Analýza K Článkům 3 a 4 Směrnice (Výjimky Z

Total Page:16

File Type:pdf, Size:1020Kb

Analýza K Článkům 3 a 4 Směrnice (Výjimky Z Thunovská 12, Praha 1 – Malá Strana, 118 00, Czech Republic tel.: +420 224 232 754, +420 224 224 242, fax: +420 224 238 738, e-mail: [email protected] ANALÝZA I JAKO PODKLAD PRO NAVRŽENÍ A VYHODNOCENÍ ALTERNATIV PRÁVNÍ ÚPRAVY – NOVELY AUTORSKÉHO ZÁKONA, IMPLEMENTUJÍCÍ ČLÁNKY 3 A 4 SMĚRNICE (VÝJIMKY Z AUTORSKÝCH PRÁV PRO ÚČELY VYTĚŽOVÁNÍ TEXTŮ A DAT) [LISTOPAD 2019] Poznámka zpracovatelů: Společnost EEIP, a.s., vypracovala následující studii na základě veřejně dostupných dat, dat poskytnutých Ministerstvem kultury (MK) a na základě konzultací s dotčenými subjekty. Vzhledem k tomu, že v analýze byla použita data z veřejně dostupných zdrojů a MK, společnost EEIP, a.s. neodpovídá za jejich správnost a úplnost ani za případné škody vzniklé využitím této analýzy k jinému účelu, než k jakému byla určena. 1 Obsah 1 ÚVOD ...................................................................................................................................................... 3 2 POPIS POŽADAVKŮ SMĚRNICE, ČL. 3 A 4 ................................................................................................. 4 3 CO JE TDM ............................................................................................................................................... 7 4 HLAVNÍ AKTÉŘI VE VÝZKUMU A VÝVOJI A DALŠÍ SUBJEKTY VYUŽÍVAJÍCÍ TDM ...................................... 13 4.1 VEŘEJNÉ VÝZKUMNÉ INSTITUCE ....................................................................................................................... 13 4.2 VÝZKUMNÉ ORGANIZACE ............................................................................................................................... 14 4.3 SUBJEKTY PROVÁDĚJÍCÍ VAV V ČR DLE ČSÚ ...................................................................................................... 19 4.4 DALŠÍ SUBJEKTY DOTČENÉ REGULACÍ V OBLASTI TDM ......................................................................................... 25 4.5 VÝSTUPY Z DOTAZNÍKOVÉHO ŠETŘENÍ V ČÁSTI DOTČENÝCH SUBJEKTŮ ..................................................................... 26 5 APLIKAČNÍ OBLASTI ............................................................................................................................... 30 5.1 PROJEKTY A PŘÍKLADY Z PRAXE ........................................................................................................................ 33 5.1.1 Příklady projektů realizovaných akademickou sférou .................................................................................... 33 5.1.2 Komerční využívání TDM ................................................................................................................................ 36 6 ZDROJOVÁ DATA A LICENČNÍ PRAXE ..................................................................................................... 42 6.1 KATEGORIE ZDROJŮ ...................................................................................................................................... 42 6.1.1 Autorskoprávně chráněný obsah ................................................................................................................... 42 6.1.2 Veřejné licence ............................................................................................................................................... 43 6.1.3 Data veřejné správy ....................................................................................................................................... 47 6.2 VÝSTUPY Z DOTAZNÍKOVÉHO ŠETŘENÍ A KONZULTACÍ V ČÁSTI ZDROJŮ A LICENČNÍ PRAXE ............................................. 52 7 METODY UCHOVÁVÁNÍ ROZMNOŽENIN AUTORSKOPRÁVNĚ CHRÁNĚNÉHO OBSAHU A METODY ZAJIŠŤOVÁNÍ BEZPEČNOSTI A INTEGRITY SÍTÍ A DATABÁZÍ, V NICHŽ JE UKLÁDÁN AUTORSKOPRÁVNĚ CHRÁNĚNÝ OBSAH, OBECNĚ A KONKRÉTNÍ PRAXE V ČR ................................................................................ 66 8 ZÁVĚR ................................................................................................................................................... 67 9 ZDROJE DAT A LITERATURA ................................................................................................................... 68 PŘÍLOHA ......................................................................................................................................................... 69 2 1 ÚVOD Tato analýza byla zpracována v souvislosti s přijetím Směrnice Evropského Parlamentu a Rady č. 2019/790 o autorském právu a právech s ním souvisejících na jednotném digitálním trhu a o změně směrnic 96/9/ES a 2001/29/ES dne 6.června 2019 (dále též „Směrnice“). Pojednává o problematice vytěžování textů a dat z hlediska autorského práva, jež je předmětem ustanovení v článcích 3 a 4 Směrnice. V oblasti výzkumu, vzdělávání a zachování kulturního dědictví umožňují digitální technologie nové typy užití, které nejsou jednoznačně upraveny stávajícími pravidly Unie o výjimkách a omezeních. I proto byla zaveden a sjednocena povinná výjimka a omezení pro využívání technologií vytěžování textů a dat (dále TDM). TDM umožňuje zpracovávat velké množství informací za účelem získávání nových poznatků a objevování nových trendů. Ačkoliv je TDM rozšířen v celé digitální ekonomice, je všeobecně uznáváno, že TDM může mít přínos zejména pro výzkumnou obec, a tím podpořit inovace. V Evropské unii se však výzkumné organizace, jako jsou univerzity a výzkumné ústavy, potýkaly s právní nejistotou, pokud jde o rozsah, v němž mohly TDM provádět. V některých případech může TDM zahrnovat úkony chráněné autorským právem a/nebo zvláštním právem na ochranu databází. V případech, na které se nevztahovala výjimka nebo omezení, bylo od nositelů práv vyžadováno k provádění těchto úkonů povolení. Směrnice oblast TDM nově detailněji upravuje. Ač český autorský zákon již výjimku pro výzkum obsahuje, nestanovuje konkrétní práva a povinnosti pro subjekty provádějící TDM. Čl. 3 a 4 je tak třeba do české legislativy promítnout. Následující kapitoly proto shrnují základní poznatky o řešené oblasti. Nedílnou součástí předkládané analýzy jsou postoje a stanoviska různých stran dotčeným případnou implementací směrnice. Zpracovatel tato stanoviska v souladu se svým zadáním uvádí, nicméně zároveň předesílá, že tato stanoviska dotčených stran se nemusí shodovat se stanovisky zpracovatele. Zároveň zpracovatel postoje jednotlivých dotčených subjektů nehodnotí, jelikož to nespadá mezi jeho úkoly v rámci této analýzy. 3 2 Popis požadavků Směrnice, čl. 3 a 4 Úvodem předkládá zpracovatel textaci předmětných ustanovení směrnice o autorském právu na jednotném digitálním trhu, a to ve zněních všech zúčastněných orgánů EU, tedy Evropské komise, Rady EU a Evropského parlamentu. Box 1: Příslušné recitály a znění čl. 3 a 4 a příslušné definice ve Směrnici SMĚRNICE EVROPSKÉHO PARLAMENTU A RADY (EU) 2019/790 ze dne 17. dubna 2019 o autorském právu a právech s ním souvisejících na jednotném digitálním trhu a o změně směrnic 96/9/ES a 2001/29/ES Článek 2 - Definice Pro účely této směrnice se rozumí: 1. „výzkumnou organizací“ vysoká škola včetně jejích knihoven, výzkumný ústav nebo jakýkoli jiný subjekt, jejichž hlavním cílem je provádět vědecký výzkum nebo vykonávat vzdělávací činnosti, jejichž součástí je rovněž vědecký výzkum: a) na neziskovém základě nebo tak, že zpětně investuje všechny zisky do svého vědeckého výzkumu, nebo b) v souladu s úkoly ve veřejném zájmu uznávanými členským státem takovým způsobem, že přístup k výsledkům tohoto vědeckého výzkumu není přednostně umožněn podniku, který na tuto organizaci vykonává rozhodující vliv; 2. „vytěžováním textů a dat“ jakákoli automatizovaná technika analýzy, jejímž cílem je analyzovat text a data v digitální podobě za účelem získání informací a která zahrnuje mimo jiné vzory, tendence a souvztažnosti; 3. „institucí kulturního dědictví“ veřejně přístupná knihovna nebo muzeum, archiv nebo instituce pečující o zachování filmového nebo zvukového dědictví; … HLAVA II - OPATŘENÍ PRO PŘIZPŮSOBENÍ VÝJIMEK A OMEZENÍ DIGITÁLNÍMU A PŘESHRANIČNÍMU PROSTŘEDÍ Článek 3 - Vytěžování textů a dat pro účely vědeckého výzkumu 1. Členské státy stanoví výjimku z práv stanovených v čl. 5 písm. a) a čl. 7 odst. 1 směrnice 96/9//ES, v článku 2 směrnice 2001/29/ES a v čl. 15 odst. 1 této směrnice s ohledem na rozmnoženiny a extrakce zhotovené výzkumnými organizacemi a institucemi kulturního dědictví za účelem vytěžování textů a dat z děl nebo jiných předmětů ochrany, k nimž mají zákonný přístup, pro účely vědeckého výzkumu. 2. Rozmnoženiny a extrakce děl nebo jiných předmětů ochrany zhotovené v souladu s odstavcem 1 musí být uloženy s vhodnou úrovní zabezpečení a smějí být uchovávány pro účely vědeckého výzkumu, včetně ověření výsledků výzkumu. 3. Nositelé práv mohou uplatňovat opatření k zajištění bezpečnosti a integrity sítí a databází, v nichž jsou díla nebo jiné předměty ochrany uloženy. Tato opatření nepřekročí rámec toho, co je nezbytné k dosažení tohoto cíle. 4. Členské státy podporují nositele práv, výzkumné organizace a instituce kulturního dědictví v tom, aby k uplatňování povinností uvedených v odstavci 2 a opatření uvedených v odstavci 3 vymezily společně dohodnuté osvědčené postupy. Článek 4 - Výjimky a omezení pro vytěžování textů a dat 1. Členské státy stanoví výjimku z práv nebo omezení práv stanovených v čl. 5 písm. a) a v čl. 7 odst. 1 směrnice 96/9/ES, v článku 2 směrnice 2001/29/ES, v čl. 4 odst. 1 písm. a) a b) směrnice 2009/24/ES a v čl. 15 odst. 1 této směrnice pro rozmnoženiny a extrakce zhotovené za účelem
Recommended publications
  • Data Mining – Intro
    Data warehouse& Data Mining UNIT-3 Syllabus • UNIT 3 • Classification: Introduction, decision tree, tree induction algorithm – split algorithm based on information theory, split algorithm based on Gini index; naïve Bayes method; estimating predictive accuracy of classification method; classification software, software for association rule mining; case study; KDD Insurance Risk Assessment What is Data Mining? • Data Mining is: (1) The efficient discovery of previously unknown, valid, potentially useful, understandable patterns in large datasets (2) Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD (2) The analysis of (often large) observational data sets to find unsuspected relationships and to summarize the data in novel ways that are both understandable and useful to the data owner Knowledge Discovery Examples of Large Datasets • Government: IRS, NGA, … • Large corporations • WALMART: 20M transactions per day • MOBIL: 100 TB geological databases • AT&T 300 M calls per day • Credit card companies • Scientific • NASA, EOS project: 50 GB per hour • Environmental datasets KDD The Knowledge Discovery in Databases (KDD) process is commonly defined with the stages: (1) Selection (2) Pre-processing (3) Transformation (4) Data Mining (5) Interpretation/Evaluation Data Mining Methods 1. Decision Tree Classifiers: Used for modeling, classification 2. Association Rules: Used to find associations between sets of attributes 3. Sequential patterns: Used to find temporal associations in time series 4. Hierarchical
    [Show full text]
  • Text Mining Tools
    Chapter 21 Text mining tools A. Zanasi TEMIS SA, France. Modena & Reggio Emilia University, Italy. Introduction Several tools are already available in the text mining (or more generally un- structured data) quickly growing market. We recognize the text mining market as composed by pure players (companies which develop text mining software, e.g. Clearforest, Inxight, Temis), indirect players (which integrate text mining into their offering, e.g. IBM, SAS, SPSS), partial players (companies which use text mining to improve their core business, e.g. Fast, Verity). A section is dedicated to each player which provided us with their company description, and a cumulative section listing the most known players in the text mining arena. Hundreds of other companies are already working successfully in the worldwide market. For a list of them, go to www.kdnuggets.com. 1 Megaputer intelligence 1.2 Company description Megaputer Intelligence (www.megaputer.com) was founded in 1993. The company provides a family of tools for the analysis of structured data and text. 1.3 Products Megaputer Intelligence offers two products: PolyAnalyst for Text™, aimed pri- marily at the analysis of incident reports, survey responses and customer comm- unications data and TextAnalyst™ . PolyAnalyst for Text™ performs semantic text analysis, record coding, identi- fication and visualization of patterns and clusters of information, automated or manual taxonomy creation and editing, taxonomy-based forced or self-learning WIT Transactions on State of the Art in Science and Eng ineering, Vol 17, © 2005 WIT Press www.witpress.com, ISSN 1755-8336 (on-line) doi:10.2495/978-1-85312-995-7/21 316 Text Mining and its Applications to Intelligence, CRM and Knowledge Management categorization of documents, text OLAP, link analysis, and interactive visual processing of various combinations of structured and unstructured data.
    [Show full text]
  • Application of Polyanalyst to Flight Safety Datat Southwest Airlines
    Application of PolyAnalyst to Flight Safety Data at Southwest Airlines TM r Proof-of-Concept Demonstration of Data and Text Mining Prepared by: Megaputer Intelligence 120 W. 7th Street, Suite 310 Bloomington, IN 47404 Project Manager: Sergei Ananyan [email protected] Primary Analysts: Your Knowledge Partne Richie Kasprzycki [email protected] Vijay Kollepara [email protected] January 2004 DISCLAIMER This project report and the results are based on a time-constrained proof-of-concept demonstration carried out by Megaputer Intelligence for Southwest Airlines and involve analysis of only a subset of data. Therefore, the results should not be used to form any conclusions or business decisions. Table of Contents ACKNOWLEDGEMENTS ......................................................................................................................... ii EXECUTIVE SUMMARY ......................................................................................................................... iii 1.0 INTRODUCTION ................................................................................................................................. 1 1.1. PURPOSE OF THE PROOF-OF-CONCEPT DEMONSTRATION .............................................................. 1 1.2 OVERVIEW OF PARTICIPATING ORGANIZATIONS ........................................................................... 2 1.3 OVERVIEW OF POLYANALYST TEXT AND DATA MINING SYSTEM................................................. 2 1.4 INPUT DATA: AVIATION SAFETY ACTION PROGRAM
    [Show full text]
  • Jaquelina Belin Rossi.Pdf (2.890Mb)
    UNIVERSIDADE FEDERAL DO PARANÁ JAQUELINA BELIN ROSSI INTELIGÊNCIA ARTIFICIAL APLICADA ÀS ROTINAS JURÍDICAS: REVISÃO SISTEMÁTICA DE LITERATURA CURITIBA 2021 JAQUELINA BELIN ROSSI INTELIGÊNCIA ARTIFICIAL APLICADA ÀS ROTINAS JURÍDICAS: REVISÃO SISTEMÁTICA DE LITERATURA Trabalho de Conclusão de Curso apresentado como requisito parcial à obtenção de grau de Bacharel no Curso de Gestão da Informação, Departamento de Ciência e Gestão da Informação do Setor de Ciências Sociais Aplicadas da Universidade Federal do Paraná. Orientadora: Prof.ª Dr.ª Denise Fukumi Tsunoda CURITIBA 2021 AGRADECIMENTOS Primeiramente, agradeço a Deus que torna tudo possível, inclusive os meus sonhos. Agradeço a minha orientadora Prof.ª Dr.ª Denise Fukumi Tsunoda, por sua tolerância e paciência nos momentos difíceis. Agradeço a Prof.ª Dr.ª Suely Ferreira da Silva e ao Prof. Dr. José Simão de Paula Pinto por fazerem parte da banca examinadora por seus insights. Agradeço ao meu marido Paulo e filhos Giovanna, Guillermo e Luigi pelo apoio, paciência e colaboração. Agradeço aos meus pais e minhas irmãs pelo suporte e incentivo. Aos amigos e colegas do curso que de uma maneira ou outra e influenciaram nesta jornada. Ao Gilson, secretário do curso. E um agradecimento especial a todos os professores do curso de Gestão da Informação, pois o conhecimento e sabedoria transmitidos são inestimáveis. RESUMO A inteligência artificial está se estabelecendo no direito para auxiliar advogados e tribunais. Apresenta uma revisão sistemática aplicada em bases de dados internacionais, relacionando a inteligência artificial e o direito. As bases utilizadas incluem Scopus, Web of Science e EbscoHost, onde os artigos que compõe a base de dados da pesquisa foram selecionados para a realização de análises bibliométricas.
    [Show full text]
  • Polyanalyst Technical Capabilities and System Requirements
    PolyAnalyst 6 Technical capabilities and system requirements © 2007 Megaputer Intelligence Inc. All rights reserved. PolyAnalyst Features Client/Server architecture Server architecture enables the implementation of PolyAnalyst 6 as an enterprise level analytical system. It facilitates the collaboration between data analysts working on the same projects and sharing various related resources such as analysis scenarios, dictionaries, taxonomies, and multi-dimensional matrices. Server architecture helps enhance the performance of the system by performing calculations on the most powerful machines, reducing data transfer over the network, scheduling execution of tasks at a given time, and generating custom reports and condition based alerts for different groups of business users. It provides the centralized management and audit of the list of system users and their actions. Security Recognizing that data is one of the most valuable and sensitive assets of a modern organization, PolyAnalyst provides solid mechanisms to ensure data security. Communications between client and server are performed in a fully encrypted manner with a new encryption key generated by the server for every communication session. PolyAnalyst supports secure user login based on user rights and passwords and keeps track of individual and group rights and sequences of actions carried out by the users. In addition, full compliance with the requirements of the HIPAA legislation facilitates PolyAnalyst implementations at healthcare and insurance organizations. Scalability and Performance PolyAnalyst provides industrial level scalability: it can handle huge amounts of data within reasonable time intervals. This scalability is ensured through a combination of several factors. PolyAnalyst utilizes hard disk instead or RAM for holding all data and supporting meta-information.
    [Show full text]
  • Linguamatics Text Mining Summit 2016 October 17–19: Chatham, MA Welcome to the Linguamatics Text Mining Summit 2016
    Linguamatics Text Mining Summit 2016 October 17–19: Chatham, MA Welcome to the Linguamatics Text Mining Summit 2016 The Linguamatics Text Mining Summit is a place where the text mining community comes together to exchange ideas, network, learn from each other, and explore the latest NLP text mining technology from Linguamatics. There will be discussions on best practice; you will hear real user case studies, and find out how organizations from the life science and healthcare sectors are using NLP text mining every day to gain better insights from their ever-growing data. John M. Brimacombe, Linguamatics Executive Chairman Agenda Monday October 17 11:00am–12:00pm Registration in the Monomoy Foyer 12:00pm–1:00pm Lunch at the STARS restaurant 1:00pm–5:00pm Training workshops: Session 1 1A Introduction to I2E: Tony Wu, Eldridge Room 1B Introduction to I2E—Healthcare focus: Erin Tavano, Alden Room Linguamatics I2E Query Hackathon: David Milward, Monomoy Meeting House 3:00pm–3:25pm Refreshments in the Monomoy Foyer 6:15pm onward Evening social event at The Beach House Tuesday October 18 8:30am–9:00am Registration in the Monomoy Foyer 9:00am start Main day presentations in the Monomoy Meeting House 9:00am–9:05am Introduction Phil Hastings, Chief Business Development Officer, Linguamatics 9:05am–9:20am Welcome address John M. Brimacombe, Executive Chairman, Linguamatics 1 Tuesday October 18—continued 9:20am–9:45am Natural language processing validation of high-risk patient characteristics using Linguamatics I2E Yoni Dvorkis, Data Consultant, Atrius
    [Show full text]
  • Web-Based Text Mining of Hotel Customer Comments Using SAS® Text Miner and Megaputer Polyanalyst®
    Web-Based Text Mining of Hotel Customer Comments Using SAS® Text Miner and Megaputer Polyanalyst® Richard S. Segall Arkansas State University, Department of Computer & Information Technology, College of Business, Jonesboro, AR 72467-0130, [email protected] Qingyu Zhang Arkansas State University, Department of Computer & Information Technology, College of Business, Jonesboro, AR 72467-0130, [email protected] Mei Cao University of Wisconsin – Superior, Department of Business and Economics, Superior, WI 54880, [email protected] ABSTRACT This paper presents text mining using SAS® Text Miner and Megaputer PolyAnalyst® specifically applied for hotel customer survey data, and its data management. The paper reviews current literature of text mining, and discusses features of these two text mining software packages in analyzing unstructured qualitative data in the following key steps: data preparation, data analysis, and result reporting. Some screen shots are presented for web-based hotel customer survey data as well as comparisons and conclusions. Keywords: Web-based data, Algorithms, Web data management, Text mining, SAS® Text Miner, Megaputer PolyAnalyst®, Unstructured Data, Hotel Customer Surveys INTRODUCTION The increasing use of textual knowledge applications and the growing availability of online textual sources caused a boost in text mining research. This paper reviews some current literature of text mining and presents comparisons and summaries of the two selected software of SAS® Text Miner and Megaputer PolyAnalyst® for text mining. This paper discusses features offered by these two-selected software in the following key steps in analyzing unstructured qualitative data: software composition for text mining, data preparation, data analysis and result reporting. This paper also provides insight with the data management example of application to an actual web-based dataset for hotel customer survey data.
    [Show full text]
  • Advanced Analytics: the Hurwitz Victory Index Report
    HURWITZ VICTORY INDEX Advanced Analytics: The Hurwitz Victory Index Report HURWITZ VICTORY INDEX IBM DOUBLE VICTOR Marcia Kaufman COO and Principal Analyst Daniel Kirsch Senior Analyst HURWITZ VICTORY INDEX Table of Contents Executive Summary . 3 I . Introduction . 4. II . Victory Index Methodology . 6 III . Market Trends in Advanced Analytics . 8 . IV . Customer Examples in Advanced Analytics . .12 . V . Vendor Scores: Victors, Leaders, and Challengers . 14 Go to Market Strength . 14. Customer Experience Strength . 18 VI . Vendor Assessment: IBM . 21. Advanced Analytics : The Hurwitz Victory Index Report Page 2 © 2014, Hurwitz & Associates HURWITZ VICTORY INDEX Executive Summary Companies use advanced analytics to discover patterns and anomalies in large volumes of data, and then use this insight to predict the outcomes of future events and interactions . In addition, advanced analytics is used for optimization and complex event processing and analysis . With advanced analytics, your There is enormous organization can adjust its plans and strategies to become more competitive, opportunity in the advanced minimize potential risk and optimize decision-making in real time . In this analytics market as more report we assess the performance of major providers of advanced analytics solutions and provide insight into how their customers are benefiting from these customers begin to move solutions . out of their comfort zone of traditional uses for analytic The Hurwitz Victory Index scores vendor performance across four dimensions tools. Some customers may – Vision, Viability, Validity, and Value . Each dimension measures important need help getting started; components of a vendor’s overall ability to deliver innovative solutions, however, we expect to see outstanding customer service, and the business and technical value customers explosive growth in this demand .
    [Show full text]
  • Assisted Authoring for Avoiding Inadequate Claims in Scientific Reporting Anna Koroleva
    Assisted authoring for avoiding inadequate claims in scientific reporting Anna Koroleva To cite this version: Anna Koroleva. Assisted authoring for avoiding inadequate claims in scientific reporting. Bioin- formatics [q-bio.QM]. Université Paris-Saclay; Universiteit van Amsterdam, 2020. English. NNT : 2020UPASS021. tel-02938856 HAL Id: tel-02938856 https://tel.archives-ouvertes.fr/tel-02938856 Submitted on 15 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Assisted authoring for avoiding inadequate claims in scientific reporting Thèse de doctorat de l'université Paris-Saclay École doctorale n° 580 Sciences et Technologies de l’Information et de la Communication (STIC) Spécialité de doctorat: Informatique Unité de recherche : Université Paris-Saclay, CNRS, LIMSI, 91400, Orsay, France Référent : Faculté des sciences d'Orsay Thèse présentée et soutenue à Amsterdam, le 22 janvier 2020, par Anna KOROLEVA Sophia Ananiadou Présidente, Rapporteur Professeur, University of Manchester Paolo Rosso Rapporteur Professeur, Universitat Politècnica de València Ameen Abu-Hanna Examinateur Professeur, Universiteit van Amsterdam Evangelos Kanoulas Examinateur Professeur, Universiteit van Amsterdam Olivier Ferret Examinateur Ingénieur de Recherche, Université Paris-Saclay Nicolas Sabouret Examinateur Professeur, Université Paris-Saclay Patrick Paroubek Directeur de thèse Ingénieur de Recherche, Université Paris-Saclay Patrick M.M.
    [Show full text]
  • New Capabilities of Polyanalyst Text and Data Mining Applied to STEADES Data at the International Air Transport Association (IATA)
    New Capabilities of PolyAnalyst Text and Data Mining Applied to STEADES Data at the International Air Transport Association (IATA) A Technology Demonstration In Partnership with the Federal Aviation Administration and the Global Aviation Information Network (GAIN) Report Prepared by: Dr. Sergei Ananyan President Megaputer Intelligence Mr. Michael Goodfellow Assistant Manager, STEADES International Air Transport Association (IATA) October 2004 Disclaimers; Non-Endorsement All data and information in this document are provided “as is,” without any expressed or implied warranty of any kind, including as to the accuracy, completeness, currentness, noninfringement, merchantability, or fitness for any purpose. The views and opinions expressed in this document do not necessarily reflect those of the Global Aviation Information Network or any of its participants, except as expressly indicated. Reference in this document to any commercial product, process, or service by trade name, trademark, servicemark, manufacturer, or otherwise, does not constitute or imply any endorsement or recommendation by the Global Aviation Information Network or any of its participants (e.g., FAA) of the product, process, or service. This project report and the results are based on a time-constrained proof-of-concept demonstration carried out by Megaputer Intelligence for the International Air Transport Association (IATA) STEADES group and involved analysis of only a subset of data. Therefore, the results should not be used to form any conclusions or business decision.
    [Show full text]
  • Ustracija Suviše Malog Izbora (A) I Suviše Velikog Izbora (B)
    UNIVERZITET SINGIDUNUM DEPARTMAN ZA INFORMATIKU I RAUNARSTVO DEPARTMAN ZA MENADŽMENT Vladislav Miškovic SISTEMI ZA PODRŠKU ODLUIVANJU Prvo izdanje Beograd, 2013 SISTEMI ZA PODRŠKU ODLUIVANJU Autor: dr Vladislav Miškovic Recenzenti: dr Milan Milosavljevi dr Mladen Veinovi dr Boško Nikoli Izdava: UNIVERZITET SINGIDUNUM Beograd, Danijelova 32 www.singidunum.ac.rs Za izdavaa: dr Milovan Staniši Tehnika obrada: Vladislav Miškovic Dizajn korica: Aleksandar Mihajlovi Godina izdanja: 2013. Tiraž: 550 primeraka Štampa: Mladost Grup Loznica ISBN: 978-86-7912-509-5 Copyright: © 2013. Univerzitet Singidunum Izdava zadržava sva prava. Reprodukcija pojedinih delova ili celine ove publikacije nije dozvoljena. Sadržaj 1 Uvod u sisteme za podršku odluivanju ..................................................................... 1 2 Osnove teorije odluivanja ....................................................................................... 25 3 Modeliranje i analiza procesa donošenja odluka ...................................................... 51 4 Raunarska podrška odluivanju: koncept i tehnologija sistema za podršku ........... 83 5 Poslovna inteligencija, skladištenje podataka i otkrivanje znanja ............................ 95 6 Složeno odluivanje: grupno donošenje odluka ..................................................... 108 7 Inteligentni sistemi: podrška donošenju složenih odluka ....................................... 122 8 Metodi i tehnike mašinskog uenja ........................................................................ 147 9 Inteligentna
    [Show full text]
  • Polyanalyst™ 6.5 TECHNICAL CAPABILITIES and SYSTEM REQUIREMENTS
    PolyAnalyst™ 6.5 TECHNICAL CAPABILITIES AND SYSTEM REQUIREMENTS PolyAnalyst™ is comprehensive data and text mining system providing tools for handling all steps of a typical data analysis process: from data loading, integration, manipulation and cleansing, to advanced text analytics, machine learning and knowledge discovery, and to versatile results visualization and reporting. Tools for the analysis of structured and textual data in a single environment enables joint processing of all available data for better insights. © 2019 MEGAPUTER INTELLIGENCE. ALL RIGHTS RESERVES VERSION 20.19 R.1 FEATURES / PolyAnalyst™ Web Reports PolyAnalyst™ Server PolyAnalyst™ Clients DOCUMENTS / EMAILS DATA LOADING REPORTING DATA STORAGE ALERTING ANALYSIS SCHEDULING WEB / SOCIAL MEDIA OLAP Web Report Editor DATABASES Administrative Client ODBC / OLEDB Figure 1. PolyAnalyst architecture. Client/Server architecture Security Server architecture enables the implementation of Recognizing that data is one of the most valuable and PolyAnalyst™ 6.5 as an enterprise level analytical sensitive assets of a modern organization, PolyAnalyst™ system. It facilitates the collaboration between data provides solid mechanisms to ensure data security. analysts working on the same projects and sharing Communications between client and server are various related resources such as analysis scenarios, performed in a fully encrypted manner with a new dictionaries, taxonomies, and multi-dimensional encryption key generated by the server for every matrices. Server architecture helps enhance the communication session. PolyAnalyst supports secure performance of the system by performing calculations user login based on user rights and passwords and on the most powerful machines, reducing data transfer keeps track of individual and group rights and over the network, scheduling execution of tasks at a sequences of actions carried out by the users.
    [Show full text]