View Plots of the Lowest Energy Structures of M22pt – M25pt4

Total Page:16

File Type:pdf, Size:1020Kb

View Plots of the Lowest Energy Structures of M22pt – M25pt4 THE EFFECT OF METAL CONTAINING LIGANDS ON THE METAL-METAL QUADRUPLE BOND: STRUCTURE, SYNTHESIS, AND PHOTOPHYSICS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Christopher Blair Durr Graduate Program in Chemistry The Ohio State University 2015 Dissertation Committee: Dr. Malcolm H. Chisholm – Advisor Dr. Claudia Turro Dr. Patrick M. Woodward Dr. Hamish Fraser Copyright by Christopher Blair Durr 2015 Abstract The world’s ever increasing demand for fossil fuels has lead to a renewed focus by the scientific community to develop energy sources that are clean, renewable, and economical. One of the most promising emerging technologies is photovoltaic cells that can turn sunlight directly into energy or into fuels such as methane or hydrogen. In order for these cells to replace preexisting energy sources, it is necessary to increase their efficiency and processability while also curtailing cost. The focus of this work will be on electron donating materials, the main purpose of which is to absorb light and cause charge transfer to occur in the cell. To increase efficiency of donor materials several factors must be considered. Firstly, the material must capture as much of the solar spectrum as possible, which ranges from 400 nm to well over 1200 nm. Thus a material that has a broad, tunable absorption band is key to capturing as much of this light as possible. Secondly, the absorbing material must efficiently absorb photons by having a high molar absorptivity. Lastly, when light hits the donor material there must be a sufficient separation of the electron-hole pair. The material must stay in this charge separated state long enough to undergo charge transfer to an acceptor and thus begin the circuit. M2 quadruply bonded complexes, where M2 = Mo2, MoW or W2 have optical properties ideal for electron donating materials. Compounds of this type have a fully allowed metal- ii to-ligand charge-transfer (MLCT) band that is tunable from 400 nm to 1200 nm based on the choice of metal and ligand. This absorption is quite intense with extinction coefficients from 20,000 to nearly 100,000 M-1cm-1. The MLCT is caused by the transfer of an electron from a M2δ orbital to a ligand based π* orbital. The molecule exists in this singlet MLCT state for 3 – 25 ps before intersystem crossing to either a 3δδ* or 3MLCT state lasting from 2 ns - >75 μs. This work will discuss the synthesis, characterization and photophysics of M2 complexes and their interactions with metal containing ligands. By using organometallic or metal- organic ligands it is possible to cover more of the solar spectrum as the metal containing ligands chosen also have allowable optical transitions that are possible to tune. The ligands discussed herein contain chromium, rhenium, and platinum which each have interesting photophysical properties of their own. In the initial chapters metal carbonyls of chromium and rhenium were studied as the CO infrared stretches served as markers to follow using femtosecond time-resolved infrared spectroscopy. The effect of additional metal d-orbitals on the molecules excited state dynamics was discussed in detail for these compounds. A theoretical study of M2-Pt acetylide polymers was also conducted to determine the electronic structure and optical properties of future materials. Isonicotinic N-oxide is investigated as a ligand for Mo2 systems and the resulting complexes are attached to solid state films consisting of TiO2, NiO and Indium-Tin oxide. Finally, the solid state packing of Mo2 halobenzoate complexes is discussed as molecules of this form tend to form interesting halogen- halogen interactions. iii To Sarah iv Acknowledgments It has been a long and exciting road to get to a point where I may finally write an Acknowledgment to this thesis. Forgive me in advance for any errors or omissions in this section of the work, as one’s English tends to atrophy after years of writing in third person. There are so many people that I need to thank, incredible individuals who have helped me get to where I am today. In many ways, the chapters that follow are as much theirs as mine. First and foremost, I need to thank my parents, Virginia and Robert, and my sister Stephanie for putting up with years of my pseudo-scientific endeavors. From messes in the kitchen to destroyed computers in the basement, they have always encouraged my curiosities. However, despite this curiosity, my growing passion for chemistry may have never fully taken form without the help and dedication of my first mentor, Mr. David Weaver. He found a way to make chemistry come alive in ways that few could. I can wholeheartedly say, after spending nearly my entire life in school, Mr. Weaver is without a doubt one of the finest educators I’ve ever known. Shortly after my first year at Kent State University, I met Dr. Scott Bunge and joined his lab as an Undergraduate researcher. Scott had a tremendous influence on my decision to v get a Ph.D., and he taught me a love for inorganic chemistry, particularly for synthesis and structure, which remains with me to this day. Everything I have accomplished in Graduate School stemmed from the head start I gained by working in his lab, and for that I am eternally grateful. My decision of where to attend Graduate School was, in retrospect, a simple one. I wanted to work for a leader in the field of inorganic chemistry, someone who would let me pursue my own ideas, and someone who was a great person. With those things in mind, Dr. Malcolm Chisholm was an easy choice. Malcolm has been every bit the mentor I expected him to be. He has always been there to guide me through the treacherous years of my Ph.D., all the while encouraging me to explore new ideas and possibilities. I am incredibly proud to have worked with him for the past five years and I hope to pass on everything he has taught me to generations to come. Even if I work every day for the rest of my life, I will never be able to repay him for all he’s done. There are several other people who have been incredibly helpful throughout my time at Ohio State. Dr. Vesal Naseri was instrumental early in my career for teaching me the finer points of synthesis and for many helpful discussions. Dr. Claudia Turro has been like a second advisor to me, and she was always there when I needed to bounce an idea around or get an opinion. Furthermore, Dr. Turro has always believed in me, and for that I can’t thank her enough. Finally, Dr. Judy Gallucci has taught me more about crystallography than I ever thought possible. She has been infinitely patient with me over the years and has introduced me to an incredible community of scientists. vi I cannot overstate how inspiring and helpful my colleagues, both in and out of the Chisholm group, have been to me. We have a saying in the group that goes, “You learn the most from your brothers and sisters,” and I believe that every bit of that is true. I could not have asked for a better group of people to learn and work with all of these years, and I would like to thank all of them, both past and present. In particular I feel it necessary to mention a few of them by name, as they had substantial contributions to this document. Dr. Samantha Brown-Xu did all of the fs-TRIR and fs-TA seen in this document. She also contributed greatly to Chapters 3 and 4, and her initial work on TiO2 was the inspiration for Chapter 6. Any photophysics I know, I know because of Sam. Dr. Thomas Spilker was responsible for all of the emission data, and ns-TA seen herein. Furthermore he conducted the synthesis for the crystal engineering in Chapter 7. Tom is an excellent synthetic chemist, left-fielder, and friend. While Dr. Sharlene Lewis, Vagulejan Balasanthiran, and Philip Young did not contribute directly to this work, they have all been a joy to work with. Sharlene and Bala are two of the finest synthetic chemists I’ve had the opportunity to meet and both are exceedingly fine people. It’s personally been a pleasure to watch Phil grow from someone constantly asking me questions to constantly answering mine. He’s an exceptional chemist both at the bench and in the classroom. Last but certainly not least, Dr. Bryan Albani who, without contributing any words to this dissertation, made it entirely possible through his support and friendship from our first day onward. I started this section with family and thus it feels fitting to end with family. It’s funny how family comes in many different guises. There are those we are born into, those we vii marry into and those we are adopted by. My best friend Mark Spillan is a member of the latter, and without him I surely wouldn’t be here today. My “in-laws”, Mike, Lorrie, Emily and Kyle have filled my life with more joy and laughter than I ever thought possible, and their support has meant the world to me. (Kyle and Emily deserve a bit of extra credit having edited my tortured writing, and trying in vain to explain to me when one is to use commas appropriately). This family is growing still with Stephanie, Jason and little Arianna, who certainly won’t stay little for as long as I’d like her to.
Recommended publications
  • Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc
    Metal-Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc Richard H. Duncan Lyngdoh*,a, Henry F. Schaefer III*,b and R. Bruce King*,b a Department of Chemistry, North-Eastern Hill University, Shillong 793022, India B Centre for Computational Quantum Chemistry, University of Georgia, Athens GA 30602 ABSTRACT: This survey of metal-metal (MM) bond distances in binuclear complexes of the first row 3d-block elements reviews experimental and computational research on a wide range of such systems. The metals surveyed are titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, representing the only comprehensive presentation of such results to date. Factors impacting MM bond lengths that are discussed here include (a) n+ the formal MM bond order, (b) size of the metal ion present in the bimetallic core (M2) , (c) the metal oxidation state, (d) effects of ligand basicity, coordination mode and number, and (e) steric effects of bulky ligands. Correlations between experimental and computational findings are examined wherever possible, often yielding good agreement for MM bond lengths. The formal bond order provides a key basis for assessing experimental and computationally derived MM bond lengths. The effects of change in the metal upon MM bond length ranges in binuclear complexes suggest trends for single, double, triple, and quadruple MM bonds which are related to the available information on metal atomic radii. It emerges that while specific factors for a limited range of complexes are found to have their expected impact in many cases, the assessment of the net effect of these factors is challenging.
    [Show full text]
  • The Dicarbon Bonding Puzzle Viewed with Photoelectron Imaging
    The dicarbon bonding puzzle viewed with photoelectron imaging The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Laws, B.A., et al., "The dicarbon bonding puzzle viewed with photoelectron imaging." Nature Communications 10 (Nov. 2019): no. 5199 doi 10.1038/s41467-019-13039-y ©2019 Author(s) As Published 10.1038/s41467-019-13039-y Publisher Springer Science and Business Media LLC Version Final published version Citable link https://hdl.handle.net/1721.1/125929 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ ARTICLE https://doi.org/10.1038/s41467-019-13039-y OPEN The dicarbon bonding puzzle viewed with photoelectron imaging B.A. Laws 1*, S.T. Gibson 1, B.R. Lewis1 & R.W. Field 2 Bonding in the ground state of C2 is still a matter of controversy, as reasonable arguments may be made for a dicarbon bond order of 2, 3,or4. Here we report on photoelectron spectra À of the C2 anion, measured at a range of wavelengths using a high-resolution photoelectron 1Σþ fi 3Π 1234567890():,; imaging spectrometer, which reveal both the ground X g and rst-excited a u electronic states. These measurements yield electron angular anisotropies that identify the character of two orbitals: the diffuse detachment orbital of the anion and the highest occupied molecular orbital of the neutral. This work indicates that electron detachment occurs from pre- σ π dominantly s-like (3 g) and p-like (1 u) orbitals, respectively, which is inconsistent with the predictions required for the high bond-order models of strongly sp-mixed orbitals.
    [Show full text]
  • Bonding in Molecules Michaelmas Term - Second Year 2019 These 8 Lectures Build on Material Presented in “Introduction to Molecular Orbitals” (HT Year 1)
    Bonding in Molecules Michaelmas Term - Second Year 2019 These 8 lectures build on material presented in “Introduction to Molecular Orbitals” (HT Year 1). They provide a basis for analysing the shapes, properties, spectra and reactivity of a wide range of molecules and transition metal compounds. The essentials of molecular orbital theory 1. The requirements for a good theory of bonding 2. The orbital approximation 3. The nature of molecular orbitals 4. The linear combination of atomic orbitals (LCAO) approach to molecular orbitals + Diatomic molecules: H2 ,H2 and AH + 5. The wave functions for H2 and H2 using an LCAO approach 6. MO schemes for AH molecules (A = second period atom, Li to F) Symmetry and molecular orbital diagrams for the first row hydrides AHn 7. The use of symmetry in polyatomic molecules 8. MO treatment of AH2 (C2v) 9. MO diagrams for AH3 (C3v) 10. MO diagrams for AH4 (Td) Photoelectron spectroscopy and experimental energy levels 11. Photoelectron spectroscopy and "experimental" MO diagrams 12. Photoelectron spectra of AHn molecules The use of Walsh diagrams in exploring molecular shapes 13. TheshapesofAH2 molecules + - 14. ThebondingandshapesofH3 and H3 : 3c-2e and 3c-4e bonds Molecular orbital diagrams for hyper-coordinate molecules 15. The bonding in XeF2 (and CO2) 16. 12-electron main group octahedral systems: SF6 as an example 2+ 2+ 17. Expanding the coordination sphere in carbon: [C(AuPR3)6] as an analogue of CH6 Fragment approach to bonding in electron deficient clusters 18. Build up of molecules from fragments 2– 19. Bonding in [B6H6] (from 6 equivalent BH fragments) and Wade’s rules , the concept of isolobality Complexes of the transition metals: octahedral, tetrahedral and square planar.
    [Show full text]
  • The Electronic Spectrum of Re2cl8 : a Theoretical Study
    Inorg. Chem. 2003, 42, 1599−1603 2- The Electronic Spectrum of Re2Cl8 : A Theoretical Study Laura Gagliardi*,† and Bjo1rn O. Roos‡ Dipartimento di Chimica Fisica F. Accascina, Viale delle ScienzesParco d’Orleans II, I-90128 Palermo, Italy, and Department of Theoretical Chemistry, Chemical Center, P.O. Box 124, S-221 00 Lund, Sweden Received October 14, 2002 2- One of the prototype compounds for metal−metal multiple bonding, the Re2Cl8 ion, has been studied theoretically using multiconfigurational quantum chemical methods. The molecular structure of the ground state has been determined. It is shown that the effective bond order of the Re−Re bond is close to three, due to the weakness of, in particular, the δ bond. The electronic spectrum has been calculated with the inclusion of spin−orbit coupling. Observed spectral features have been reproduced with good accuracy, and a number of new assignments are suggested. 1. Introduction In 1965, F. A. Cotton and C. B. Harris reported the crystal 1 structure of K2[Re2Cl8]‚2H2O. A surprisingly short Re-Re distance of 2.24 Å was found. This was the first example of 2- a multiple bond between two metal atoms, and the Re2Cl8 ion has since then become the prototype for this type of complexes. A new era of inorganic chemistry was born. Cotton analyzed the bonding using simple molecular orbital 2- (MO) theory and concluded that a quadruple Re-Re bond Figure 1. Structure of Re2Cl8 . 1,2 was formed. Two parallel ReCl4 units are connected by order depends on the relation between the occupation of the the Re-Re bond.
    [Show full text]
  • Theoretical Studies of the Chemical Bond in Ac2, Th2, Pa2, and U2
    Published on Web 12/06/2006 Exploring the Actinide-Actinide Bond: Theoretical Studies of the Chemical Bond in Ac2,Th2,Pa2, and U2 Bjo¨rn O. Roos,*,† Per-A° ke Malmqvist,† and Laura Gagliardi‡ Contribution from the Department of Theoretical Chemistry, UniVersity of Lund, Chemical Center, PO Box 124, S-221 00 Lund, Sweden, and Department of Physical Chemistry, Sciences II, UniVersity of GeneVa, 30 Quai Ernest Ansermet, CH-1211 GeneVa 4, Switzerland Received September 26, 2006; E-mail: [email protected] Abstract: Multiconfigurational quantum chemical methods (CASSCF/CASPT2) have been used to study the chemical bond in the actinide diatoms Ac2,Th2,Pa2, and U2. Scalar relativistic effects and spin-orbit coupling have been included in the calculations. In the Ac2 and Th2 diatoms the atomic 6d,7s, and 7p orbitals are the significant contributors to the bond, while for the two heavier diatoms, the 5f orbitals become 3 - + increasingly important. Ac2 is characterized by a double bond with a ∑g (0g ) ground state, a bond distance 3 of 3.64. Å, and a bond energy of 1.19 eV. Th2 has quadruple bond character with a Dg(1g) ground state. The bond distance is 2.76 Å and the bond energy (D0) 3.28 eV. Pa2 is characterized by a quintuple bond 3 - + with a ∑g (0g ) ground state. The bond distance is 2.37 Å and the bond energy 4.00 eV. The uranium 7 diatom has also a quintuple bond with a Og (8g) ground state, a bond distance of 2.43 Å, and a bond energy of 1.15 eV.
    [Show full text]
  • An Electronrich Molybdenummolybdenum
    Angewandte. Communications DOI: 10.1002/anie.201200122 Metal–Metal Multiple Bonds An Electron-Rich Molybdenum–Molybdenum Quintuple Bond Spanned by One Lithium Atom** Shin-Cheng Liu, Wei-Lun Ke, Jen-Shiang K. Yu,* Ting-Shen Kuo, and Yi-Chou Tsai* In the field of metal–metal multiple bonding, there are many factors that affect the metal–metal bond lengths. The most determinant cause is the structural configuration of com- plexes,[1] and this has been illustrated by the Group 6 metal– metal quadruple bonds. In the large number of tetragonal [1] quadruply bonded complexes [M2X8], the increase in the internal twist angle between two MX4 fragments leads to elongation of the metal–metal quadruple bond.[1,2] For Scheme 1. Three possible geometries for quintuply bonded complexes. example, those quadruply bonded dimolybdenum complexes with the torsion angles about the MoÀMo bond of 26–408 possess long MoÀMo bonds in the range of 2.18–2.19 , which metal–metal quintuple bonds spanned by two bidentate is because a major part of the d bonding has been abolished. nitrogen-based ligands. The existence of the CrÀCr quintuple In contrast to the relatively mature metal–metal triple- bond of the type II complex was recently corroborated by and quadruple-bond chemistry,[1, 3] quintuple bonding is in its charge-density studies.[9] Preliminary reactivity studies on the infancy. In contrast to the trigonal triply bonded and type II complexes indicate these univalent and low-coordi- tetragonal quadruply bonded dinuclear complexes, the geom- nate dinuclear species are reactive towards unsaturated etry of a quintuply bonded compound has been controversial.
    [Show full text]
  • Comprehending the Quadruple Bonding Conundrum in C2 from Excited State Potential Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Comprehending the quadruple bonding conundrum in C2 from excited state potential Cite this: Chem. Sci., 2020, 11, 7009 † All publication charges for this article energy curves have been paid for by the Royal Society of Chemistry Ishita Bhattacharjee, Debashree Ghosh * and Ankan Paul * The question of quadruple bonding in C2 has emerged as a hot button issue, with opinions sharply divided between the practitioners of Valence Bond (VB) and Molecular Orbital (MO) theory. Here, we have systematically studied the Potential Energy Curves (PECs) of low lying high spin sigma states of C2,N2, Be2 and HC^CH using several MO based techniques such as CASSCF, RASSCF and MRCI. The analyses 2S+1 of the PECs for the Sg/u (with 2S +1¼ 1, 3, 5, 7, 9) states of C2 and comparisons with those of relevant dimers and the respective wavefunctions were conducted. We contend that unlike in the case 7 + + of N2 and HC^CH, the presence of a deep minimum in the S state of C2 and CN suggests a latent quadruple bonding nature in these two dimers. Our investigations reveal that the number of bonds in the nd Creative Commons Attribution-NonCommercial 3.0 Unported Licence. ground state can be determined for 2 row dimers by figuring out at what value of spin symmetry a purely dissociative PEC is obtained. For N2 and HC^CH the purely dissociative PEC appears for the septet spin symmetry as compared to that for the nonet in C2. This is indicative of a higher number of Received 24th April 2020 bonds between the two 2nd row atoms in C as compared to those of N and HC^CH.
    [Show full text]
  • Bimetallic Complexes
    University of the Pacific Scholarly Commons University of the Pacific Theses and Dissertations Graduate School 2018 Bimetallic complexes: The fundamental aspects of metal-metal interactions, ligand sterics and application Michael Bernard Pastor University of the Pacific, [email protected] Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds Part of the Inorganic Chemistry Commons, and the Medicinal and Pharmaceutical Chemistry Commons Recommended Citation Pastor, Michael Bernard. (2018). Bimetallic complexes: The fundamental aspects of metal-metal interactions, ligand sterics and application. University of the Pacific, Dissertation. https://scholarlycommons.pacific.edu/uop_etds/3559 This Dissertation is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. 1 BIMETALLIC COMPLEXES: THE FUNDAMENTAL ASPECTS OF METAL- METAL INTERACTIONS, LIGAND STERICS AND APPLICATION by Michael B. Pastor A Dissertation Submitted to the In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Department of Chemistry Pharmaceutical and Chemical Sciences University of the Pacific Stockton, CA 2018 2 BIMETALLIC COMPLEXES: THE FUNDAMENTAL ASPECTS OF METAL- METAL INTERACTIONS, LIGAND STERICS AND APPLICATION by Michael B. Pastor APPROVED BY: Dissertation Advisor: Qinliang Zhao, Ph.D Committee Member: Anthony Dutoi, Ph.D. Committee Member: Xin Guo, Ph.D. Committee Member: Jianhua Ren, Ph.D. Committee Member: Balint Sztáray, Ph.D. Department Chairs: Jianhua Ren, Ph.D.; Jerry Tsai, PhD. Dean of Graduate Studies: Thomas Naehr, Ph.D. 3 BIMETALLIC COMPLEXES: THE FUNDAMENTAL ASPECTS OF METAL- METAL INTERACTIONS, LIGAND STERICS AND APPLICATION Copyright 2018 by Michael B.
    [Show full text]
  • Synthesis and Electrodeposition of Mixed Metal Trinuclear Clusters of Molybdenum and Chromium in Ionic Liquid Onto a Platinum Electrode
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2013 Synthesis and Electrodeposition of Mixed Metal Trinuclear Clusters of Molybdenum and Chromium in Ionic Liquid onto a Platinum Electrode Lynn Renee Frock Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Chemistry Commons Repository Citation Frock, Lynn Renee, "Synthesis and Electrodeposition of Mixed Metal Trinuclear Clusters of Molybdenum and Chromium in Ionic Liquid onto a Platinum Electrode" (2013). Browse all Theses and Dissertations. 679. https://corescholar.libraries.wright.edu/etd_all/679 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. SYNTHESIS AND ELECTRODEPOSITION OF MIXED METAL TRINUCLEAR CLUSTERS OF MOLYBDENUM AND CHROMIUM IN IONIC LIQUID ONTO A PLATINUM ELECTRODE. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Lynn Renee Frock A.S., Chemistry, Sinclair Community College, 1996 B.S., Psychology, Kennesaw State University, 2003 2012 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL DECEMBER 14, 2012 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Lynn Renee Frock ENTITLED Synthesis and Electrodeposition of Mixed Metal Trinuclear Clusters of Molybdenum and Chromium in Ionic Liquid onto a Platinum Electrode BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. ____________________________ Vladimir Katovic, Ph.D.
    [Show full text]
  • The Synergy Between Theory and Experiment
    This paper is published as part of a Dalton Transactions themed issue on: The Synergy between Theory and Experiment Guest Editor John McGrady University of Glasgow, UK Published in issue 30, 2009 of Dalton Transactions Image reproduced with permission of Christophe Coperet Papers published in this issue include: A combined picture from theory and experiments on water oxidation, oxygen reduction and proton pumping Per E. M. Siegbahn and Margareta R. A. Blomberg, Dalton Trans., 2009, DOI: 10.1039/b903007g Mechanisms of C–H bond activation: rich synergy between computation and experiment Youcef Boutadla, David L. Davies, Stuart A. Macgregor and Amalia I. Poblador-Bahamonde, Dalton Trans., 2009, DOI: 10.1039/b904967c Are tetrathiooxalate and diborinate bridged compounds related to oxalate bridged quadruply bonded compounds of molybdenum? Malcolm H. Chisholm and Namrata Singh, Dalton Trans., 2009 DOI: 10.1039/b901734h Molecular recognition in Mn-catalyzed C–H oxidation. Reaction mechanism and origin of selectivity from a DFT perspective David Balcells, Pamela Moles, James D. Blakemore, Christophe Raynaud, Gary W. Brudvig, Robert H. Crabtree and Odile Eisenstein, Dalton Trans., 2009 DOI: 10.1039/b905317d Visit the Dalton Transactions website for more cutting-edge inorganic and organometallic research www.rsc.org/dalton PAPER www.rsc.org/dalton | Dalton Transactions Crystal structure of octabromoditechnetate(III) and a multi-configurational quantum chemical study of the d → d* transition in quadruply bonded 2- [M2X8] dimers (M = Tc, Re; X = Cl, Br)† Frederic Poineau,*a Laura Gagliardi,b,c Paul M. Forster,a Alfred P. Sattelbergera,d and Kenneth R. Czerwinskia Received 2nd February 2009, Accepted 3rd April 2009 First published as an Advance Article on the web 8th May 2009 DOI: 10.1039/b902106j The technetium(III) compound (n-Bu4N)2[Tc2Br8] was prepared by metathesis of (n-Bu4N)2[Tc2Cl8] with concentrated aqueous HBr in acetone and recrystallized from acetone–diethyl ether solution (2 : 1 v/v).
    [Show full text]
  • Insights from Full Configuration Interaction and Valence Bond Studies
    University of Groningen Bonding in B-2 and B-2(+) Rashid, Zahid; van Lenthe, Joop H.; Havenith, Remco W. A. Published in: Computational and Theoretical Chemistry DOI: 10.1016/j.comptc.2017.02.001 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2017 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Rashid, Z., van Lenthe, J. H., & Havenith, R. W. A. (2017). Bonding in B-2 and B-2(+): Insights from full configuration interaction and valence bond studies. Computational and Theoretical Chemistry, 1116, 92-95. https://doi.org/10.1016/j.comptc.2017.02.001 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 23-09-2021 Computational and Theoretical Chemistry 1116 (2017) 92–95 Contents lists available at ScienceDirect Computational and Theoretical Chemistry journal homepage: www.elsevier.com/locate/comptc + Bonding in B2 and B2: Insights from full configuration interaction and valence bond studies ⇑ Zahid Rashid a,b, Joop H.
    [Show full text]
  • Metal Cluster 3
    1 Subject Chemistry 11, Inorganic Chemistry –III (Metal π-Complexes Paper No and Title and Metal Clusters) Module No and Module 33: Preparation, structure and bonding of Title compounds having M-M multiple bonds Module Tag CHE_P11_M33 CHEMISTRY 11. Inorganic Chemistry–III (Metal π-Complexes and Metal Clusters) Module 33: Preparation, structure and bonding of compounds having M-M multiple bonds 2 TABLE OF CONTENTS 1. Learning outcomes 2. Introduction 3. Preparation of organometallic carbonyl clusters. 4. Preparation of inorganic metal clusters. 5. Structure and bonding in cluster containing metal-metal multiple bonds. 6. Summary CHEMISTRY 11. Inorganic Chemistry–III (Metal π-Complexes and Metal Clusters) Module 33: Preparation, structure and bonding of compounds having M-M multiple bonds 3 1. Learning Outcomes After studying this module, you shall be able to know about Metal cluster compounds. Preparative methods for metal cluster compounds containing single and multiple metal-metal bonds. Type of bonding and molecular orbital picture of the M-M bonds in such cluster. 2. Introduction Metal-metal multiple bonding is an important feature of the chemistry of many transition elements andis very important to the field of metal cluster chemistry. They constitute an important class of multiple bonds unlike multiple bonds between the main group elements and multiple metal-ligand bonds. Multiple metal-metal bonds of the order 2, 2.5, 3, 3.5 and 4 are well- known. The Re=Re double bond was the first ever observation of a metal-metal multiple bond in 3- [Re3Cl12] . A typical property of metals is that rather than forming straight chains or rings, metals tend to agglomerate so as to form maximum number of bonds with minimum number of adjacent metal atoms, giving rise to either metal-metal multiple bonds or metal cluster compounds.
    [Show full text]