ASTRONOMY Ffirs.Qxd 7/11/09 10:23 AM Page Ii Ffirs.Qxd 7/11/09 10:23 AM Page Iii

Total Page:16

File Type:pdf, Size:1020Kb

ASTRONOMY Ffirs.Qxd 7/11/09 10:23 AM Page Ii Ffirs.Qxd 7/11/09 10:23 AM Page Iii ffirs.qxd 7/11/09 10:23 AM Page ii ffirs.qxd 7/11/09 10:23 AM Page i ASTRONOMY ffirs.qxd 7/11/09 10:23 AM Page ii ffirs.qxd 7/11/09 10:23 AM Page iii ASTRONOMY A Self-Teaching Guide Seventh Edition Dinah L. Moché, Ph.D. John Wiley & Sons, Inc. ffirs.qxd 7/11/09 10:23 AM Page iv This book is printed on acid-free paper.• Copyright © 1978, 1981, 1987, 1993, 2000, 2004, 2009 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system or trans- mitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008. Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best efforts in preparing this book, they make no representations or war- ranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a partic- ular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suit- able for your situation. You should consult with a professional where appropriate. Neither the publisher nor the author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. For general information about our products and services, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. For more information about Wiley products, visit our web site at www.wiley.com. Library of Congress Cataloging-in-Publication Data Moché, Dinah L., date. Astronomy : a self-teaching guide / Dinah L. Moché—7th ed. p. cm. — (Wiley self-teaching guides ; 190) Includes bibliographical references and index. ISBN 978-0-470-23083-1 (paper) 1. Astronomy. I. Title. QB45.2.M63 2009 520—dc22 2009025983 Printed in the United States of America 10987654321 ffirs.qxd 7/11/09 10:23 AM Page v CREDITS We thank the American Astronomical Society for providing dozens of press releases, fact sheets, and celestial images. This service enables us to keep this text accurate and up to date. Figures are courtesy of the following organizations and individuals: David Aguilar/Harvard-Smithsonian Center for Astrophysics: 7.8 California Association for Research in Astronomy (adapted from): 2.15 C.S.I.R.O.: 2.17, 6.19c ESA/NASA/SOHO: 4.1, 4.8 ESO: 6.3, 6.16c Ann Feild/Space Science Telescope Institute: 6.23 Gemini Observatory/Neelon Crawford-Polar Fine Arts: 2.6 Hale Observatories: 6.4, 9.28, 11.5, 11.7 The Hubble Heritage Team (AURA/STScI/NASA: 6.21 Hubble Space Telescope WFPC Team, NASA, STScI: 6.16a Dr. Thomas Jarrett: 6.17 JAXA: 4.9 Lowell Observatory: 9.22 Dinah L. Moché/George Tremberger Jr.: I.2, I.3, 1.12, 2.4, 3.8, 3.9, 3.16, 3.17, 3.18, 3.20, 4.6, 5.3, 5.10 ([selected] data from Barbara J. Anthony-Twarog), 6.6, 6.7, 6.8, 6.12, 6.24a, 6.24b, 6.25, 7.1, 7.2, 7.4, 8.1 ([selected] from NASA), 8.2, 8.4, 8.11, 8.12, 9.12, 9.14, 9.15, 10.8 NASA: I.1, 5.1a, 5.14, 8.14 (adapted), 8.16, 9.2, 9.6, 9.8, 9.9, 9.10, 9.18, 9.19, 9.21, 9.23, 9.26, 9.27, 10.1, 10.5, 10.6, 10.7, 11.1, 11.4, 12.3, 12.4, 12.5 NASA, Reta Beebe, and Amy Simon (New Mexico State University): 9.20 NASA/CXC/ASU/J. Hester, et al.: 5.12b NASA/CXC/CfA/R. Kraft, et al.: 6.19a NASA/CXC/MIT/F. K. Baganoff, et al.: 6.11 NASA and ESA: 6.16d NASA/ESA/ASU/J. Hester & A. Loll: 5.12a NASA and STScI: 6.16f NASA, ESA, S. Beckwith (STScI) and the HUDF Team: I.4 NASA, ESA, R. Gendler, T. Lauer (NOAO/AURA/NSF) and A. Feild (STScI): 6.14 NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration: 6.16b, 6.16e NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University): 6.20 NASA and the Hubble Heritage Team (STScI/AURA): 5.9, 6.2 NASA, ESA and T. Lauer (NOAO/AURA/NSF): 6.9 NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington: 9.1a, 9.1b NASA/JPL-Caltech: 6.10, 9.17 NASA/JPL-Caltech/M. Meixner (STScI) & the SAGE Legacy Team: 6.13 NASA/JPL-Caltech/T. Pyle (SSC): 12.2 NASA/JPL-Caltech/Univ. Minn./R. Gehrz : 5.12c NASA/JPL/Space Science Institute: 9.24 NASA/JPL/STScI: 9.25 NASA, Steve Lee (University of Colorado), Jim Bell (Cornell University), Mike Wolff (Space Science Institute): 9.16 NASA/WMAP Science Team: 7.9 National Optical Astronomy Observatories: 1.3, 5.11, 6.1, 6.5, 6.22a National Radio Astronomy Observatory/AUI, J. O. Burns, E. J. Schrier, and E. D. Feigelson: 6.18 v ffirs.qxd 7/11/09 10:23 AM Page vi vi # ASTRONOMY Image courtesy of NRAO/AUI and Earth image courtesy of the SeaWiFS Project NASA/GSFC and ORBIMAGE: 2.18 J. William Schopf, Elso S. Barghoorn, Morton D. Masser, and Robert O. Gordon: 12.1 Dr. Martin Schwartzchild, Princeton University: 4.10 Seth Shostak: 12.7 Aurore Simonnet, Sonoma State University, NASA E/PO: 2.19 SOHO (ESA & NASA): 4.7a, 4.12, 4.13 SOHO (ESA & NASA); assembled by Steele Hill (NASA GSFC): 4.11, 4.12, 4.13 SOHO/MDI magnetic map, white light, TRACE 1700A continuum, TRACE Lyman alpha, TRACE 171Å, TRACE 195Å, TRACE 284Å, YOHKOH/SXT X-ray image; composite prepared by Joe Covington (Lockheed-Martin Missiles and Space, Palo Alto): 4.7b (clockwise from top) STScI and NASA: 2.12 Tass/Sovfoto: 9.7 United States Air Force: 11.10 Courtesy John Walker: 4.5 Ryan Wyatt (adapted from): 8.3 Photo Insert Page 1 top: NASA/Lockheed Martin [images from the NASA Transition Region and Coronal Explorer (TRACE), the Extreme ultraviolet Imaging Telescope (EIT), the Large Angle and Spectrometric coronagraph (LASCO), and the Michelson Doppler Imager (MDI) tele- scopes on the ESA/NASA Solar and Heliospheric Observatory (SOHO)]; page 1 bottom: Courtesy NASA/JPL-Caltech; page 2 top: X-ray: NASA/CXC/CfA/R.Kraft et al; Radio: NSF/VLA/Univ.Hertfordshire/M.Hardcastle; Optical: ESO/VLT/ISAAC/M. Rejkuba, et al; page 2 bottom: NASA, ESA, and The Hubble Heritage Team (STScI/AURA); page 3 top left and right: NASA, ESA, and The Hubble Heritage Team (STScI/AURA); page 3 bot- tom: NASA/WMAP Science Team; page 4 top: X-ray: NASA/CXC/Wesleyan Univ./R. Kilgard, et al; UV: NASA/JPL-Caltech; Optical: NASA/ESA/S. Beckwith & Hubble Heritage Team (STScI/AURA); IR: NASA/JPL-Caltech/ Univ. of AZ/R. Kennicutt; page 4 bottom: X-ray: NASA/UMass/Q. D. Wang, et al.; Optical: NASA/STScI/AURA/Hubble Heritage; Infrared: NASA/JPL-Caltech/Univ. AZ/R. Kennicutt/SINGS Team Tables and illustrations are adapted, redrawn, or used by permission of the following authors and publishers: Table 1.1: Robert Garrison and Toomas Karmo, Observer’s Handbook 2008, with permis- sion of the Royal Astronomical Society of Canada. Table 2.1: Astronomy: Fundamentals and Frontiers, 3rd edition, by Robert Jastrow and Malcolm H. Thompson. Copyright © 1972, 1974, 1977 by Robert Jastrow (John Wiley & Sons, New York). Table 3.1 (adapted); 11.2 (selected): Allen’s Astrophysical Quantities, 4th edition. Copyright © 1999 by A. N. Cox, ed. (Springer-Verlag, New York). Table 6.2 (adapted): Realm of the Universe, by George O. Abell. Copyright © 1964, 1969, 1973, 1980, by Holt, Rinehart and Winston, Inc. Copyright © 1976 by George O. Abell. Used by permission of Holt, Rinehart and Winston, Inc. Tables 8.2 and 8.3: (selected) National Aeronautics and Space Administration public information. Updates by JPL’s Solar System Dynamics Group, URL: http://ssd .jpl.nasa.gov/sat_elem.html Tables 10.2 and 10.3: with permission from Solar Eclipses: 1996–2020 and Lunar Eclipses: 1996–2020, by Fred Espenak, NASA/Goddard Space Flight Center. Tables 8.3 and 11.1: (selected) Brian G. Marsden, Smithsonian Astrophysical Observatory. Appendix 5: Alan Batten, Observer’s Handbook 2009, with permission of the Royal Astronomical Society of Canada. ffirs.qxd 7/11/09 10:23 AM Page vii TO THE READER Astronomy is a user-friendly guide for beginners. Chapters make it easy for you to quickly learn the main topics of a college level course.
Recommended publications
  • The Moon Illusion and Size–Distance Scaling—Evidence for Shared Neural Patterns
    The Moon Illusion and Size–Distance Scaling—Evidence for Shared Neural Patterns Ralph Weidner1*, Thorsten Plewan1,2*, Qi Chen1, Axel Buchner3, Peter H. Weiss1,4, and Gereon R. Fink1,4 Abstract ■ A moon near to the horizon is perceived larger than a moon pathway areas including the lingual and fusiform gyri. The func- at the zenith, although—obviously—the moon does not change tional role of these areas was further explored in a second ex- its size. In this study, the neural mechanisms underlying the periment. Left V3v was found to be involved in integrating “moon illusion” were investigated using a virtual 3-D environ- retinal size and distance information, thus indicating that the ment and fMRI. Illusory perception of an increased moon size brain regions that dynamically integrate retinal size and distance was associated with increased neural activity in ventral visual play a key role in generating the moon illusion. ■ INTRODUCTION psia; Sperandio, Kaderali, Chouinard, Frey, & Goodale, Although the moon does not change its size, the moon 2013; Enright, 1989; Roscoe, 1989). near to the horizon is perceived as relatively larger com- One concept of size constancy scaling implies that the pared with when it is located at the zenith. This phenome- retinal image size and the estimated distance of an object non is called the “moon illusion” and is one of the oldest are conjointly considered, thereby enabling constant size visual illusions known (Ross & Plug, 2002). Despite exten- perception of objects at different distances (Kaufman & sive research, no consensus has been reached regarding Kaufman, 2000). With respect to the moon illusion, appar- the underlying perceptual and neural correlates (Ross & ent distance theories, for example, propose that “the per- Plug, 2002; Hershenson, 1989).
    [Show full text]
  • Evolution in Motion: Evidence of an Environmental
    EVOLUTION IN MOTION: EVIDENCE OF AN ENVIRONMENTAL TRANSITION OF A LOCAL DWARF GALAXY FROM ITS NEUTRAL HYDROGEN STRUCTURE Luca Beale Astronomy Department, University of Virginia, Charlottesville, VA 22904 Abstract Dedicated neutral hydrogen (HI) surveys have recently led to a growing category of exciting low- mass galaxies found in the Local Volume. We present synthesis imaging of one such galaxy, Pisces A, a low-mass dwarf originally confirmed via optical imaging and spectroscopy of HI sources in the Galactic Arecibo L-band Feed Array HI (GALFA-HI) survey. Using HI observations taken with the Karl G. Jansky Very Large Array (JVLA), we characterize the kinematic structure of the gas and connect it to the galaxy’s environment and evolutionary history. While the galaxy shows overall ordered rotation, a number of kinematic features indicate a disturbed gas morphology. These features are suggestive of a tumultuous recent history and represent ∼ 28% of the total baryonic mass. We find a total baryon fraction fbary ∼ 0.3 if we include these features. We also quantify the cosmic environment of Pisces A, finding an apparent alignment of the disturbed gas with a local filament. We consider several scenarios for the origin of the disturbed gas. While we cannot rule out stellar feedback from a recent starburst, our observations support the suggestion from previous work that Pisces A has moved from the Local Void to a higher-density filament. 1. Introduction ing galaxies to funnel gas from large distances. Possible evidence for such an accretion may be The survival of gas in dwarf galaxies observable in the gas kinematics (possible ex- throughout cosmic history, especially in the amples can be found in Stanonik et al., 2009; low-mass regime, implies that dark matter Kreckel et al., 2011b; Ott et al., 2012).
    [Show full text]
  • The Simplest Method to Measure the Geocentric Lunar Distance: a Case of Citizen Science
    The simplest method to measure the geocentric lunar distance: a case of citizen science Jorge I. Zuluaga1,a, Juan C. Figueroa2,b and Ignacio Ferrin1,c 1 FACom - Instituto de Física - FCEN, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia 2 Independent Software Developer ABSTRACT We present the results of measuring the geocentric lunar distance using what we propose is the simplest method to achieve a precise result. Although lunar distance has been systematically measured to a precision of few millimeters using powerful lasers and retroreflectors installed on the moon by the Apollo missions, the method devised and applied here can be readily used by nonscientist citizens (e.g. amateur astronomers or students) and it requires only a good digital camera. After launching a citizen science project called the “Aristarchus Campaign”, intended to involve astronomy enthusiasts in scientific measurement of the Lunar Eclipse of 15 April 2014, we compiled and measured a series of pictures obtained by one of us (J.C. Figueroa). These measurements allowed us to estimate the lunar distance to a precision of ~3%. We describe here how to perform the measurements and the method to calculate from them the geocentric lunar distance using only the pictures time stamps and a precise measurement of the instantaneous lunar apparent diameter. Our aim here is not to provide any improved measurement of a well- known astronomical quantity, but rather to demonstrate how the public could be engaged in scientific endeavors and how using simple instrumentation and readily available technological devices such as smartphones and digital cameras, any person can measure the local Universe as ancient astronomers did.
    [Show full text]
  • Downloaded From
    Review HEAVY METAL RULES. I. EXOPLANET INCIDENCE AND METALLICITY Vardan Adibekyan1 ID 1 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal; [email protected] Academic Editor: name Received: date; Accepted: date; Published: date Abstract: Discovery of only handful of exoplanets required to establish a correlation between giant planet occurrence and metallicity of their host stars. More than 20 years have already passed from that discovery, however, many questions are still under lively debate: What is the origin of that relation? what is the exact functional form of the giant planet – metallicity relation (in the metal-poor regime)?, does such a relation exist for terrestrial planets? All these question are very important for our understanding of the formation and evolution of (exo)planets of different types around different types of stars and are subject of the present manuscript. Besides making a comprehensive literature review about the role of metallicity on the formation of exoplanets, I also revisited most of the planet – metallicity related correlations reported in the literature using a large and homogeneous data provided by the SWEET-Cat catalog. This study lead to several new results and conclusions, two of which I believe deserve to be highlighted in the abstract: i) The hosts of sub-Jupiter mass planets (∼0.6 – 0.9 M ) are systematically less metallic than the hosts of Jupiter-mass planets. This result might be relatedX to the longer disk lifetime and higher amount of planet building materials available at high metallicities, which allow a formation of more massive Jupiter-like planets.
    [Show full text]
  • The Moon and Eclipses
    The Moon and Eclipses ASTR 101 September 14, 2018 • Phases of the moon • Lunar month • Solar eclipses • Lunar eclipses • Eclipse seasons 1 Moon in the Sky An image of the Earth and the Moon taken from 1 million miles away. Diameter of Moon is about ¼ of the Earth. www.nasa.gov/feature/goddard/from-a-million-miles-away-nasa-camera-shows-moon-crossing-face-of-earth • Moonlight is reflected sunlight from the lunar surface. Moon reflects about 12% of the sunlight falling on it (ie. Moon’s albedo is 12%). • Dark features visible on the Moon are plains of old lava flows, formed by ancient volcanic eruptions – When Galileo looked at the Moon through his telescope, he thought those were Oceans, so he named them as Marias. – There is no water (or atmosphere) on the Moon, but still they are known as Maria – Through a telescope large number of craters, mountains and other geological features visible. 2 Moon Phases Sunlight Sunlight full moon New moon Sunlight Sunlight Quarter moon Crescent moon • Depending on relative positions of the Earth, the Sun and the Moon we see different amount of the illuminated surface of Moon. 3 Moon Phases first quarter waxing waxing gibbous crescent Orbit of the Moon Sunlight full moon new moon position on the orbit View from the Earth waning waning gibbous last crescent quarter 4 Sun Earthshine Moon light reflected from the Earth Earth in lunar sky is about 50 times brighter than the moon from Earth. “old moon" in the new moon's arms • Night (shadowed) side of the Moon is not completely dark.
    [Show full text]
  • Projects of Peter Kokh, Crew #45 Commander
    Projects of Peter Kokh, Crew #45 Commander Setting a Moonlike Atmosphere in a very Marslike Setting We have little control over the Marslike geology of the MDRS surroundings - sedimentary and water- carved. However, in a test performed in a brief visit on December 8, 2005, we found that wraparound green tint sunglasses worn inside the EVA Suit helmets do a lot to neutralize the orange hues, and to notably gray and whiten the landscape. We will also apply, in a clean-remove fashion, green auto window tint to the interior of the Hab upper deck portholes. Another trick will be to suspend an Earth globe at the right distance outside one of the Hab portholes to show the apparent size and phase of Earth as it would appear suspended over the lunar horizon. Inside the Hab, the table will be set with dishes that look like they might have been made on the early lunar frontier. For recreation, there will be Moon-theme films, games that could be manufactured on the frontier, “made-on-Luna”musical instruments, and Moon-”filk”: lunar words set to well-known melodies. Our diet and menu selections, chosen by Executive Officer Laurel Ladd, will attempt to model what will be available on the early frontier. Lunar Analog EVA Outings Design It will be a bigger challenge to conduct EVA, space-suited excursions, into the areas surrounding the Mars Hab, that maintain a “we’re on the Moon!” illusion. Two particularly moonlike areas have been identified and will be visited during regular EVA excursions. Nighttime EVA activities are traditionally discouraged for safety reasons.
    [Show full text]
  • Astronomy with the Naked Eye a New Geography of the Heavens With
    A N EW G EOG R AP H Y OF TH E H EAV EN S W I T H D ESCR IPTIO N S A N D CH A R TS O l’ CONbTELLA TlONS. STARS. AN D PLA N ETS BY R R E P S E R V I SS G A T T . / 8 8 4 7 NEW Y ORK AND DONDON M C M V I I ! RRE P. s s av x ss g GA TT , 1 . 0 mm 33. 1 907 CONTENTS FIIE PLEASURE OF KNOWI NG TH E CONSTELLATI ONS — ’ the sta rs as lan dma rks Eflect of going north or south on the a p — — pearan ce of the hea vens Personal in fluen ce of the s ta rs View — ing the cons tella tion. a mid hi storic scenes Cass iopeia seen fro m ’ — Clytemnestra s tomb The celestia l pagea nt fro mMount Etna — — The sta rs ann ounce the seas ons Atmos pheric influence on — t he a ppea rance of the s ta rs Indi v idua lity of the stars 4 ta r — — — magn itudes Sta r colors The c ha rmof s ta r gro u pings The — h a rmony of the spheres How scientific astronomy has drifted Page 1 NSTELLATIONS ON TH E MERI DI AN I N JAN U ARY — 0! the meridian The dou ble revol u tion of the hea ven s — ~ ~ cha rioteer Ca pella a n d its his tory Ca melopa r — — — the Bu ll Aldeba ran The Hyades The Pleia ' of and su er a u the e ad es— n p stition bo t Pl i O on .
    [Show full text]
  • Is the Moon Really Larger Near the Horizon?
    EXPLORATION 2: INCREDIBLE SHRINKING MOON! Is the Moon really larger near the horizon? he purpose of this exploration is to design an experiment, using the telescope, to investigate the apparent size of the TMoon when it is near the horizon, compared to when it is higher in the sky. • To the eye, the Moon appears much larger when it is near horizon. GRADE LEVEL: 7-12 • Yet when the Moon is near the horizon, it is actually slightly further from Earth than when viewed higher in the sky. If TIME OF YEAR: anything, we would expect the horizon Moon to look smaller. Anytime, but best when Moon is nearly full (see text). • Measurement is important because our senses and our intuition SCIENCE STANDARDS: are often a poor guide to reality. Earth-Moon system Science as inquiry MATERIALS NEEDED: The Moon when it is near the horizon is one of nature's stunning 4Online telescopes (or use sights. It looks huge, and so close that you could practically touch it. archived images.) 4 MOImage, software Can it really be that large? What's going on? provided 4 Earth globe This investigation offers students important opportunities to learn 4 Printer (optional) about how and why we do science—from question-posing, to TIME NEEDED: forming a hypothesis, to designing an experiment, gathering 2 class periods evidence and coming to a conclusion. TEXTBOOK LINK: Students first discuss why the Moon might look so much larger when it is near the horizon. They must draw on their understandings of how the world works: What factors might influence the perceived size of an object? Second, as they reason from a simple Earth-Moon model, they are confronted with contradictory evidence: Though the Moon looks larger near the horizon, it ought to look smaller, because it is farthest From the Ground Up!: Moon 1 © 2003 Smithsonian Institution away there.
    [Show full text]
  • The Angular Size of Objects in the Sky
    APPENDIX 1 The Angular Size of Objects in the Sky We measure the size of objects in the sky in terms of degrees. The angular diameter of the Sun or the Moon is close to half a degree. There are 60 minutes (of arc) to one degree (of arc), and 60 seconds (of arc) to one minute (of arc). Instead of including – of arc – we normally just use degrees, minutes and seconds. 1 degree = 60 minutes. 1 minute = 60 seconds. 1 degree = 3,600 seconds. This tells us that the Rosette nebula, which measures 80 minutes by 60 minutes, is a big object, since the diameter of the full Moon is only 30 minutes (or half a degree). It is clearly very useful to know, by looking it up beforehand, what the angular size of the objects you want to image are. If your field of view is too different from the object size, either much bigger, or much smaller, then the final image is not going to look very impressive. For example, if you are using a Sky 90 with SXVF-M25C camera with a 3.33 by 2.22 degree field of view, it would not be a good idea to expect impressive results if you image the Sombrero galaxy. The Sombrero galaxy measures 8.7 by 3.5 minutes and would appear as a bright, but very small patch of light in the centre of your frame. Similarly, if you were imaging at f#6.3 with the Nexstar 11 GPS scope and the SXVF-H9C colour camera, your field of view would be around 17.3 by 13 minutes, NGC7000 would not be the best target.
    [Show full text]
  • Where Are All the Sirius-Like Binary Systems?
    Mon. Not. R. Astron. Soc. 000, 1-22 (2013) Printed 20/08/2013 (MAB WORD template V1.0) Where are all the Sirius-Like Binary Systems? 1* 2 3 4 4 J. B. Holberg , T. D. Oswalt , E. M. Sion , M. A. Barstow and M. R. Burleigh ¹ Lunar and Planetary Laboratory, Sonnett Space Sciences Bld., University of Arizona, Tucson, AZ 85721, USA 2 Florida Institute of Technology, Melbourne, FL. 32091, USA 3 Department of Astronomy and Astrophysics, Villanova University, 800 Lancaster Ave. Villanova University, Villanova, PA, 19085, USA 4 Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK 1st September 2011 ABSTRACT Approximately 70% of the nearby white dwarfs appear to be single stars, with the remainder being members of binary or multiple star systems. The most numerous and most easily identifiable systems are those in which the main sequence companion is an M star, since even if the systems are unresolved the white dwarf either dominates or is at least competitive with the luminosity of the companion at optical wavelengths. Harder to identify are systems where the non-degenerate component has a spectral type earlier than M0 and the white dwarf becomes the less luminous component. Taking Sirius as the prototype, these latter systems are referred to here as ‘Sirius-Like’. There are currently 98 known Sirius-Like systems. Studies of the local white dwarf population within 20 pc indicate that approximately 8 per cent of all white dwarfs are members of Sirius-Like systems, yet beyond 20 pc the frequency of known Sirius-Like systems declines to between 1 and 2 per cent, indicating that many more of these systems remain to be found.
    [Show full text]
  • The Moon Illusion Author(S): Frances Egan Source: Philosophy of Science, Vol. 65, No. 4 (Dec., 1998), Pp. 604-623 Published
    The Moon Illusion Author(s): Frances Egan Source: Philosophy of Science, Vol. 65, No. 4 (Dec., 1998), pp. 604-623 Published by: The University of Chicago Press on behalf of the Philosophy of Science Association Stable URL: http://www.jstor.org/stable/188575 . Accessed: 17/02/2011 14:32 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at . http://www.jstor.org/action/showPublisher?publisherCode=ucpress. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and Philosophy of Science Association are collaborating with JSTOR to digitize, preserve and extend access to Philosophy of Science. http://www.jstor.org The Moon Illusion* Frances Egantl Rutgers University Ever since Berkeleydiscussed the problemat length in his Essay Towarda New Theory of Vision,theorists of vision have attempted to explain why the moon appears larger on the horizon than it does at the zenith.
    [Show full text]
  • THE Hi STRUCTURE of the LOCAL VOLUME DWARF GALAXY PISCES A
    Draft version September 22, 2020 Preprint typeset using LATEX style AASTeX6 v. 1.0 THE Hi STRUCTURE OF THE LOCAL VOLUME DWARF GALAXY PISCES A Luca Beale1,2,y, Jennifer Donovan Meyer2, Erik J. Tollerud3, Mary E. Putman4, and J. E. G. Peek3,5 1Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA 2National Radio Astronomy Observatory, Charlottesville, VA 22901, USA 3Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 4Department of Astronomy, Columbia University, Mail Code 5246, 550 West 120th Street, New York, NY 10027, USA 5Department of Physics & Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA ABSTRACT Dedicated Hi surveys have recently led to a growing category of low-mass galaxies found in the Local Volume. We present synthesis imaging of one such galaxy, Pisces A, a low-mass dwarf originally confirmed via optical imaging and spectroscopy of neutral hydrogen (Hi) sources in the Galactic Arecibo L-band Feed Array Hi (GALFA-Hi) survey. Using Hi observations taken with the Karl G. Jansky Very Large Array (JVLA), we characterize the kinematic structure of the gas and connect it to the galaxy's environment and evolutionary history. While the galaxy shows overall ordered rotation, a number of kinematic features indicate a disturbed gas morphology. These features are suggestive of a tumultuous recent history, and represent 3:5% of the total baryonic mass. We find a total baryon ∼ fraction fbary = 0:13 if we include these features. We also quantify the cosmic environment of Pisces A, finding an apparent alignment of the disturbed gas with nearby, large scale filamentary structure at the edge of the Local Void.
    [Show full text]