Geometric Backreaction of Modified Quantum Vacua and Diffeomorphrisim Covariance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Scharnhorst Effect: Superluminality and Causality in Effective Field Theories
THE SCHARNHORST EFFECT: SUPERLUMINALITY AND CAUSALITY IN EFFECTIVE FIELD THEORIES by Sybil Gertrude de Clark Copyright c Sybil Gertrude de Clark 2016 A Dissertation Submitted to the Faculty of the DEPARTMENT OF PHYSICS In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2016 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dis- sertation prepared by Sybil Gertrude de Clark, titled The Scharnhorst Effect: Su- perluminality and Causality in Effective Field Theories, and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. Date: 8 November 2016 Sean Fleming Date: 8 November 2016 Christian W¨uthrich Date: 8 November 2016 Bruce Barrett Date: 8 November 2016 Dimitrios Psaltis Date: 8 November 2016 William Toussaint Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. Date: 8 November 2016 Dissertation Director: Sean Fleming Date: 8 November 2016 Dissertation Director: Christian W¨uthrich 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. -
Absolute Zero in Casimir Vacuum
Original Research Papers Fundamental Journals Open Access Journals International Journal of Fundamental Physical Sciences (IJFPS) ISSN: 2231-8186 IJFPS, Vol 10 , No 1, pp 01- 04 March, 2020 Xingwu Xu DOI: 10.14331/ijfps.2020.330133 Absolute zero in Casimir vacuum Xingwu Xu Research Institute of Hefei Gotion High-tech Power Energy Co, Ltd 599 Daihe Road, Hefei, Anhui 230012, P. R. China E-mail addresses: [email protected] Received Dec 2019 Received in revised: Feb 2020 Published: March 2020 ABSTRACT Casimir vacuum has many peculiar properties, e.g. the speed of light can exceed c. This paper investigated the behavior of gas molecules in Casimir vacuum. Analysis and calculation indicate that we can get a new absolute zero in Casimir vacuum. This is due to the Hamiltonian, which equals the kinetic energy of the ensemble of gas molecules that is reduced in Casimir vacuum; therefore, the gas constant R is changed. This conclusion has great significance for the research of the vacuum properties. Keywords: Casimir vacuum, Absolute zero ©2020 The Authors. Published by Fundamental Journals. This is an open access article under the CC BY-NC https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.14331/ijfps.2020.330133 INTRODUCTION 푛 (0) = 1 (2) Casimir vacuum has many peculiar properties. For example, ‖ Scharnhorst found that the speed 푐⊥ of light normal to the 11π2 α2 Casimir parallel mirrors could exceed 푐 = 1 (Barton, 1990; n (0) = 1– (3) ⊥ (90)2 (mL)4 Scharnhorst, 1990). In fact, the vacuum structure has been modified in Casimir vacuum. -
The Casimir Effect: Some Aspects
Brazilian Journal of Physics, vol. 36, no. 4A, 2006 1137 The Casimir Effect: Some Aspects Carlos Farina Universidade Federal do Rio de Janeiro, Ilha do Fundao,˜ Caixa Postal 68528, Rio de Janeiro, RJ, 21941-972, Brazil Received on 10 August, 2006 We start this paper with a historical survey of the Casimir effect, showing that its origin is related to ex- periments on colloidal chemistry. We present two methods of computing Casimir forces, namely: the global method introduced by Casimir, based on the idea of zero-point energy of the quantum electromagnetic field, and a local one, which requires the computation of the energy-momentum stress tensor of the corresponding field. As explicit examples, we calculate the (standard) Casimir forces between two parallel and perfectly conducting plates and discuss the more involved problem of a scalar field submitted to Robin boundary conditions at two parallel plates. A few comments are made about recent experiments that undoubtedly confirm the existence of this effect. Finally, we briefly discuss a few topics which are either elaborations of the Casimir effect or topics that are related in some way to this effect as, for example, the influence of a magnetic field on the Casimir effect of charged fields, magnetic properties of a confined vacuum and radiation reaction forces on non-relativistic moving boundaries. Keywords: Quantum field theory; Casimir effect I. INTRODUCTION spent by a light signal to travel from one atom to the other is of the order (or greater) than atomic characteristic times A. Some history (r=c ¸ 1=wMan, where wmn are atomic transition frequencies). -
The Scharnhorst Effect: Superluminality and Causality in Effective Field Theories
The Scharnhorst Effect: Superluminality and Causality in Effective Field Theories Item Type text; Electronic Dissertation Authors de Clark, Sybil Gertrude Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 00:45:17 Link to Item http://hdl.handle.net/10150/622964 THE SCHARNHORST EFFECT: SUPERLUMINALITY AND CAUSALITY IN EFFECTIVE FIELD THEORIES by Sybil Gertrude de Clark Copyright c Sybil Gertrude de Clark 2016 A Dissertation Submitted to the Faculty of the DEPARTMENT OF PHYSICS In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2016 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dis- sertation prepared by Sybil Gertrude de Clark, titled The Scharnhorst Effect: Su- perluminality and Causality in Effective Field Theories, and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. Date: 8 November 2016 Sean Fleming Date: 8 November 2016 Christian W¨uthrich Date: 8 November 2016 Bruce Barrett Date: 8 November 2016 Dimitrios Psaltis Date: 8 November 2016 William Toussaint Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. -
Nonperturbative Casimir Effects in Field Theories: Aspects of Confinement, Dynamical Mass Generation and Chiral Symmetry Breaking
Nonperturbative Casimir Effects in Field Theories: aspects of confinement, dynamical mass generation and chiral symmetry breaking M. N. Chernodub∗ Institut Denis Poisson UMR 7013, Université de Tours, 37200 France Laboratory of Physics of Living Matter, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia E-mail: [email protected] V. A. Goy Laboratory of Physics of Living Matter, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia A. V. Molochkov Laboratory of Physics of Living Matter, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia The Casimir effect is a quantum phenomenon rooted in the fact that vacuum fluctuations of quan- tum fields are affected by the presence of physical objects and boundaries. Since the energy spectrum of the vacuum fluctuations depends on distances between (and geometries of) physical bodies, the quantum vacuum exerts a small but experimentally detectable force on neutral objects. Usually, the associated Casimir energy is calculated for free or weakly coupled quantum fields. We review recent studies of the Casimir effect in field-theoretical models which mimic features of N−1 non-perturbative QCD such as chiral or deconfining phase transitions. We discuss CP sigma model and chiral Gross-Neveu model in (1+1) dimensions as well as compact U(1) gauge theory and Yang-Mills theory in (2+1) dimensions. arXiv:1901.04754v1 [hep-th] 15 Jan 2019 XIII Quark Confinement and the Hadron Spectrum - Confinement2018 31 July - 6 August 2018 Maynooth University, Ireland ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). -
Nonperturbative Casimir Effects
Nonperturbative Casimir Effects M. N. Chernodub - Centre national de la recherche scientifique (CNRS) Institut Denis Poisson, University of Tours, France - Far East Federal University, Vladivostok, Russia Plan of this talk: The Casimir effect: – tree-level phenomenon – perturbative (radiative) corrections Non-perturbative Casimir effects: – Confinement – Chiral symmetry breaking XIIIth Quark Confinement and the Hadron Spectrum, Maynooth University, Aug. 4, 2018 The Casimir Effect Named after Dutch physicist Hendrik Casimir [H.B.G. Casimir, Proc. K. Ned. Acad. Wet. 51, 793 (1948)] (2.5 page–long article). [Source: Wikipedia] The Casimir effect in its original formulation is a tree-level phenomenon. We discuss effects at → a “tree level” (→ while there are no radiative corrections, the effect effect is quantum, not classical) → with perturbative corrections (some effects of radiative corrections) → non-perturbative phenomena (recent results, models and lattice simulations*) *) short review: lattice simulations of thermodynamic (Fisher–de Gennes) Casimir force by M. Hasenbusch et al. and world-line approaches (H. Gies, K. Langfeld, L. Moyaerts) cannot be covered within the given proper time scale. Casimir effect Simplest setup: two parallel perfectly conducting plates at finite distance R. - The plates modify the energy spectrum of the electromagnetic field, and lead to a finite contribution to the vacuum energy. - The energy depends on the inter-plate distance R, Proves existence of the zero-point energy? Questioned in [R. L. Jaffe, Phys. Rev. D72, 021301 (2005)] From Wikipedia leading to an attraction between the neutral plates. Experimentally confirmed (in plate-sphere geometries) 1% agreement with the theory A very small force at human scales. However, at R.=10.nm the pressure is about 1 atmosphere. -
The Casimir Effect: Some Aspects
Brazilian Journal of Physics, vol 34, no. 4A, 2006, 1137-1149 1 The Casimir effect: some aspects Carlos Farina (1) Universidade Federal do Rio de Janeiro, Ilha do Fund˜ao, Caixa Postal 68528, Rio de Janeiro, RJ, 21941-972, Brazil (Received) We start this paper with a historical survey of the Casimir effect, showing that its origin is related to ex- periments on colloidal chemistry. We present two methods of computing Casimir forces, namely: the global method introduced by Casimir, based on the idea of zero-point energy of the quantum electromagnetic field, and a local one, which requires the computation of the energy-momentum stress tensor of the corresponding field. As explicit examples, we calculate the (standard) Casimir forces between two parallel and perfectly conducting plates and discuss the more involved problem of a scalar field submitted to Robin boundary conditions at two parallel plates. A few comments are made about recent experiments that undoubtedly confirm the existence of this effect. Finally, we briefly discuss a few topics which are either elaborations of the Casimir effect or topics that are related in some way to this effect as, for example, the influence of a magnetic field on the Casimir effect of charged fields, magnetic properties of a confined vacuum and radiation reaction forces on non-relativistic moving boundaries. I. INTRODUCTION (r/c ≥ 1/ωMan, where ωmn are atomic transition frequencies). Thoughthis conjectureseemed to be very plausible, a rigorous A. Some history demonstration was in order. Further, the precise expression of the van der Waals interaction for large distances (retarded regime) should be obtained.