Von der Manufaktur zu Giga-Watt-Anlagen – Die Solarenergie auf dem Weg zur Großindustrie

Dr. Hubert A. Aulich Vorstand PV Crystalox Solar PLC

FVS-Jahrestagung 2007 Leibniz Universität Hannover

Overview Presentation

ƒ Introduction

ƒ and Electricity

ƒ Market drivers for solar electricity

ƒ Need for mass production

ƒ Conclusions Firmenprofil PV Crystalox Solar Gruppe

ƒ Fertigung von Si-Ingots und Si-Blöcken Oxfordshire, UK

ƒ Produktionskapazität ca. 290 MWp

ƒ Fertigung von Si-Scheiben in Erfurt und Japan

ƒ Niederlassung Crystalox Japan, Tokyo

ƒ ca. 210 Mitarbeiter weltweit

ƒ Juni 2007 erfolgreicher Börsengang am London Stock Exchange

Wertschöpfungskette PV - Industrie

Strategie PV Crystalox Solar:

ƒ Konzentration auf Si-Technologie

ƒ kein Wettbewerb zum Kunden Solarzellenhersteller

ƒ Solarsilizium-Produktion Anfang 2009 Fertigung PV Crystalox Solar, Milton Park Fertigung PV Silicon AG, Erfurt Silizium-Produktion Bitterfeld First „high-purity“ silicon rod from Siemens grown by the so-called A-process in 1953

ƒ For the first time in the history of industrial electricity generation a - Silicon - is the material of choice for power conversion

ƒ Nothing is „burned“, nothing is wasted, Si-technology for solar electricity with lowest impact on environment and abundant resources

Silicon for power generation

Key drivers 1600 1467 1400 1320

1200 1052 1000

800 MWp 594 600 439 400 334 278 202 200 126 153 78 89

0 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Source: EPIA - Greenpeace 2007

Global annual PV shipment Significant development during the last 15 years

ƒ Small scale manufacturing developed basic technology in 90‘s

ƒ Reduce thickness

ƒ Increase cell efficiency (SiNx, BSF)

ƒ Transfer new concepts into mass production

ƒ Production lines for wafers, cells, modules world-wide commercially available Projection of the contribution to the world electricity TWh production from PV as seen in 2001 was too conservative 100000

10000

World Electricity from PV in TWh 1000 World Electricity Generation in TWh

100 2020: PV 1% world electricity 33% realised 2040: PV 26% world electricity 10

27% 34% 15% Growth 1 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 Source: Solar Generation and IEA-PVPS

EPIA Roadmap 10.000,0 15% 1.000,0 15% 100,0 34%

GWp/a 10,0 27% 1,0 Solar-Grade Silicon 0,1 2000 2010 2020 2030 2040

to/a 4.500 29.500 300.000 1.200.00 5.250.000

to/MWp 17,5 10,0 5,2 3,5 2,5

Installed Module Capacity and Silicon Consumption

Systems/ Silicon Ingots Wafers Solar Cells Modules Applications

Significant improvement in technology resulting in cost reductions at every step of the value chain need to be continued to achieve grid parity

Value Chain from Silicon to Systems MOTIVATION FOR MASS PRODUCTION

Total cost/pc Depreciation ƒ Mass production to Fixed cost Administration Labour distribute Fixed cost R+D over large volume

Silicon

Variable Crucibles cost Slurry ƒ Technology improvement Wire Silver paste ƒ Purchase power Glas EVA Tedlar JB Volume

Motivation for for Motivation mass production Fixed pc Cost/ system 100% 32 % module 80% 21 % cell 60% wafer 19 % ingot 40% 9 % silicon 11 % 20% 8 % 0%

Cost structure of PV-Systems 2007 HCl/H2 Temperature Pressure

MG-Silicon

Impurities

From metallurgical (MG)-Silicon to solar silicon Major cost drivers:

- SiHCl3 (Mg-Si) - electricity - depreciation

10 g/Wp 5,5 g/Wp 100 %

45 %

2006 2015

Silicon feedstock Major cost drivers: - crucibles - gases - power

100 %

62 %

Source: PV Crystalox Solar 2006 2015

Ingot Major cost drivers: - slurry - wire - depreciation

Source: Meyer & Burger

100 %

64 %

2006 2015

Wafer Major cost drivers: - depreciation - pastes - diffusion

- SiNx

100 %

59 %

Source: ErSol 2006 2015

Solar cell Major cost drivers: - direct materials - depreciation - labour

100 % 69 %

Source: ErSol, ASS 2006 2015

Solar module Source: SMA

Systems Sufficient cost reduction potential exists in Si-wafer based technology to reduce total system cost per Wp below 3€/Wp within the next 7 years

100 %

61 %

4,9 €/Wp 4,9 €/Wp < 3 €/Wp < 3 €/Wp

2006 2015

Source: PV Crystalox Solar

Cost per Wp development for PV systems 60 5,2 % p.a. 50

40

ct/kW h 30 20

10

0 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

7% 4% 10% PV electricity generating cost

grid parity Source: PV Crystalox Solar

PV generating costs versus electricity price development in Germany Long Term Development PV Solar Electricity World-Wide CONCLUSIONS

ƒ Favourable political support mechanisms have led to dynamic market growth of solar electricity. Need to be maintained.

ƒ Industry entering area of mass production

ƒ Continued R+D accompanied by fast transfer into production to reach grid parity