figures ix List of Tables xi Acknowledgements xiii Abstract of this thesis xv List of publications xvii Part 1. Introduction and Preliminaries 1 Chapter 1. Introduction and outlook3 1.1. Moonshine3 1.2. Counting BPS states in string theory4 1.3. How to read this thesis5 Chapter 2. Automorphic forms on SL(2; Z), Sp(2; Z), and their generalizations7 Overview of this chapter7 2.1. Modular forms7 2.2. Jacobi forms 13 2.3. Siegel modular forms 16 2.4. Mock modular forms 18 2.5. Mock Jacobi forms 19 2.6. Theta functions 20 2.7. Rademacher expansion and Rademacher series 21 2.8. Automorphic forms in this thesis, and in physics 22 Chapter 3.