Back Matter (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Back Matter (PDF) Index Page numbers in italics refer to Figures. Page numbers in bold refer to Tables. a’a morphotypes 143, 188 whole rock chemistry 181–182, 183, 184, 185 accidental clasts results discussed role of 31–33 compositional variation 197–198 in tuff-ring and cone volcanoes 49–50 lapilli fall deposits 192–193 Acigo¨l dome/maar (Turkey) 2, 14 lava flow morphology 188–192 1256AD volcanic centre 14, 174, 176, 177, 180 magma ascent rates 198–199 geographical framework 175 petrogenesis 194–197 geological framework 175, 177 physical volcanology 185–188 methods of analysis stratigraphy 193–194 3He surface exposure dating 178 summary of characteristics 199–200 mineral chemistry 178 Alaska Province 29 whole rock chemistry 177–178 Alexandra Volcanics 3 results alkali basalt 4 3He surface exposure dating 182, 185 Altiplano-Puna Volcanic Complex 338, 339 mineral chemistry and petrography 182 Alumbrera scoria cone 312–313, 313 whole rock chemistry 181–182, 183, 184, 185 lithostratigraphy and lithofacies 319-325 results discussed morphometry 313–314 compositional variation 197–198 morphostratigraphy 314–316, 315, 316, 317, 318, 319 lapilli fall deposits 192–193 results discussed lava flow morphology 188–192 eruptive dynamics 329-332 magma ascent rates 198–199 polycyclic nature 327–328 petrogenesis 194–197 factors affecting 328–329 physical volcanology 185–188 Ambai Island 3 stratigraphy 193–194 Ambrym Island 3 summary of characteristics 199–200 Anakies cones 132, 145, 146 Advanced Spaceborne Thermal Emission and Reflection Anatolian Volcanic Field 4 Radiometry (ASTER) 159 Andean Central Volcanic Zone 312 aerial gamma ray survey, Newer Volcanic Province 153–154 antidune base surge 35 aeromagnetic map, Isla Isabel 287, 299 Antofagasta de la Sierra Basin 312–313, 313 aeromagnetic studies, Newer Volcanic Province (Australia) scoria cone studies 152–153, 153 lithostratigraphy and lithofacies Aershan-Chaihe Volcanic Field 3 Alumbrera 319–325 Al Birk Volcanic Field 2 De La Laguna 325–327 Al Haruj Volcanic Field 2 morphometry 313–314 Al Madinah (Saudi Arabia) 12 morphostratigraphy 314–316 Al-Anahi volcanic centre 14, 173, 174, 179 Alumbrera 315, 316, 317, 318, 319 geographical framework 175 De La Laguna 315, 316, 317, 318, 318, 320, 321 geological framework 175, 177 results discussed methods of analysis eruptive dynamics 329 3He surface exposure dating 178 Alumbrera 329–332 mineral chemistry 178 De La Laguna 332 whole rock chemistry 177–178 polycyclic nature 327–328 results factors affecting 328–329 3He surface exposure dating 182, 185 Arabian Peninsula 2, 13, 16 mineral chemistry and petrography 182 Harrat Rahat Volcanic Field 14 whole rock chemistry 181–182, 183, 184, 185 geographical framework 175 results discussed geological framework 175, 177 compositional variation 197–198 methods of analysis lapilli fall deposits 192–193 3He surface exposure dating 178 lava flow morphology 188–192 mineral chemistry 178 magma ascent rates 198–199 whole rock chemistry 177–178 petrogenesis 194–197 results physical volcanology 185–188 3He surface exposure dating 182, 185 stratigraphy 193–194 mineral chemistry and petrography 182 summary of characteristics 199–200 whole rock chemistry 181–182, 183, 184, 185 Al-Du’aythah volcanic centre 14, 174, 180 results discussed geographical framework 175 compositional variation 197–198 geological framework 175, 177 lapilli fall deposits 192–193 methods of analysis lava flow morphology 188–192 3He surface exposure dating 178 magma ascent rates 198–199 mineral chemistry 178 petrogenesis 194–197 whole rock chemistry 177–178 physical volcanology 185–188 results stratigraphy 193–194 3He surface exposure dating 182, 185 setting 173, 174 mineral chemistry and petrography 182 stratigraphy 177 376 INDEX Arabian Peninsula (Continued) lithologies 210 summary of characteristics 199–200 setting 205, 206 volcanic centres described 175, 176, 178–181 Auckland Volcanic Field 3,6,8,10,15 Argentina Australia 2, 40, 48, 107 Antofagasta de la Sierra Basin (Southern Puna) see also Newer Volcanics Province 312–313, 313 Auvergne Province 30 scoria cone studies Azores 4 lithostratigraphy and lithofacies Alumbrera 319–325 Bakony Balaton Highland Volcanic Field (Hungary) 2, 16, 221 De La Laguna 325–327 basaltic monogenetic fields, compared with kimberlite fields morphometry 313–314 102–105 morphostratigraphy 314–316 basaltic systems Alumbrera 315, 316, 317, 318, 319 character 1 De La Laguna 315, 316, 317, 318, 318, 320, 321 Newer Volcanic Province results discussed geochemistry 133–134 eruptive dynamics 329 petrology 131–132 Alumbrera 329–332 spectrum of (nephelinite-basanite-alkali basalt) 4–5, 13 De La Laguna 332 base surge 35 polycyclic nature 327–328 Bayuda Volcanic Field 2,13 factors affecting 328–329 Berlı´n volcano (Colombia) 362 Northern Puna 337, 338 bombs and blocks 35 geological setting 339 Northern Puna 342–344 mafic volcanic centres 338 Bouguer anomaly map composition of eruptive products 349, 351 Isla Isabel 285, 298 lithofacies 342–347 Newer Volcanic Province 157 morphology 339 pyroclastic mounds 347–348 Calatrava Volcanic Field 2,13 results discussed Cameroon Volcanic Line 2 age significance 349–350 Campanario Volcano 341 eruptive styles 354–355 Campo Negro volcanic centre 338, 341 lithofacies 352–354 Canada, Attawapiskat kimberlite field (Ontario) 205, 206 morphology 350, 352 Tango Extension Deep (TED) pipe 206 stratigraphy 339–342 emplacement scheme 214–219 summary 355–356 time constraints 219–220 Argyle lamproite (Western Australia) 40, 48, 107 geological model 211, 213, 214 As-Sahab volcanic centre 14, 173, 174, 177, 178 lithologies 212, 213 geographical framework 175 Tango Extension Super Structure (TESS) 103, 206 geological framework 175, 177 drill core data 221 methods of analysis emplacement scheme 214, 214, 215, 216–219, 216 3He surface exposure dating 178 time constraints 219–220 mineral chemistry 178 geological model 207 whole rock chemistry 177–178 pipes 206 results Tango Extension (TE) kimberlite pipe 3He surface exposure dating 182, 185 emplacement scheme 214–219, 216 mineral chemistry and petrography 182 time constraints 219–220 whole rock chemistry 181–182, 183, 184, 185 exploration history 206–209 results discussed geological model 207, 208, 209, 211 compositional variation 197–198 lithologies 210 lapilli fall deposits 192–193 setting 205, 206 lava flow morphology 188–192 Canary Islands 4 magma ascent rates 198–199 Capulin Volcanic Field 3 petrogenesis 194–197 carbon dioxide, role in volatiles 104, 107–108, 109 physical volcanology 185–188 carbonatite maar-diatremes 4, 33 stratigraphy 193–194 Cascades field 11 summary of characteristics 199–200 Catalan-La Garrotxa Volcanic Field 2 Attawapiskat kimberlite field (Ontario) 205, 206 Cauchari volcanic centre 338 Tango Extension Deep (TED) pipe 206 Ceboruco volcano 230 emplacement scheme 214–219 Central & SE Europe provinces 2,4,8,11 time constraints 219–220 Central Anatolian Volcanic Province 2 geological model 211, 213, 214 Cerro Barro Negro volcanic centre 338, 341 lithologies 212, 213 Cerro Bayo de Archibarca Volcano 341 Tango Extension Super Structure (TESS) 103, 206 Cerro Bitche volcanic centre 338, 341 drill core data 221 Cerro Colorado (Mexico) 34 emplacement scheme 214, 214, 215, 216–219, 216 Cerro Morado volcanic centre 338, 340, 341, 344 time constraints 219–220 Cerro Negro de Olaroz volcanic centre 338, 340 geological model 207 Cerro Tropapete volcanic centre 338, 340, 341, 344, 345 pipes 206 Cerros Negros de Jama volcanic centre 338, 340, 341, 344, 345 Tango Extension (TE) kimberlite pipe Chagwido (Jeju Island) 4, 222 emplacement scheme 214–219, 216 Chaine des Puys Volcanic Field 2,8,13 time constraints 219–220 Changbaishan volcano (China) 3,11 exploration history 206–209 Chatham Islands 3 geological model 207, 208, 209, 211 chemistry see geochemical characteristics INDEX 377 Chichinautzen volcanic field 1, 3 edge-driven convection 160–161 Chile 6, 11 effusive eruption style, Newer Volcanics Province 141–144 China 3,11 Eger Graben Volcanic Field 2 Chyulu Volcanic Field (Africa) 2 Eifel volcanic field 13, 30, 31 Cima Volcanic Field (California) 1, 3,70 see also East Eifel also West Eifel scoria cones, shape parameters 72, 73, 74, 75, 76, 76, 77, 79 El Escondido volcano (Colombia) 362 controls on 90, 90, 96 El Toro volcanic centre 338 cinder cones see scoria cones Elegante maar 3 climate change, role of 16 Elie Head diatreme 38 Colima volcano 230 Ellendale volcanic field (Western Australia) 48 Colli Albani Volcano (Italy) 111 energy, crater blasts 109–110 Colombia, Samana´ Volcanic Field 362 Erciyes volcano 14 setting 362–363 eruption style stratigraphy 363 factors affecting 149–152 San Diego maar 362 Harrat Rahat Volcanic Field 185, 187, 190 methods of stratigraphic analysis 363–364 Etna, Mount (Italy) 2, 61, 82 results 364–365 European Cenozoic Rift System 107 composition and age 368 explosion site, effect of depth 108–114 post-maar units 368 Eyjafallajo¨kull volcano (Iceland) 124, 163 unit U1 365–366 unit U2 366–367 faults 13 unit U3 367 role in groundwater circulation 107 unit U4 367–368 feeder dykes 31 results discussed fire fountaining 145, 146 evolution of crater 369–372 Firth of Forth diatremes 30 geodynamics 368–369 Five-fingers volcanic centre 14, 174, 177, 180 hydrogeology 369 geographical framework 175 summary 372 geological framework 175, 177 composite volcanoes 61 methods of analysis compositional spectrum see basaltic also non-basaltic 3He surface exposure dating 178 Cora maar 2 mineral chemistry 178 Costa Giardini (Italy) 39 whole rock chemistry 177–178 Crater Elegante
Recommended publications
  • Mount Rouse Reserve Management Plan 1/08/2016
    Trim atDevelop Disclaimer This management plan has been drafted by RMIT University and Regional Advance to guide the future management of Mount Rouse Reserve by the Committee of Management (Southern Grampians Shire Council). The plan articulates management priorities for the reserve that have been identified through desktop research, a basic site investigation and consultation with a number of the reserve’s stakeholders. While care has been taken in identifying management priorities and strategies for the reserve, the accuracy and comprehensiveness of this document may not be without limitation. RMIT University and Regional Advance shall not be responsible in any way to any person in respect to the document, including errors or omissions contained, regardless of cause. 1 Mount Rouse Reserve Management Plan 1/08/2016 Contents 1 Context ................................................................................................ 3 3.2 Community and Amenity Values ............................................... 12 2 Reserve Overview ............................................................................... 3 3.2.1 Public Amenity ...................................................... 12 2.1 Reserve Description .................................................................... 3 3.2.1 Public Amenity (Continued) .................................. 13 3.2.2 Tourism and Recreational Uses ............................. 14 2.2 Boundaries and Allotments Map ................................................ 4 3.2.3 Access ...................................................................
    [Show full text]
  • Which Feature, Place Or View Is Significant, Scenic Or Beautiful And
    DPCD South West Victoria Landscape Assessment Study | CONSULTATION & COMMUNITY VALUES Landscape Significance Significant features identified were: Other features identified outside the study area were: ▪ Mount Leura and Mount Sugarloaf, outstanding ▪ Lake Gnotuk & Lake Bullen Merri, “twin” lakes, near volcanic features the study area’s edge, outstanding volcanic features Which feature, place or view is ▪ Mount Elephant of natural beauty, especially viewed from the saddle significant, scenic or beautiful and ▪ Western District Lakes, including Lake Terangpom of land separating them why? and Lake Bookar ▪ Port Campbell’s headland and port Back Creek at Tarrone, a natural waterway ...Lake Gnotuk and the Leura maar are just two examples of ▪ Where would you take a visitor to the outstanding volcanic features of the Western District. They give great pleasure to locals and visitors alike... show them the best view of the Excerpt from Keith Staff’s submission landscape? ▪ Glenelg River, a heritage river which is “pretty much unspoilt” ▪ Lake Bunijon, “nestled between the Grampians and rich farmland in the west, the marsh grasses frame the lake as a native bird life sanctuary” ▪ Botanic gardens throughout the district which contain “weird and wonderful specimens” ▪ Wildflowers at the Grampians The Volcanic Edge Booklet: The Mt Leura & Mt Sugarloaf Reserves, Camperdown, provided by Graham Arkinstall The Age article from 1966 about saving Mount Sugarloaf Lake Terangpom Provided by Brigid Cole-Adams Photo provided by Stuart McCallum, Friends of Bannockburn Bush, Greening Australia 10 © 2013 DPCD South West Victoria Landscape Assessment Study | CONSULTATION & COMMUNITY VALUES Other significant places that were identified were: Significant views identified were: ▪ Ditchfield Road, Raglan, an unsealed road through ▪ Views generally in the south west region ▪ Views from summits of volcanic craters bushland ..
    [Show full text]
  • Los Morados Scoria Cone, Mendoza, Argentina
    Cent. Eur. J. Geosci. • 3(2) • 2011 • 102-118 DOI: 10.2478/s13533-011-0008-4 Central European Journal of Geosciences The role of collapsing and cone rafting on eruption style changes and final cone morphology: Los Morados scoria cone, Mendoza, Argentina Research Article Karoly Németh1, Corina Risso2, Francisco Nullo3, Gabor Kereszturi1,4 1 Volcanic Risk Solutions, Massey University, Private Bag 11 222, Palmerston North, New Zealand 2 Departamento de Geología , Area Riesgo Volcánico, FCEyN-Universidad de Buenos Aires, Argentina 3 CONICET-SEGEMAR, Buenos Aires, Argentina 4 Geological Institute of Hungary, Stefánia út 14, Budapest, 1143, Hungary Received 30 November 2010; accepted 31 January 2011 Abstract: Payún Matru Volcanic Field is a Quaternary monogenetic volcanic field that hosts scoria cones with perfect to breached morphologies. Los Morados complex is a group of at least four closely spaced scoria cones (Los Morados main cone and the older Cones A, B, and C). Los Morados main cone was formed by a long lived eruption of months to years. After an initial Hawaiian-style stage, the eruption changed to a normal Strombolian, cone- building style, forming a cone over 150 metres high on a northward dipping (∼4˚) surface. An initial cone gradually grew until a lava flow breached the cone’s base and rafted an estimated 10% of the total volume. A sudden sector collapse initiated a dramatic decompression in the upper part of the feeding conduit and triggered violent a Strombolian style eruptive stage. Subsequently, the eruption became more stable, and changed to a regular Strombolian style that partially rebuilt the cone.
    [Show full text]
  • Source to Surface Model of Monogenetic Volcanism: a Critical Review
    Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Source to surface model of monogenetic volcanism: a critical review I. E. M. SMITH1 &K.NE´ METH2* 1School of Environment, University of Auckland, Auckland, New Zealand 2Volcanic Risk Solutions, Massey University, Palmerston North 4442, New Zealand *Correspondence: [email protected] Abstract: Small-scale volcanic systems are the most widespread type of volcanism on Earth and occur in all of the main tectonic settings. Most commonly, these systems erupt basaltic magmas within a wide compositional range from strongly silica undersaturated to saturated and oversatu- rated; less commonly, the spectrum includes more siliceous compositions. Small-scale volcanic systems are commonly monogenetic in the sense that they are represented at the Earth’s surface by fields of small volcanoes, each the product of a temporally restricted eruption of a composition- ally distinct batch of magma, and this is in contrast to polygenetic systems characterized by rela- tively large edifices built by multiple eruptions over longer periods of time involving magmas with diverse origins. Eruption styles of small-scale volcanoes range from pyroclastic to effusive, and are strongly controlled by the relative influence of the characteristics of the magmatic system and the surface environment. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. Small-scale basaltic magmatic systems characteris- hazards associated with eruptions, and this is tically occur at the Earth’s surface as fields of small particularly true where volcanic fields are in close monogenetic volcanoes. These volcanoes are the proximity to population centres.
    [Show full text]
  • The Harmans Valley Lava Flow and Its Tortuous Path
    The Harmans Valley lava flow and its tortuous path John Brush Canberra Speleological Society Inc, Chairman, IUS Commission on Volcanic Caves Email: [email protected] Abstract as the most significant damage was in areas that are visible from a public viewing point, the landscape The Harmans Valley lava flow, south of Hamilton in significance has diminished. Western Victoria, originates at the Mt Napier volcano and meanders its way across the landscape along a In October 2016, the Victorian Government imposed pre-existing valley. The renowned Byaduk lava caves a Significant Landscape Overlay (SLO), in effect a occur within the flow. The flow itself is about 40,000 landscape protection control, on those parts of the years old and is regarded by many experts to be the flow that lie on private land within the Southern best example of a lava flow constrained by a valley Grampians Shire. Unless replaced by a permanent and having one of the most intact and significant SLO, the interim SLO will expire on 31 October collections of young volcanic features in Australia. 2018. The flow also has aboriginal and early-European This paper reviews efforts to protect the flow and its cultural heritage significance as well as dramatic important geological, landscape, ecological and landscape values. While the meandering route of the cultural features and considers the likelihood of flow could be described as tortuous, the path to achieving effective permanent protection. protecting this iconic feature has been, and continues to be, even more tortuous. Introduction The Mount Napier volcano and the upper part of the The Harmans Valley basalt lava flow in Western flow, containing many of the Byaduk caves, are Victoria originated at Mt Napier and flowed down a protected as they are in the Mount Napier State Park.
    [Show full text]
  • Objection to Scoria Quarry in Leura Maar
    National Trust of Australia (Victoria) ABN 61 004 356 192 Tasma Terrace 23 December 2015 4 Parliament Place East Melbourne Victoria 3002 Greg Hayes Email: [email protected] Manager, Planning and Building Web: www.nationaltrust.org.au Corangamite Shire Council 181 Manifold Street T 03 9656 9800 F 03 9656 5397 Camperdown VIC 3260 Dear Mr Hayes, Re: Permit Application Number: PP2001/160.A Subject Land: Titan Willows’ Rock and Scoria Quarry, Princes Highway, Camperdown Lot 1 TP 667906P, Parish of Colongulac The National Trust has advocated for the protection of the Leura Maar, within which the subject land sits, since the 1970s. Mt Sugarloaf was saved from destruction in an unprecedented conservation battle - nowhere else in Australia had local people taken direct action to save a natural landmark. Local residents actually sat in front of a bulldozer during the battle to save the mount in 1969. The National Trust purchased the land in 1972 to prevent any further quarrying of the scoria and to guarantee the preservation of the remaining mount. Today Mt Sugarloaf is considered the best example of a scoria cone in the Western District, and is cared for by Corangamite Shire Council, the Management Committee and the Friends of Mt Leura. The Mount Leura complex is one of the largest maar and tuff volcanoes in Victoria, and is a prominent feature in the Kanawinka Geopark, part of the global geoparks network. Following this international recognition, the educational value of the Leura Maar is growing, thanks to local volunteers who have installed a geocaching trail and volcanic education centre in addition to the existing interpretive trails, signs and lookouts.
    [Show full text]
  • Vulcanitas Alcalinas En El Sector Del Cerro Morado, Departamento
    CARACTERÍSTICAS GEOQUÍMICAS DE LAS VULCANITAS ALCALINAS CRETÁCICAS EN EL SECTOR DEL CERRO MORADO, DEPARTAMENTO JÁCHAL, SAN JUAN, ARGENTINA. S. Pérez Luján Departamento de Geología. Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de San Juan. E-mail: [email protected] RESUMEN Rocas volcánicas alcalinas afloran en las cercanías del cerro Morado, en la terminación austral de la sierra de Mogna, en el borde oriental de Precordillera de San Juan. El estudio petrográfico y geoquímico de las manifestaciones volcánicas permitió clasificarlas como tefritas basaníticas o basanitas nefelínicas, con fuerte afinidad alcalina, mostrando una composición química característica de ambiente geotectónico de intraplaca. Las dataciones radimétricas, método K-Ar, con promedio de 90 ± 8 m.a. de antigüedad (Cingolani et al. 1984) indican una edad cretácica superior parte baja, para estas rocas. Los resultados obtenidos destacan el control geotectónico para el emplazamiento de las vulcanitas durante este periodo y su relación con otros asomos en otras localidades del centro y noroeste de argentino, que ha permitido a otros autores postular la existencia de una provincia petrográfica alcalina. Palabras clave: alcalinas, rocas volcánicas, Cretácico, intra placa ABSTRACT This paper deals with alkaline volcanic rocks that crop out at the Morado hill located in the southern end of the Mogna ranges, which are part of the Eastern border of the Precordillera in the San Juan province, Argentina. The petrography and geochemistry study of the alkaline volcanics has allowed to classify them as tephrite basanite or basanite nephelinite, with strong alkaline chemical affinity, showing a characteristic composition of within plate geochemistry environment. The radimetric analysis, K-Ar data, has shown an average 90 ± 8 m.y.
    [Show full text]
  • Calidad De Las Aguas Superficiales En
    PRESENCIA DE FLÚOR Y ARSÉNICO EN AGUAS SUBTERRÁNEAS CONTENIDO Y DISTRIBUCIÓN DE ARSÉNICO Y OTROS ELEMENTOS TRAZAS EN AGUAS DE ANTOFAGASTA DE LA SIERRA, CATAMARCA, ARGENTINA F. Ruggieri1, J. L. Fernández-Turiel1, D. Gimeno2, M.T. Garcia-Valles2, J. Saavedra3, G. del V. Córdoba4 1Instituto de Ciencias de la Tierra J. Almera, ICTJA - CSIC, Solé i Sabaris s/n, 08028 Barcelona, España. E-mail: [email protected] 2Facultat de Geologia, Universitat de Barcelona, Martí i Franqués s/n, 08038 Barcelona, España, 3IRNASA, CSIC, Cordel de Merinas 40-52, 37008 Salamanca, España 4Facultad de Tecnología y Ciencias Aplicadas, Universidad Nacional de Catamarca, Argentina Resumen Se ha evaluado la distribución de Elementos Trazas Potencialmente Tóxicos (ETPTs) en las aguas de Antofagasta de la Sierra, localizada en la parte sur de la Puna, en la provincia de Catamarca, noroeste de Argentina. Se muestrearon 14 aguas superficiales de rios, un agua de pozo y un agua de suministro a la población. La alta exposición al vulcanismo andino con elevada presencia de rocas volcánicas principalmente de composición andesítica y el clima árido andino puneño son las condiciones geoambientales que determinan la disponibilidad y movilización de ETPTs en solución. La composición de las aguas es muy homogénea, de tipo Na-HCO3, que se asocia con la interacción entre el flujo de agua, la litología local y la posterior evaporación. La meteorización de las rocas volcánicas causa la alta concentración de B, Li, Cs, Rb, U, As y V mientras que la posterior evaporación determina los altos - 2- contenidos de Cl , Br, Na, Mg, SO4 , Li, Sr y Ba.
    [Show full text]
  • SOUTH WEST VICTORIA LANDSCAPE ASSESSMENT STUDY Regional Overview Report: Executive Summary
    SOUTH WEST VICTORIA LANDSCAPE ASSESSMENT STUDY Regional Overview Report: Executive Summary June 2013 FOREWORD FOREWORD The landscapes of South West Victoria tell the story of a rich and complex evolution - reflective of the region’s geological morphology, economy, ecology and cultural history. They include the rugged and spectacular Grampians Ranges (Gariwerd); the cones and lakes of the volcanic plains; and the majestic River Red Gums scattered throughout the pastoral lands. The purpose of this landscape assessment is to examine the character and significance of the landscapes of South West Victoria; to understand how they may be affected by future change; and to protect and manage those values that are most important, for future generations. © 2013 DPCD South West Victoria Landscape Assessment Study | REGIONAL OVERVIEW REPORT 3 Logo is at twice the size for the footer ACKNOWLEDGEMENTS Traditional Owners Project Team The Study acknowledges that the State of Victoria has an ancient and proud Aboriginal history and complex John Phillips (Project Department of Planning and Jacinta Rivette / Jessica City of Greater Geelong ownership and land stewardship systems stretching back Director) Community Development Hurse many thousands of years. We would like to acknowledge Simon Haber (Project Department of Planning and Deon VanBaalen / City of Ballarat the Traditional Owners of this land, and offer our respect Manager Community Development Cameron Haines to the past and present Elders, and through them to all Steph Durant Golden Plains Shire Claire
    [Show full text]
  • Some Observations on the Formation, Structure and Morphology of Halloysite
    Clay Minerals, (2016) 51, 395–416 Unique but diverse: some observations on the formation, structure and morphology of halloysite G. JOCK CHURCHMAN1,*, P.PASBAKHSH2 ,D.J.LOWE3 AND B.K.G. THENG4 1 School of Agriculture, Food and Wine, University of Adelaide, Adelaide 5005, Australia 2 School of Engineering, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia 3 School of Science, Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand 4 Landcare Research, Palmerston North 4442, New Zealand (Received 04 November 2015; revised 11 June 2016; Associate Editor: Steve Hillier) ABSTRACT: New insights from the recent literature are summarized and new data presented concerning the formation, structure and morphology of halloysite. Halloysite formation by weathering always requires the presence of water. Where substantial drying occurs, kaolinite is formed instead. Halloysite formation is favoured by a low pH. The octahedral sheet is positively charged at pH < ∼8, whereas the tetrahedral sheet is negatively charged at pH > ∼2. The opposing sheet charge would facilitate interlayer uptake of H2O molecules. When halloysite intercalates certain polar organic molecules, additional (hkl) reflections appear in the X-ray diffraction pattern, suggesting layer re-arrangement which, however, is dissimilar to that in kaolinite. Associated oxides and oxyhydroxides of Fe and Mn may limit the growth of halloysite particles as does incorporation of Fe into the structure. Particles of different shape and Fe content may occur within a given sample of halloysite. KEYWORDS: water, pH, iron, particle size, morphology, organic complexes, 2-layer structure. Since halloysite was first described by Berthier (1826), shapes, including spheroidal, platy and prismatic, in the clay mineral has attracted a great deal of attention addition to being fibrous or tubular (Joussein et al., and interest.
    [Show full text]
  • Informe De La Subcuenca Antofagasta De La Sierra Cuencas Varias De La
    Informe de la subcuenca Antofagasta de la Sierra Cuencas Varias de la Puna Provincia de Catamarca Foto: Manchones de nieve en el volcán Galán (Foto: L.Zalazar) MINISTERIO DE AMBIENTE Y DESARROLLO SUSTENTABLE PRESIDENCIA DE LA NACIÓN Autoridad Nacional de Aplicación – Ley 26.639 – Régimen de Presupuestos Mínimos para la Preservación de los Glaciares y del Ambiente Periglacial Presidente de la Nación: Ing. Mauricio Macri Ministro de Ambiente y Desarrollo Sustentable: Rabino Sergio Bergman Unidad de Coordinación General: Dra. Patricia Holzman Secretario de Política Ambiental en Recursos Naturales: Lic. Diego Moreno Director Nacional de Gestión Ambiental del Agua y los Ecosistemas Acuáticos: Dr. Javier García Espil Coordinador de Gestión Ambiental del Agua: Dr. Leandro García Silva Responsable Programa Protección de Glaciares y Ambiente Periglacial: M.Sc. María Laila Jover IANIGLA – CONICET Inventario Nacional de Glaciares (ING) Director del IANIGLA: Dr. Fidel Roig Coordinador del ING: Ing. Gustavo Costa Director técnico: Lic. Hernán Gargantini Profesional: Lic. Laura Zalazar Colaboradores: Lic. Lidia Ferri Hidalgo Mayo 2018 La presente publicación se ajusta a la cartografía oficial establecida por el Poder Ejecutivo Nacional a través del Instituto Geográfico Nacional por Ley 22963 y ha sido aprobada por Expte. EX – 2017 – 35435428 – APN – DGA#IGN, de fecha 22 de enero de 2018 Foto de portada: Laguna Diamante y Cerro Galán al fondo (Foto: L.Ferri) ÍNDICE 1. Introducción .............................................................................................................................
    [Show full text]
  • Lunar Crater Volcanic Field (Reveille and Pancake Ranges, Basin and Range Province, Nevada, USA)
    Research Paper GEOSPHERE Lunar Crater volcanic field (Reveille and Pancake Ranges, Basin and Range Province, Nevada, USA) 1 2,3 4 5 4 5 1 GEOSPHERE; v. 13, no. 2 Greg A. Valentine , Joaquín A. Cortés , Elisabeth Widom , Eugene I. Smith , Christine Rasoazanamparany , Racheal Johnsen , Jason P. Briner , Andrew G. Harp1, and Brent Turrin6 doi:10.1130/GES01428.1 1Department of Geology, 126 Cooke Hall, University at Buffalo, Buffalo, New York 14260, USA 2School of Geosciences, The Grant Institute, The Kings Buildings, James Hutton Road, University of Edinburgh, Edinburgh, EH 3FE, UK 3School of Civil Engineering and Geosciences, Newcastle University, Newcastle, NE1 7RU, UK 31 figures; 3 tables; 3 supplemental files 4Department of Geology and Environmental Earth Science, Shideler Hall, Miami University, Oxford, Ohio 45056, USA 5Department of Geoscience, 4505 S. Maryland Parkway, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA CORRESPONDENCE: gav4@ buffalo .edu 6Department of Earth and Planetary Sciences, 610 Taylor Road, Rutgers University, Piscataway, New Jersey 08854-8066, USA CITATION: Valentine, G.A., Cortés, J.A., Widom, ABSTRACT some of the erupted magmas. The LCVF exhibits clustering in the form of E., Smith, E.I., Rasoazanamparany, C., Johnsen, R., Briner, J.P., Harp, A.G., and Turrin, B., 2017, overlapping and colocated monogenetic volcanoes that were separated by Lunar Crater volcanic field (Reveille and Pancake The Lunar Crater volcanic field (LCVF) in central Nevada (USA) is domi­ variable amounts of time to as much as several hundred thousand years, but Ranges, Basin and Range Province, Nevada, USA): nated by monogenetic mafic volcanoes spanning the late Miocene to Pleisto­ without sustained crustal reservoirs between the episodes.
    [Show full text]