Effects in Man of the Anticholinesterase Compound Sarin (Isopropyl Methyl Phosphonofluoridate)

Total Page:16

File Type:pdf, Size:1020Kb

Effects in Man of the Anticholinesterase Compound Sarin (Isopropyl Methyl Phosphonofluoridate) EFFECTS IN MAN OF THE ANTICHOLINESTERASE COMPOUND SARIN (ISOPROPYL METHYL PHOSPHONOFLUORIDATE) David Grob, John C. Harvey J Clin Invest. 1958;37(3):350-368. https://doi.org/10.1172/JCI103615. Research Article Find the latest version: https://jci.me/103615/pdf EFFECTS IN MAN OF THE ANTICHOLINESTERASE COMPOUND SARIN (ISOPROPYL METHYL PHOSPHONOFLUORIDATE)l By DAVID GROB AND JOHN C. HARVEY (From the Departmnent of Aledicine, The Johns Hopkins University and Hospital, Baltimore, Md.) (Submitted for publication August 6, 1957; accepted October 31, 1957) A number of organic esters of phosphoric acid In the present stud) the effect of sarin on hu- derivatives have been synthesized which have man ChE enzymes in vitro was compared with pharmacologic effects attributable to the inhibition that of tabun, TEPP, DFP, neostigmine and of cholinesterase (ChE) enzymes. The effects parathion. Sarin was administered orally to 10 resemble those produced by physostigmine and normal volunteer subjects and observations were neostigmine (Prostigming) but are more intense made of signs and symptoms and of changes in and prolonged. Di-isopropyl fluorophosphate plasma and red blood cell cholinesterase activity, (DFP) has been studied in detail (1-4) and has electrical activity of the brain, movement of air been employed as a therapeutic agent in the man- into and out of the lungs, and response to atropine. agement of abdominal distention (2), urinary re- The effects of the intra-arterial injection and con- tention, and glaucoma (5). Tetraethyl pyrophos- junctival instillation of sarin were also investi- phate (TEPP) (6) and octamethyl pyrophos- gated. phoramide (OMPA) (7) proved to be of some value in the management of myasthenia gravis, METHODS but have been replaced by less potent anticholines- The liquid sarin employed was 90 per cent pure by terase compounds. Parathion, bis- (monoiso- chemical analysis (17), but since the compounds which propylamino)-fluorophosphine oxide (Mipafox®), constitute the remaining 10 per cent may have anti- hexaethyl cholinesterase activity, the material was regarded as tetraphosphate (HETP), and TEPP 100 per cent sarin in all calculations. Solutions of sarin have been widely used as agricultural insecticides, in water and in propylene glycol were administered daily and their indiscriminate dispersal has resulted in over periods of one to four days. The concentration of a number of instances of poisoning, some of them these solutions (4 X 10' to 2.5 X 10' M) was confirmed fatal (8-10). The nerve gases are related com- by colorimetric estimation, and by determination of in- because of their and hibition of plasma and red blood cell cholinesterase in pounds which, high toxicity vitro and of toxicity to rats. Solutions were adjusted physical properties, are among the most potent to a pH of 5 to 6, at which hydrolysis is slowest, and chemical warfare agents (11-14). One of the stored at 50 C. for up to three days. At the end of this most important of these is sarin (isopropyl methyl time there was less than five per cent decrease in the phosphonofluoridate) (15), which has also been active concentration of sarin in aqueous solution, and no and has the structural formula: change in propylene glycol solution. designated GB, The cholinesterase activity of plasma (heparinized) CH3 CH3 and red blood cells was determined in duplicate or tripli- cate by electrometric determination of change in hydrogen H-C{)-P==O ion concentration (18) before and after the adminis- tration of sarin. The standard deviation of parallel repli- CH3 F cate determinations was four per cent for plasma cholines- terase and three per cent for the red blood cell enzyme, Another is tabun (dimethylamido-ethoxyphos- and five per cent for replicate determinations on sepa- phoryl cyanide) (16), which has been designated rate days following storage of frozen plasma or hemo- GA. lyzed red blood cells. For the studies of anticholinesterase activity of sarin 1 This work was supported by a contract between the and tabun carried out in vitro, plasma (heparinized) and Johns Hopkins University and the U. S. Army Chemical red blood cells were obtained from normal subjects, and Corps, and was originally reported in Medical Division skeletal muscle and brain were obtained immediately (Chemical Corps) Research Report Numbers 17 and 18, post mortem from patients who had died of diseases that August, 1950. did not directly involve these tissues. Cholinesterase 350 EFFECTS OF SARIN IN MAN 351 20- 10- 8- _. X - 4- * %.. 0 z 3 0 24 0 I- -. C.) 40 CU) 4c w UI)I- w * PLASMA z o RBC + BRAIN 0 A z x MUSCLE C) .. 11% ... 4 0.146 -., a a a a -o 2 4 6 90 12 14 16 Is CONCENTRATION OF SARIN (M x 109) FIG. 1. EFFECT OF SARIN ON HUMAN PLASMA, RED BLOOD CELL, BRAIN, AND MUSCLE CHOLINESTERASE ACTIVITY IN VITRO The same data are presented in the upper graph on a logarithmic scale, and in the lower graph on a linear scale. The concentrations of the enzyme preparations are recorded in Table I. activity was determined in duplicate or triplicate mano- tivity (Figure 1). Each increment in concentra- metrically (1). The standard deviation of parallel repli- tion inhibited the same fraction of cholinesterase cate determinations was five per cent. and had a diminishing effect on the amount in- hibited. The logarithm of the fraction of RESULTS cholin- esterase that remained active decreased linearly I. Effect of sarin on the cholinesterase activity of with increasing concentration of sarin, or, the human plasma, red blood cells, muscle and brain logarithm of the reciprocal of the fraction that re- in vitro mained active was directly proportional to the con- centration of sarin: A. Inhibition of cholinesterase ChE o Plasma cholinesterase was slightly less sensitive loChElog __ = k S, or, log ChE S ChEoh0 to inhibition by sarin than the cholinesterases pres- ent in red blood cells, muscle and brain, which where ChE0 equals cholinesterase activity just be- were approximately equally sensitive (Figure 1 fore the addition of sarin; ChEl equals cholines- and Table I). Increasing concentrations of sarin terase activity one hour later; and S equals con- resulted in increasing inhibition of enzyme ac- centration of sarin. One hour after the addition 352 DAVID GROB AND JOHN C. HARVEY TABLE I The in vitro sensitivity of human plasma, red blood cell, brain and muscle cholinesterases to inhibition of sarin, tabun, TEPP, DFP, neostigmine and parathion * Plasma ChE RBC ChE Brain ChE Muscle ChE Sarin 4.2 X 10- 3 X 10 3.3 X 10- 3.6 X 10- Tabun 1.3 X 10-8 1.5 X 10-s 1.5 X 10-8 2 X 10-8 TEPP 5 X 10- 3.5 X 10-8 3.2 X 10-8 3.5 X 10-8 DFP 9.5 X 10 4 X 10-7 3 X 10-7 2.5 X 10-7 Neostigmine 4 X 10-8 8 X 10-7 4 X 10-7 3 X 10-7 Parathion 1 X 10-6 1.2 X 10-5 1.3 X 10-6 1.5 X 10-5 * The molar concentration of each anticholinesterase agent is recorded which produced 50 per cent inhibition of the ChE activity of a solution or homogenate which hydrolyzed 4.8 X 10-4 mM acetylcholine bromide per hour in the absence of inhibitor. This rate of hydrolysis was produced by 51 mg. per ml. of plasma, 124 mg. per ml. of brain (cerebral cortex) homogenate, 58 mg. per ml. of muscle (psoas) homogenate, and 34 mg. per ml. of red blood cell contents. The initial concentration of acetylcholine bromide was 0.015 M. ChE and antiChE compounds were mixed 45 minutes before the addition of acetylcholine. of sarin, cholinesterase could not be reactivated ied. Plasma cholinesterase was slightly less sen- by standing, dilution or dialysis against running sitive than the other cholinesterases to inhibition water. by sarin, more sensitive to inhibition by TEPP, DFP, neostigmine and parathion, and as sensitive B. Comparison vith other anticholinesterase com- as the other enzymes to inhibition by tabun. pounds Sarin resembled tabun and DFP in combining The inhibitory activity of sarin against the cho- with cholinesterase almost irreversibly during the com- linesterase enzymes of the red blood cells, muscle first hour of their reaction. In contrast, the and brain was greater than that of the other bination of TEPP or parathion with cholinesterase anticholinesterase compounds, being approximately is slightly reversible (6, 19), while the combina- 5 times that of tabun, 10 times that of TEPP (6), tion of neostigmine with the enzyme is entirely 100 times that of DFP (1), and 4,000 times that reversible (20). of parathion (19) under the conditions of the experiment (Table I). The inhibitory activity of C. Solubility of sarin in an aqueous and lipoid and comparison with the other anti- sarin against plasma cholinesterase was approxi- medium, mately equal to that of TEPP, and was greater cholinesterase compounds than that of the other anticholinesterase com- Aqueous solutions of each anticholinesterase pounds. The cholinesterases of red blood cells, compound (concentrations as in Table I) were muscle and brain were approximately equally sen- homogenized with equal volumes of peanut oil, sitive to inhibition by each of the compounds stud- following which the latter was removed by centri- TABLE II Oral administration of sarin to ten normal subjects Initial dose of % Reduction of ChE* Total amt. of sarin Maximum reduc- sarin after initial dose admn. over 3 days tion of ChE* Subject mg. mg./Kg. Plasma RBC mg. mg./Kg. Plasma RBC 1. W. B. 0.030 0.0005 10 10 0.426 0.007 14 33 2. E. M.
Recommended publications
  • COMBINED LIST of Particularly Hazardous Substances
    COMBINED LIST of Particularly Hazardous Substances revised 2/4/2021 IARC list 1 are Carcinogenic to humans list compiled by Hector Acuna, UCSB IARC list Group 2A Probably carcinogenic to humans IARC list Group 2B Possibly carcinogenic to humans If any of the chemicals listed below are used in your research then complete a Standard Operating Procedure (SOP) for the product as described in the Chemical Hygiene Plan. Prop 65 known to cause cancer or reproductive toxicity Material(s) not on the list does not preclude one from completing an SOP. Other extremely toxic chemicals KNOWN Carcinogens from National Toxicology Program (NTP) or other high hazards will require the development of an SOP. Red= added in 2020 or status change Reasonably Anticipated NTP EPA Haz list COMBINED LIST of Particularly Hazardous Substances CAS Source from where the material is listed. 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide Acutely Toxic Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- Acutely Toxic 1-(2-Chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea (Methyl-CCNU) Prop 65 KNOWN Carcinogens NTP 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) IARC list Group 2A Reasonably Anticipated NTP 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) (Lomustine) Prop 65 1-(o-Chlorophenyl)thiourea Acutely Toxic 1,1,1,2-Tetrachloroethane IARC list Group 2B 1,1,2,2-Tetrachloroethane Prop 65 IARC list Group 2B 1,1-Dichloro-2,2-bis(p -chloropheny)ethylene (DDE) Prop 65 1,1-Dichloroethane
    [Show full text]
  • AASLD PRACTICE GUIDELINES Diagnosis and Management of Autoimmune Hepatitis
    AASLD PRACTICE GUIDELINES Diagnosis and Management of Autoimmune Hepatitis Michael P. Manns,1 Albert J. Czaja,2 James D. Gorham,3 Edward L. Krawitt,4 Giorgina Mieli-Vergani,5 Diego Vergani,6 and John M. Vierling7 This guideline has been approved by the American ment on Guidelines;3 and (4) the experience of the Association for the Study of Liver Diseases (AASLD) authors in the specified topic. and represents the position of the Association. These recommendations, intended for use by physi- cians, suggest preferred approaches to the diagnostic, 1. Preamble therapeutic and preventive aspects of care. They are intended to be flexible, in contrast to standards of Clinical practice guidelines are defined as ‘‘systemati- care, which are inflexible policies to be followed in ev- cally developed statements to assist practitioner and ery case. Specific recommendations are based on rele- patient decisions about appropriate heath care for spe- vant published information. To more fully characterize 1 cific clinical circumstances.’’ These guidelines on the quality of evidence supporting the recommenda- autoimmune hepatitis provide a data-supported tions, the Practice Guidelines Committee of the approach to the diagnosis and management of this dis- AASLD requires a class (reflecting benefit versus risk) ease. They are based on the following: (1) formal and level (assessing strength or certainty) of evidence review and analysis of the recently-published world lit- to be assigned and reported with each recommenda- erature on the topic [Medline search]; (2) American tion.4 The grading system applied to the recommenda- College of Physicians Manual for Assessing Health tions has been adapted from the American College of 2 Practices and Designing Practice Guidelines; (3) Cardiology and the American Heart Association Prac- guideline policies, including the AASLD Policy on the tice Guidelines, and it is given below (Table 1).
    [Show full text]
  • Nerve Agent - Lntellipedia Page 1 Of9 Doc ID : 6637155 (U) Nerve Agent
    This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of: The Black Vault The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of MILLIONS of pages released by the U.S. Government & Military. Discover the Truth at: http://www.theblackvault.com Nerve Agent - lntellipedia Page 1 of9 Doc ID : 6637155 (U) Nerve Agent UNCLASSIFIED From lntellipedia Nerve Agents (also known as nerve gases, though these chemicals are liquid at room temperature) are a class of phosphorus-containing organic chemicals (organophosphates) that disrupt the mechanism by which nerves transfer messages to organs. The disruption is caused by blocking acetylcholinesterase, an enzyme that normally relaxes the activity of acetylcholine, a neurotransmitter. ...--------- --- -·---- - --- -·-- --- --- Contents • 1 Overview • 2 Biological Effects • 2.1 Mechanism of Action • 2.2 Antidotes • 3 Classes • 3.1 G-Series • 3.2 V-Series • 3.3 Novichok Agents • 3.4 Insecticides • 4 History • 4.1 The Discovery ofNerve Agents • 4.2 The Nazi Mass Production ofTabun • 4.3 Nerve Agents in Nazi Germany • 4.4 The Secret Gets Out • 4.5 Since World War II • 4.6 Ocean Disposal of Chemical Weapons • 5 Popular Culture • 6 References and External Links --------------- ----·-- - Overview As chemical weapons, they are classified as weapons of mass destruction by the United Nations according to UN Resolution 687, and their production and stockpiling was outlawed by the Chemical Weapons Convention of 1993; the Chemical Weapons Convention officially took effect on April 291997. Poisoning by a nerve agent leads to contraction of pupils, profuse salivation, convulsions, involuntary urination and defecation, and eventual death by asphyxiation as control is lost over respiratory muscles.
    [Show full text]
  • Warning: the Following Lecture Contains Graphic Images
    What the новичок (Novichok)? Why Chemical Warfare Agents Are More Relevant Than Ever Matt Sztajnkrycer, MD PHD Professor of Emergency Medicine, Mayo Clinic Medical Toxicologist, Minnesota Poison Control System Medical Director, RFD Chemical Assessment Team @NoobieMatt #ITLS2018 Disclosures In accordance with the Accreditation Council for Continuing Medical Education (ACCME) Standards, the American Nurses Credentialing Center’s Commission (ANCC) and the Commission on Accreditation for Pre-Hospital Continuing Education (CAPCE), states presenters must disclose the existence of significant financial interests in or relationships with manufacturers or commercial products that may have a direct interest in the subject matter of the presentation, and relationships with the commercial supporter of this CME activity. The presenter does not consider that it will influence their presentation. Dr. Sztajnkrycer does not have a significant financial relationship to report. Dr. Sztajnkrycer is on the Editorial Board of International Trauma Life Support. Specific CW Agents Classes of Chemical Agents: The Big 5 The “A” List Pulmonary Agents Phosgene Oxime, Chlorine Vesicants Mustard, Phosgene Blood Agents CN Nerve Agents G, V, Novel, T Incapacitating Agents Thinking Outside the Box - An Abbreviated List Ammonia Fluorine Chlorine Acrylonitrile Hydrogen Sulfide Phosphine Methyl Isocyanate Dibotane Hydrogen Selenide Allyl Alcohol Sulfur Dioxide TDI Acrolein Nitric Acid Arsine Hydrazine Compound 1080/1081 Nitrogen Dioxide Tetramine (TETS) Ethylene Oxide Chlorine Leaks Phosphine Chlorine Common Toxic Industrial Chemical (“TIC”). Why use it in war/terror? Chlorine Density of 3.21 g/L. Heavier than air (1.28 g/L) sinks. Concentrates in low-lying areas. Like basements and underground bunkers. Reacts with water: Hypochlorous acid (HClO) Hydrochloric acid (HCl).
    [Show full text]
  • Mechanism of Central Hypopnoea Induced by Organic Phosphorus
    www.nature.com/scientificreports OPEN Mechanism of central hypopnoea induced by organic phosphorus poisoning Kazuhito Nomura*, Eichi Narimatsu, Hiroyuki Inoue, Ryoko Kyan, Keigo Sawamoto, Shuji Uemura, Ryuichiro Kakizaki & Keisuke Harada Whether central apnoea or hypopnoea can be induced by organophosphorus poisoning remains unknown to date. By using the acute brainstem slice method and multi-electrode array system, we established a paraoxon (a typical acetylcholinesterase inhibitor) poisoning model to investigate the time-dependent changes in respiratory burst amplitudes of the pre-Bötzinger complex (respiratory rhythm generator). We then determined whether pralidoxime or atropine, which are antidotes of paraoxon, could counteract the efects of paraoxon. Herein, we showed that paraoxon signifcantly decreased the respiratory burst amplitude of the pre-Bötzinger complex (p < 0.05). Moreover, pralidoxime and atropine could suppress the decrease in amplitude by paraoxon (p < 0.05). Paraoxon directly impaired the pre-Bötzinger complex, and the fndings implied that this impairment caused central apnoea or hypopnoea. Pralidoxime and atropine could therapeutically attenuate the impairment. This study is the frst to prove the usefulness of the multi-electrode array method for electrophysiological and toxicological studies in the mammalian brainstem. Te pre-Bötzinger complex (preBötC) in the ventrolateral lower brainstem is essential for the formation of the unconscious breathing rhythm in mammals1,2. Tis is because the cyclic burst excitation generated from preBötC synchronizes with the respiratory rhythm through phrenic nerve fring and the diaphragmatic contractions, and destruction of preBötC causes the disappearance of the rhythm. Periodic respiratory burst excitation has also been confrmed from an island specimen derived by isolating preBötC in an island shape to block input from other neurons2.
    [Show full text]
  • Ortho-Cresyl-Phosphate Poisoning
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.25.3.234 on 1 August 1962. Downloaded from J. Neurol. Neurosurg. Psychiat., 1962, 25, 234 Toxic polyneuritis in Bombay due to ortho-cresyl-phosphate poisoning D. D. VORA, DARAB K. DASTUR, BEATRIZ M. BRAGANCA, L. M. PARIHAR, C. G. S. IYER, R. B. FONDEKAR, AND K. PRABHAKARAN From Lokmanya Tilak Municipal General Hospital, Sion, Neurology Unit, Indian Council of Medical Research, and Department of Enzyme Chemistry, Indian Cancer Research Centre, Bombay Since 1930 poisoning with ortho-cresyl-phosphate purchased food from the same grocer in their neigh- has been recognized as a cause of peripheral poly- bourhood. He also mentioned that others staying in neuritis (Smith, Elvove, and Frazier, 1930). Ortho- the same locality and consuming mustard oil, but cresyl-phosphate (O.C.P.) is widely used as a purchasing their food from other grocers, were not plasticiser and in the production of heat-stable affected. The examination of the other affected per- lubricating oils. Many cases of industrial poisoning sons revealed identical histories and clinical pictures. with O.C.P. have been reported since then but as a In this group there was no history of gastro-enteritis result of strict precautionary measures it has now or of febrile illness preceding the paralysis. These become a rarity. However, the occasional contamina- patients also asserted that all those who were buying is not uncommon. their food from the same grocer but who were not tion of food with O.C.P. Protected by copyright. Poisoning with O.C.P.
    [Show full text]
  • Argonne Report.Pdf
    CONTENTS NOTATION ........................................................................................................................... xi ABSTRACT ........................................................................................................................... 1 1 INTRODUCTION ........................................................................................................... 5 1.1 Overview of the Emergency Response Guidebook ................................................ 5 1.2 Organization of this Report ..................................................................................... 7 2 GENERAL METHODOLOGY ....................................................................................... 9 2.1 TIH List ................................................................................................................... 10 2.1.1 Background ................................................................................................. 10 2.1.2 Changes in the TIH List for the ERG2012 ................................................. 11 2.2 Shipment and Release Scenarios ............................................................................ 11 2.2.1 Shipment Profiles ........................................................................................ 12 2.2.2 Treatment of Chemical Agents ................................................................... 14 2.3 Generics, Mixtures, and Solutions .......................................................................... 17 2.4 Analysis of Water-Reactive
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • The Effects of Occupational Exposure to Chlorpyrifos on the Peripheral
    201 Occup Environ Med: first published as 10.1136/oem.2003.008847 on 25 February 2004. Downloaded from ORIGINAL ARTICLE The effects of occupational exposure to chlorpyrifos on the peripheral nervous system: a prospective cohort study J W Albers, D H Garabrant, S J Schweitzer, R P Garrison, R J Richardson, S Berent ............................................................................................................................... Occup Environ Med 2004;61:201–211. doi: 10.1136/oem.2003.008847 Aims: To determine whether chronic occupational exposure to chlorpyrifos at levels associated with various aspects of manufacturing produced a clinically evident or subclinical peripheral neuropathy. Methods: Clinical and quantitative nerve conduction study (NCS) examinations were performed on two occasions on chlorpyrifos manufacturing workers who had measurable chlorpyrifos exposure and a referent group. Baseline evaluations were performed on 53 of 66 eligible chlorpyrifos subjects and on 60 of 74 eligible referent subjects; one-year evaluations were completed on 111 of the 113 subjects evaluated at baseline. Results: Chlorpyrifos and referent groups differed significantly in measures of 3,5,6 trichloro-2-pyridinol excretion and plasma butyrylcholinesterase (BuChE) activity, indicating substantially higher exposures See end of article for authors’ affiliations among chlorpyrifos subjects. Few subjects had clinically important neurological symptoms or signs. NCS ....................... results were comparable to control values, and there were no significant group differences in NCS results at baseline, one year, or change over one year. No chlorpyrifos subject fulfilled conventional criteria for Correspondence to: Dr J W Albers, Department confirmed peripheral neuropathy at baseline or one-year examinations. The odds ratios for developing of Neurology, 1C325/ any diagnosable level of peripheral neuropathy among the chlorpyrifos subjects was not increased at 0032 University Hospital, baseline or at one year compared to referents at baseline.
    [Show full text]
  • Proceedings of the Indiana Academy Of
    Preliminary Tests with Systemic Insecticides 1 George E. Gould, Purdue University A systemic insecticide is one that is absorbed by the plant and translocated in the sap so that parts of the plant other than those treated become toxic to sucking insects. This type of insecticidal action was demonstrated for selenium compounds by Gnadinger (1) and others as early as 1933. These compounds were never used extensively as quantities of the material dangerous to humans accumulated in sprayed plants or in plants grown in treated soils. Recently German chemists have developed a number of phosphorus compounds that show systemic action. In our tests three of these compounds have been tried in com- parison with three related phosphorus compounds for which no systemic action has been claimed. The development of these systemic and other phosphorus compounds have been based on the discoveries of the German chemist Schrader in 1942 (German patent 720,577). After World War II this information became available to the Allied Governments and soon numerous com- pounds were released for experimental purposes. At present three of the non-systemic compounds, parathion, hexaethyl tetraphosphate and tetraethyl pyrophosphate, are available commercially. The first of the systemics tested was C-1014, a formulation similar to Pestox 3 (octa- methylpyrophosphoramide) which has been used in England. The other two in our tests were Systox with its active ingredient belonging to a trialkyl thiophosphate group and Potasan, diethoxy thiophosphoric acid ester of 7-hydroxy-4-methyl coumarin. Two additional phosphorus com- pounds used in some tests included Metacide, a mixture containing 6.2% parathion and 24.5% of 0, O-dimethyl O-p-nitrophenyl thiophos- phate, and EPN 300, ethyl p-nitrophenyl thionobenzine phosphonate.
    [Show full text]
  • Demecarium Bromide/Homatropine 1881
    Demecarium Bromide/Homatropine 1881 Dyflos (BAN) junctival injection of pralidoxime has been used to reverse severe ocular adverse effects. Supportive treatment, including assisted DFP; Difluorophate; Di-isopropyl Fluorophosphate; Di-isopro- ventilation, should be given as necessary. CH3 pylfluorophosphonate; Fluostigmine; Isoflurofato; Isoflurophate. Di-isopropyl phosphorofluoridate. To prevent or reduce development of iris cysts in patients receiv- N ing ecothiopate eye drops, phenylephrine eye drops may be giv- C6H14FO3P = 184.1. en simultaneously. CAS — 55-91-4. ATC — S01EB07. Precautions ATC Vet — QS01EB07. As for Neostigmine, p.632. For precautions of miotics, see also OH under Pilocarpine, p.1885. In general, as with other long-acting anticholinesterases, ecothiopate should be used only where ther- O apy with other drugs has proved ineffective. Ecothiopate iodide CH3 should not be used in patients with iodine hypersensitivity. O O H3C O Interactions P CH3 As for Neostigmine, p.632. The possibility of an interaction re- O F mains for a considerable time after stopping long-acting anti- Homatropine Hydrobromide (BANM) CH3 cholinesterases such as ecothiopate. Homatr. Hydrobrom.; Homatropiinihydrobromidi; Homatropi- Pharmacopoeias. In US. Uses and Administration na, hidrobromuro de; Homatropine, bromhydrate d’; Homatro- USP 31 (Isoflurophate). A clear, colourless, or faintly yellow liq- Ecothiopate is an irreversible inhibitor of cholinesterase; its ac- pin-hidrobromid; Homatropinhydrobromid; Homatropin-hydro- uid. Specific gravity about 1.05. Sparingly soluble in water; sol- tions are similar to those of neostigmine (p.632) but much more bromid; Homatropini hydrobromidum; Homatropinium Bro- uble in alcohol and in vegetable oils. It is decomposed by mois- prolonged. Its miotic action begins within 1 hour of its applica- mide; Homatropino hidrobromidas; Homatropinum Bromatum; ture with the evolution of hydrogen fluoride.
    [Show full text]
  • Enzymatic Degradation of Organophosphorus Pesticides and Nerve Agents by EC: 3.1.8.2
    catalysts Review Enzymatic Degradation of Organophosphorus Pesticides and Nerve Agents by EC: 3.1.8.2 Marek Matula 1, Tomas Kucera 1 , Ondrej Soukup 1,2 and Jaroslav Pejchal 1,* 1 Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; [email protected] (M.M.); [email protected] (T.K.); [email protected] (O.S.) 2 Biomedical Research Center, University Hospital Hradec Kralove, Sokolovska 581, 500 05 Hradec Kralove, Czech Republic * Correspondence: [email protected] Received: 26 October 2020; Accepted: 20 November 2020; Published: 24 November 2020 Abstract: The organophosphorus substances, including pesticides and nerve agents (NAs), represent highly toxic compounds. Standard decontamination procedures place a heavy burden on the environment. Given their continued utilization or existence, considerable efforts are being made to develop environmentally friendly methods of decontamination and medical countermeasures against their intoxication. Enzymes can offer both environmental and medical applications. One of the most promising enzymes cleaving organophosphorus compounds is the enzyme with enzyme commission number (EC): 3.1.8.2, called diisopropyl fluorophosphatase (DFPase) or organophosphorus acid anhydrolase from Loligo Vulgaris or Alteromonas sp. JD6.5, respectively. Structure, mechanisms of action and substrate profiles are described for both enzymes. Wild-type (WT) enzymes have a catalytic activity against organophosphorus compounds, including G-type nerve agents. Their stereochemical preference aims their activity towards less toxic enantiomers of the chiral phosphorus center found in most chemical warfare agents. Site-direct mutagenesis has systematically improved the active site of the enzyme. These efforts have resulted in the improvement of catalytic activity and have led to the identification of variants that are more effective at detoxifying both G-type and V-type nerve agents.
    [Show full text]