Microsoft Cognitive Toolkit Outline

Total Page:16

File Type:pdf, Size:1020Kb

Microsoft Cognitive Toolkit Outline Outline • Overview • CNTK introduction • Symbolic loop • Batch scheduling • Data parallel training • Educational resources • Conclusions Microsoft Cognitive Toolkit Outline • Overview • CNTK introduction • Symbolic loop • Batch scheduling • Data parallel training • Educational resources • Conclusions Microsoft Cognitive Toolkit Deep Learning at Microsoft • Microsoft Cognitive Services • Skype Translator • Cortana • Bing • HoloLens • Microsoft Research Microsoft Cognitive Toolkit 24% 14% Microsoft Cognitive Toolkit ImageNet: Microsoft 2015 ResNet 28.2 ImageNet Classification top-5 error (%) 25.8 16.4 11.7 7.3 6.7 3.5 ILSVRC ILSVRC ILSVRC ILSVRC ILSVRC ILSVRC ILSVRC 2010 NEC 2011 Xerox 2012 2013 Clarifi 2014 VGG 2014 2015 ResNet America AlexNet GoogleNet Microsoft had all 5 entries being the 1-st places in 2015: ImageNet classification, ImageNet localization, ImageNet detection, COCO detection, and COCO segmentation Microsoft Cognitive Toolkit Microsoft Cognitive Services Microsoft Cognitive Toolkit Microsoft Cognitive Toolkit Microsoft Cognitive Toolkit Image Similarity Goal: given query image, find similar images. • Customer: Anonymous ISV (Azure Partner) • Task: given a retail image, find same product on competitor websites (to compare price). • Existing solution: solely based on mining text information from the websites of Target, Macy, etc. • Customer asked for individual similarity measure (e.g. texture, neck style, etc). Microsoft Cognitive Toolkit Bing / Bing Ads Microsoft Cognitive Toolkit Microsoft Translator http://translate.it Power point-plug in for translating speech to subtitles Microsoft Cognitive Toolkit Youtube Link Microsoft Cognitive Toolkit https://www.youtube.com/watch?v=eu9kMIeS0wQ;start=70 Microsoft Customer Support Agent Microsoft Cognitive Toolkit Microsoft Cognitive Toolkit Microsoft Cognitive Toolkit Microsoft Cognitive Toolkit Microsoft Cognitive Toolkit Microsoft Cognitive Toolkit Microsoft Cognitive Toolkit (CNTK) • Microsoft’s open-source deep-learning toolkit • https://github.com/Microsoft/CNTK • Created by Microsoft Speech researchers (Dong Yu et al.) in 2012, “Computational Network Toolkit” • On GitHub since Jan 2016 under MIT license • Python support since Oct 2016 (beta), rebranded as “Cognitive Toolkit” • External contributions e.g. from MIT, Stanford and Nvidia • Over 80% Microsoft internal DL workload runs CNTK • 1st-class on Linux and Windows, docker support • Python, C++, C#, Java, Keras • Internal == External Microsoft Cognitive Toolkit CTNK Speed Caffe: 1.0rc5(39f28e4) http://dlbench.comp.hkbu.edu.hk/ CNTK: 2.0 Beta10(1ae666d) Benchmarking by HKBU, Version 8 MXNet: 0.93(32dc3a2) Single Tesla K80 GPU, CUDA: 8.0 CUDNN: v5.1 TensorFlow: 1.0(4ac9c09) Torch: 7(748f5e3) Caffe CNTK MxNet TensorFlow Torch FCN5 (1024) 55.329ms 51.038ms 60.448ms 62.044ms 52.154ms AlexNet (256) 36.815ms 27.215ms 28.994ms 103.960ms 37.462ms ResNet (32) 143.987ms 81.470ms 84.545ms 181.404ms 90.935ms LSTM (256) - 43.581ms 288.142ms - 1130.606ms (v7 benchmark) (44.917ms) (284.898ms) (223.547ms) (906.958ms) Microsoft Cognitive Toolkit “CNTK is production-ready: State-of-the-art accuracy, efficient, and scales to multi-GPU/multi-server.” speed comparison (samples/second), higher = better [note: December 2015] 80000 70000 60000 Achieved with 1-bit gradient quantization algorithm 50000 40000 30000 20000 Theano only supports 1 GPU 10000 0 CNTK Theano TensorFlow Torch 7 Caffe 1 GPU 1 x 4 GPUs 2 x 4 GPUs (8 GPUs) Microsoft Cognitive Toolkit MICROSOFT COGNITIVE TOOLKIT First Deep Learning Framework Fully Optimized for Pascal Toolkit Delivering Near-Linear Multi-GPU Scaling AlexNet Performance 14,000 13,000 12,000 170x Faster v. CPU Server 10,000 8,000 7,600 images / sec / images 6,000 4,000 3,500 2,400 2,000 78 0 Dual Socket CPU Server 1x P100 2x P100 4x P100 DGX-1 (8x P100) AlexNet training batch size 128, Grad Bit = 32, Dual socket E5-2699v4 CPUs (total 44 cores) CNTK 2.0b3 (to be released) includes cuDNN 5.1.8, NCCL 1.6.1, NVLink enabled Superior performance CNTK Scalability ResNet50 on DGX-1, tested by Nvidia, Dec. 2016 Microsoft Cognitive Toolkit CNTK Other Advantages • Python and C++ API • Mostly implemented in C++ • Low level + high level Python API • Extensibility • User functions and learners in pure Python • Readers • Distributed, highly efficient built-in data readers • Internal == External Microsoft Cognitive Toolkit CNTK Other Advantages • Keras interoperability • With CNTK backend • Try models trained with TF/Theano with CNTK (vice versa) • Demo RL with DQN • Binary evaluation • 10x speed-up in model execution Microsoft Cognitive Toolkit Reinforcement Learning with Flappy Bird Binary evaluation Conv-Net Binary Conv-Net Microsoft Cognitive Toolkit Outline • Overview • CNTK introduction • Symbolic loop • Batch scheduling • Data parallel training • Educational resources • Conclusions Microsoft Cognitive Toolkit What is CNTK? • CNTK expresses (nearly) arbitrary neural networks by composing simple building blocks into complex computational networks, supporting relevant network types and applications. Microsoft Cognitive Toolkit What is CNTK? Example: 2-hidden layer feed-forward NN h1 = s(W1 x + b1) h1 = sigmoid (x @ W1 + b1) h2 = s(W2 h1 + b2) h2 = sigmoid (h1 @ W2 + b2) P = softmax(Wout h2 + bout) P = softmax (h2 @ Wout + bout) with input x RM and one-hot label L RM and cross-entropy training criterion ce = LT log P ce = cross_entropy (L, P) Scorpusce = max Microsoft Cognitive Toolkit What is CNTK? Example: 2-hidden layer feed-forward NN h1 = s(W1 x + b1) h1 = sigmoid (x @ W1 + b1) h2 = s(W2 h1 + b2) h2 = sigmoid (h1 @ W2 + b2) P = softmax(Wout h2 + bout) P = softmax (h2 @ Wout + bout) with input x RM and one-hot label y RJ and cross-entropy training criterion ce = yT log P ce = cross_entropy (L, P) Scorpusce = max Microsoft Cognitive Toolkit What is CNTK? example: 2-hidden layer feed-forward NN h1 = s(W1 x + b1) h1 = sigmoid (x @ W1 + b1) h2 = s(W2 h1 + b2) h2 = sigmoid (h1 @ W2 + b2) P = softmax(Wout h2 + bout) P = softmax (h2 @ Wout + bout) with input x RM and one-hot label y RJ and cross-entropy training criterion ce = yT log P ce = cross_entropy (P, y) Scorpusce = max Microsoft Cognitive Toolkit What is CNTK? h1 = sigmoid (x @ W1 + b1) h2 = sigmoid (h1 @ W2 + b2) P = softmax (h2 @ Wout + bout) ce = cross_entropy (P, y) Microsoft Cognitive Toolkit What is CNTK? ce cross_entropy P softmax bout + h1 = sigmoid (x @ W1 + b1) h2 = sigmoid (h1 @ W2 + b2) Wout • h 2 P = softmax (h2 @ Wout + bout) s ce = cross_entropy (P, y) b2 + W2 • h1 s b1 + W1 • x y Microsoft Cognitive Toolkit What is CNTK? ce cross_entropy • Nodes: functions (primitives) P • Can be composed into reusable composites softmax • Edges: values bout + • Incl. tensors, sparse Wout • h 2 • Automatic differentiation s • ∂F / ∂in = ∂F / ∂out ∙ ∂out / ∂in b2 + • Deferred computation execution engine W2 • h1 s • Editable, clonable b1 + W1 • LEGO-like composability allows CNTK to support x y wide range of networks & applications Microsoft Cognitive Toolkit CNTK Unique Features • Symbolic loops over sequences with dynamic scheduling • Turn graph into parallel program through minibatching • Unique parallel training algorithms (1-bit SGD, Block Momentum) Microsoft Cognitive Toolkit Symbolic Loops over Sequential Data Extend our example to a recurrent network (RNN) h1(t) = s(W1 x(t) + H1 h1(t-1) + b1) h1 = sigmoid(x @ W1 + past_value(h1) + b1) h2(t) = s(W2 h1(t) + H2 h2(t-1) + b2) h2 = sigmoid(h1 @ W2 + past_value(h2) @ H2 + b2) P(t) = softmax(Wout h2(t) + bout) P = softmax(h2 @ Wout + bout) ce(t) = LT(t) log P(t) ce = cross_entropy(P, L) Scorpusce(t) = max no explicit notion of time Microsoft Cognitive Toolkit Symbolic Loops over Sequential Data Extend our example to a recurrent network (RNN) h1(t) = s(W1 x(t) + R1 h1(t-1) + b1) h1 = sigmoid(x @ W1 + past_value(h1) @ R1 + b1) h2(t) = s(W2 h1(t) + R2 h2(t-1) + b2) h2 = sigmoid(h1 @ W2 + past_value(h2) @ R2 + b2) P(t) = softmax(Wout h2(t) + bout) P = softmax(h2 @ Wout + bout) ce(t) = LT(t) log P(t) ce = cross_entropy(P, L) Scorpusce(t) = max Microsoft Cognitive Toolkit Symbolic Loops over Sequential Data Extend our example to a recurrent network (RNN) h1(t) = s(W1 x(t) + R1 h1(t-1) + b1) h1 = sigmoid(x @ W1 + past_value(h1) @ R1 + b1) h2(t) = s(W2 h1(t) + R2 h2(t-1) + b2) h2 = sigmoid(h1 @ W2 + past_value(h2) @ R2 + b2) P(t) = softmax(Wout h2(t) + bout) P = softmax(h2 @ Wout + bout) ce(t) = LT(t) log P(t) ce = cross_entropy(P, L) Scorpusce(t) = max compare to id (Irvine Dataflow): @Function [Arvind et al., TR114a, Dept ISC, UC Irvine, Dec 1978; “Executing a Program on the def ip(a: Sequence[tensor], b: Sequence[tensor]): MIT Tagged-Token Dataflow Architecture”, 1988] s0 = 0 s_ = ForwardDeclaration() s = past_value(s_, initial_value=s0) + a * b s_.resolve_to(s) s = last(s) return s Microsoft Cognitive Toolkit Symbolic Loops over Sequential Data ce cross_entropy P h1 = sigmoid(x @ W1 + past_value(h1) @ R1 + b1) softmax h2 = sigmoid(h1 @ W2 + past_value(h2) @ R2 + b2) b out + P = softmax(h2 @ Wout + bout) Wout • ce = cross_entropy(P, L) h2 s z-1 • CNTK automatically unrolls cycles at execution time + • • cycles are detected with Tarjan’s algorithm b • 2 + R2 only nodes in cycles W2 • • efficient and composable h 1 • cf. TensorFlow: [https://www.tensorflow.org/versions/r1.0/tutorials/recurrent/index.html] s z-1 lstm = rnn_cell.BasicLSTMCell(lstm_size) state = tf.zeros([batch_size, lstm.state_size] + • probabilities = [] loss = 0.0 b 1 + R1 for current_batch_of_words in words_in_dataset: output, state =
Recommended publications
  • Deep Learning Frameworks | NVIDIA Developer
    4/10/2017 Deep Learning Frameworks | NVIDIA Developer Deep Learning Frameworks The NVIDIA Deep Learning SDK accelerates widely­used deep learning frameworks such as Caffe, CNTK, TensorFlow, Theano and Torch as well as many other deep learning applications. Choose a deep learning framework from the list below, download the supported version of cuDNN and follow the instructions on the framework page to get started. Caffe is a deep learning framework made with expression, speed, and modularity in mind. Caffe is developed by the Berkeley Vision and Learning Center (BVLC), as well as community contributors and is popular for computer vision. Caffe supports cuDNN v5 for GPU acceleration. Supported interfaces: C, C++, Python, MATLAB, Command line interface Learning Resources Deep learning course: Getting Started with the Caffe Framework Blog: Deep Learning for Computer Vision with Caffe and cuDNN Download Caffe Download cuDNN The Microsoft Cognitive Toolkit —previously known as CNTK— is a unified deep­learning toolkit from Microsoft Research that makes it easy to train and combine popular model types across multiple GPUs and servers. Microsoft Cognitive Toolkit implements highly efficient CNN and RNN training for speech, image and text data. Microsoft Cognitive Toolkit supports cuDNN v5.1 for GPU acceleration. Supported interfaces: Python, C++, C# and Command line interface Download CNTK Download cuDNN TensorFlow is a software library for numerical computation using data flow graphs, developed by Google’s Machine Intelligence research organization. TensorFlow supports cuDNN v5.1 for GPU acceleration. Supported interfaces: C++, Python Download TensorFlow Download cuDNN https://developer.nvidia.com/deep­learning­frameworks 1/3 4/10/2017 Deep Learning Frameworks | NVIDIA Developer Theano is a math expression compiler that efficiently defines, optimizes, and evaluates mathematical expressions involving multi­dimensional arrays.
    [Show full text]
  • Comparative Study of Deep Learning Software Frameworks
    Comparative Study of Deep Learning Software Frameworks Soheil Bahrampour, Naveen Ramakrishnan, Lukas Schott, Mohak Shah Research and Technology Center, Robert Bosch LLC {Soheil.Bahrampour, Naveen.Ramakrishnan, fixed-term.Lukas.Schott, Mohak.Shah}@us.bosch.com ABSTRACT such as dropout and weight decay [2]. As the popular- Deep learning methods have resulted in significant perfor- ity of the deep learning methods have increased over the mance improvements in several application domains and as last few years, several deep learning software frameworks such several software frameworks have been developed to have appeared to enable efficient development and imple- facilitate their implementation. This paper presents a com- mentation of these methods. The list of available frame- parative study of five deep learning frameworks, namely works includes, but is not limited to, Caffe, DeepLearning4J, Caffe, Neon, TensorFlow, Theano, and Torch, on three as- deepmat, Eblearn, Neon, PyLearn, TensorFlow, Theano, pects: extensibility, hardware utilization, and speed. The Torch, etc. Different frameworks try to optimize different as- study is performed on several types of deep learning ar- pects of training or deployment of a deep learning algorithm. chitectures and we evaluate the performance of the above For instance, Caffe emphasises ease of use where standard frameworks when employed on a single machine for both layers can be easily configured without hard-coding while (multi-threaded) CPU and GPU (Nvidia Titan X) settings. Theano provides automatic differentiation capabilities which The speed performance metrics used here include the gradi- facilitates flexibility to modify architecture for research and ent computation time, which is important during the train- development. Several of these frameworks have received ing phase of deep networks, and the forward time, which wide attention from the research community and are well- is important from the deployment perspective of trained developed allowing efficient training of deep networks with networks.
    [Show full text]
  • Comparative Study of Caffe, Neon, Theano, and Torch
    Workshop track - ICLR 2016 COMPARATIVE STUDY OF CAFFE,NEON,THEANO, AND TORCH FOR DEEP LEARNING Soheil Bahrampour, Naveen Ramakrishnan, Lukas Schott, Mohak Shah Bosch Research and Technology Center fSoheil.Bahrampour,Naveen.Ramakrishnan, fixed-term.Lukas.Schott,[email protected] ABSTRACT Deep learning methods have resulted in significant performance improvements in several application domains and as such several software frameworks have been developed to facilitate their implementation. This paper presents a comparative study of four deep learning frameworks, namely Caffe, Neon, Theano, and Torch, on three aspects: extensibility, hardware utilization, and speed. The study is per- formed on several types of deep learning architectures and we evaluate the per- formance of the above frameworks when employed on a single machine for both (multi-threaded) CPU and GPU (Nvidia Titan X) settings. The speed performance metrics used here include the gradient computation time, which is important dur- ing the training phase of deep networks, and the forward time, which is important from the deployment perspective of trained networks. For convolutional networks, we also report how each of these frameworks support various convolutional algo- rithms and their corresponding performance. From our experiments, we observe that Theano and Torch are the most easily extensible frameworks. We observe that Torch is best suited for any deep architecture on CPU, followed by Theano. It also achieves the best performance on the GPU for large convolutional and fully connected networks, followed closely by Neon. Theano achieves the best perfor- mance on GPU for training and deployment of LSTM networks. Finally Caffe is the easiest for evaluating the performance of standard deep architectures.
    [Show full text]
  • Torch7: a Matlab-Like Environment for Machine Learning
    Torch7: A Matlab-like Environment for Machine Learning Ronan Collobert1 Koray Kavukcuoglu2 Clement´ Farabet3;4 1 Idiap Research Institute 2 NEC Laboratories America Martigny, Switzerland Princeton, NJ, USA 3 Courant Institute of Mathematical Sciences 4 Universite´ Paris-Est New York University, New York, NY, USA Equipe´ A3SI - ESIEE Paris, France Abstract Torch7 is a versatile numeric computing framework and machine learning library that extends Lua. Its goal is to provide a flexible environment to design and train learning machines. Flexibility is obtained via Lua, an extremely lightweight scripting language. High performance is obtained via efficient OpenMP/SSE and CUDA implementations of low-level numeric routines. Torch7 can easily be in- terfaced to third-party software thanks to Lua’s light interface. 1 Torch7 Overview With Torch7, we aim at providing a framework with three main advantages: (1) it should ease the development of numerical algorithms, (2) it should be easily extended (including the use of other libraries), and (3) it should be fast. We found that a scripting (interpreted) language with a good C API appears as a convenient solu- tion to “satisfy” the constraint (2). First, a high-level language makes the process of developing a program simpler and more understandable than a low-level language. Second, if the programming language is interpreted, it becomes also easier to quickly try various ideas in an interactive manner. And finally, assuming a good C API, the scripting language becomes the “glue” between hetero- geneous libraries: different structures of the same concept (coming from different libraries) can be hidden behind a unique structure in the scripting language, while keeping all the functionalities coming from all the different libraries.
    [Show full text]
  • Tensorflow, Theano, Keras, Torch, Caffe Vicky Kalogeiton, Stéphane Lathuilière, Pauline Luc, Thomas Lucas, Konstantin Shmelkov Introduction
    TensorFlow, Theano, Keras, Torch, Caffe Vicky Kalogeiton, Stéphane Lathuilière, Pauline Luc, Thomas Lucas, Konstantin Shmelkov Introduction TensorFlow Google Brain, 2015 (rewritten DistBelief) Theano University of Montréal, 2009 Keras François Chollet, 2015 (now at Google) Torch Facebook AI Research, Twitter, Google DeepMind Caffe Berkeley Vision and Learning Center (BVLC), 2013 Outline 1. Introduction of each framework a. TensorFlow b. Theano c. Keras d. Torch e. Caffe 2. Further comparison a. Code + models b. Community and documentation c. Performance d. Model deployment e. Extra features 3. Which framework to choose when ..? Introduction of each framework TensorFlow architecture 1) Low-level core (C++/CUDA) 2) Simple Python API to define the computational graph 3) High-level API (TF-Learn, TF-Slim, soon Keras…) TensorFlow computational graph - auto-differentiation! - easy multi-GPU/multi-node - native C++ multithreading - device-efficient implementation for most ops - whole pipeline in the graph: data loading, preprocessing, prefetching... TensorBoard TensorFlow development + bleeding edge (GitHub yay!) + division in core and contrib => very quick merging of new hotness + a lot of new related API: CRF, BayesFlow, SparseTensor, audio IO, CTC, seq2seq + so it can easily handle images, videos, audio, text... + if you really need a new native op, you can load a dynamic lib - sometimes contrib stuff disappears or moves - recently introduced bells and whistles are barely documented Presentation of Theano: - Maintained by Montréal University group. - Pioneered the use of a computational graph. - General machine learning tool -> Use of Lasagne and Keras. - Very popular in the research community, but not elsewhere. Falling behind. What is it like to start using Theano? - Read tutorials until you no longer can, then keep going.
    [Show full text]
  • Introduction to Deep Learning Framework 1. Introduction 1.1
    Introduction to Deep Learning Framework 1. Introduction 1.1. Commonly used frameworks The most commonly used frameworks for deep learning include Pytorch, Tensorflow, Keras, caffe, Apache MXnet, etc. PyTorch: open source machine learning library; developed by Facebook AI Rsearch Lab; based on the Torch library; supports Python and C++ interfaces. Tensorflow: open source software library dataflow and differentiable programming; developed by Google brain team; provides stable Python & C APIs. Keras: an open-source neural-network library written in Python; conceived to be an interface; capable of running on top of TensorFlow, Microsoft Cognitive Toolkit, R, Theano, or PlaidML. Caffe: open source under BSD licence; developed at University of California, Berkeley; written in C++ with a Python interface. Apache MXnet: an open-source deep learning software framework; supports a flexible programming model and multiple programming languages (including C++, Python, Java, Julia, Matlab, JavaScript, Go, R, Scala, Perl, and Wolfram Language.) 1.2. Pytorch 1.2.1 Data Tensor: the major computation unit in PyTorch. Tensor could be viewed as the extension of vector (one-dimensional) and matrix (two-dimensional), which could be defined with any dimension. Variable: a wrapper of tensor, which includes creator, value of variable (tensor), and gradient. This is the core of the automatic derivation in Pytorch, as it has the information of both the value and the creator, which is very important for current backward process. Parameter: a subset of variable 1.2.2. Functions: NNModules: NNModules (torch.nn) is a combination of parameters and functions, and could be interpreted as layers. There some common modules such as convolution layers, linear layers, pooling layers, dropout layers, etc.
    [Show full text]
  • Enhancing OMB with Python Benchmarks Presentation at MUG ‘21
    MVAPICH2 Meets Python: Enhancing OMB with Python Benchmarks Presentation at MUG ‘2 Nawras Alnaasan Network-Based Computing Laboratory Dept. of Computer Science and Engineering !he #hio State $ni%ersity alnaasan.&'osu.edu O$tline • #S$ (icro Benc"marks )#(B* • +"y ,yt"on- • (,. for ,yt"on • .ntroducing #(B-,y • .nitial /esults • Conclusion !etwork Base" Com#$ting %a&oratory MUG ‘2 2 O)U Micro Benchmarks (OMB+ • #(B is a widely used package to measure performance of (,. operations. • .t helps in optimi0ing (,I applications on different HPC systems. • #1ers a series of benchmarks including but not limited to point-to-point, blocking and non-blocking collecti%es, and one-sided tests. • A large set of options and flags for users to create customi0able tests. • Supports different platforms like /#Cm/CUDA to run on AR(4N5IDIA GPUs. • +ritten in C !etwork Base" Com#$ting %a&oratory MUG ‘2 ( -hy Python? • Second most popular programming language according to the !.#BE inde7 as of August 8021. Adopted from= "ttps=44www.tiobe.com4tiobe-inde74 • 6reat community and support around (achine Learning Big Data and Cloud Computing – (any deep learning frameworks like ,yTorch, !ensor3ow :eras etc. – #ne of the most important tools for data science and analytics. • 6reat ,otential to use (,. and distributed computing tec"niques. !etwork• (any Base" other Com#$ting ,yt"on libraries and frameworks like Sci,y Numpy D<ango etc. %a&oratory MUG ‘2 , -hy Python? 5ery flexible and simplified synta7. Adopted from= !etwork Base" Com#$ting "ttps:44www."ardikp.com489&>4&84?94pyt"on-cpp4 %a&oratory MUG ‘2 / MPI for Python • (,.
    [Show full text]
  • DLL: a Fast Deep Neural Network Library
    Published in Artificial Neural Networks in Pattern Recognition. ANNPR 2018, Lecture Notes in Computer Science, vol. 11081, which should be cited to refer to this work. DOI: https://doi.org/10.1007/978-3-319-99978-4_4 DLL: A Fast Deep Neural Network Library Baptiste Wicht, Andreas Fischer, and Jean Hennebert 1 HES-SO, University of Applied Science of Western Switzerland 2 University of Fribourg, Switzerland Abstract. Deep Learning Library (DLL) is a library for machine learn- ing with deep neural networks that focuses on speed. It supports feed- forward neural networks such as fully-connected Artificial Neural Net- works (ANNs) and Convolutional Neural Networks (CNNs). Our main motivation for this work was to propose and evaluate novel software engineering strategies with potential to accelerate runtime for training and inference. Such strategies are mostly independent of the underlying deep learning algorithms. On three different datasets and for four dif- ferent neural network models, we compared DLL to five popular deep learning libraries. Experimentally, it is shown that the proposed library is systematically and significantly faster on CPU and GPU. In terms of classification performance, similar accuracies as the other libraries are reported. 1 Introduction In recent years, neural networks have regained a large deal of attention with deep learning approaches. Such approaches rely on the use of bigger and deeper networks, typically by using larger input dimensions to incorporate more con- text and by increasing the number of layers to extract information at different levels of granularity. The success of deep learning can be attributed mainly to three factors. First, there is the advent of big data, meaning the availability of larger quantities of training data.
    [Show full text]
  • Neural Networks and Deep Learning Deep Learning Software Midterm History of Frameworks
    CSCI 5922 - NEURAL NETWORKS AND DEEP LEARNING DEEP LEARNING SOFTWARE MIDTERM HISTORY OF FRAMEWORKS First frameworks to support define-by-run automatic SECOND GENERATION differentiation. FIRST GENERATION Framework Year Framework Year Autograd 2015 Torch 2002 Chainer 2015 Theano 2010 MXNet 2015 Torch7 2011 TensorFlow 2016 Theano 2012 Theano 2016 Pylearn2 2013 DyNet 2017 Keras 2015 PyTorch 2017 Torchnet 2015 Ignite 2018 TensorFlow 2019 Wrappers First full frameworks to support CUDA/GPUs. TORCH - 2002 - HTTP://TORCH.CH While this version of Torch pre-dates deep learning, it is the prototype for contemporary machine learning frameworks. Most contemporary deep learning frameworks, consciously or not, mimic Torch. Torch is written in C++ and supports machine learning algorithms like multi-layer neural networks, support vector machines, Gaussian mixture models, and hidden Markov models. It was made available under the BSD license (free to copy and commercial use/proprietary modifications are allowed as long as attribution is preserved). TORCH - 2002 - HTTP://TORCH.CH The core API is inspired by object-oriented programming and design patterns — specifically, by the notions of modularity and separation of interface and implementation. The API contains useful abstractions like: ‣ DataSet ‣ Machine ‣ Measurer ‣ Trainer TORCH - 2002 - HTTP://TORCH.CH DATASET CLASS ‣ Responsible for loading data ‣ Relieves engineer of need to repeatedly write code to read training data and labels ‣ Provides an abstraction layer that allows data to be read from any source ‣ Design pattern: Proxy TORCH - 2002 - HTTP://TORCH.CH MACHINE CLASS ‣ Responsible for learning mapping from inputs to targets ‣ Several learning algorithms supported ‣ Multi-layer neural network ‣ Support vector machine ‣ “Distribution” ‣ Gaussian mixture model ‣ Hidden Markov model ‣ Design pattern: Adapter TORCH - 2002 - HTTP://TORCH.CH MEASURER CLASS ‣ Responsible for measuring the output of the machine ‣ Loss: mean squared error, log loss ‣ Metric: accuracy, F1, etc.
    [Show full text]
  • Deep Learning Software Security and Fairness of Deep Learning SP18 Today
    Deep Learning Software Security and Fairness of Deep Learning SP18 Today ● HW1 is out, due Feb 15th ● Anaconda and Jupyter Notebook ● Deep Learning Software ○ Keras ○ Theano ○ Numpy Anaconda ● A package management system for Python Anaconda ● A package management system for Python Jupyter notebook ● A web application that where you can code, interact, record and plot. ● Allow for remote interaction when you are working on the cloud ● You will be using it for HW1 Deep Learning Software Deep Learning Software Caffe(UCB) Caffe2(Facebook) Paddle (Baidu) Torch(NYU/Facebook) PyTorch(Facebook) CNTK(Microsoft) Theano(U Montreal) TensorFlow(Google) MXNet(Amazon) Keras (High Level Wrapper) Deep Learning Software: Most Popular Caffe(UCB) Caffe2(Facebook) Paddle (Baidu) Torch(NYU/Facebook) PyTorch(Facebook) CNTK(Microsoft) Theano(U Montreal) TensorFlow(Google) MXNet(Amazon) Keras (High Level Wrapper) Deep Learning Software: Today Caffe(UCB) Caffe2(Facebook) Paddle (Baidu) Torch(NYU/Facebook) PyTorch(Facebook) CNTK(Microsoft) Theano(U Montreal) TensorFlow(Google) MXNet(Amazon) Keras (High Level Wrapper) Mobile Platform ● Tensorflow Lite: ○ Released last November Why do we use deep learning frameworks? ● Easily build big computational graphs ○ Not the case in HW1 ● Easily compute gradients in computational graphs ● GPU support (cuDNN, cuBLA...etc) ○ Not required in HW1 Keras ● A high-level deep learning framework ● Built on other deep-learning frameworks ○ Theano ○ Tensorflow ○ CNTK ● Easy and Fun! Keras: A High-level Wrapper ● Pass on a layer of instances in the constructor ● Or: simply add layers. Make sure the dimensions match. Keras: Compile and train! Epoch: 1 epoch means going through all the training dataset once Numpy ● The fundamental package in Python for: ○ Scientific Computing ○ Data Science ● Think in terms of vectors/Matrices ○ Refrain from using for loops! ○ Similar to Matlab Numpy ● Basic vector operations ○ Sum, mean, argmax….
    [Show full text]
  • Introduction to Torch)
    Advanced Machine Learning 2014 (Introduction to Torch) Jost Tobias Springenberg, Jan W¨ulfing Martin Riedmiller fspringj,wuelfj,[email protected] Machine Learning Lab University of Freiburg November 25, 2014 Tobias Springenberg Machine Learning Lab - Uni FR AML 2014 (1) I Assignment: We will give out the second assignment training a MLP / ConvNet to recognize digits using torch + testing on a secret test-set ;) I Part 1: Reproduce results (maybe even state of the art) from previous work I Part 2: Train the best network you can design for MNIST and report classification error I Part 3: Give us up to 3 models that we can call using lua ! we will test this on our secret test-data I Regarding the presentation: As before I have borrowed slides/examples from the torch developers who do a much better job than me at explaining their work Today... I Torch: I will give a short (hopefully concise) introduction to torch Tobias Springenberg Machine Learning Lab - Uni FR AML 2014 (2) I Part 1: Reproduce results (maybe even state of the art) from previous work I Part 2: Train the best network you can design for MNIST and report classification error I Part 3: Give us up to 3 models that we can call using lua ! we will test this on our secret test-data I Regarding the presentation: As before I have borrowed slides/examples from the torch developers who do a much better job than me at explaining their work Today... I Torch: I will give a short (hopefully concise) introduction to torch I Assignment: We will give out the second assignment training a MLP / ConvNet to recognize digits using torch + testing on a secret test-set ;) Tobias Springenberg Machine Learning Lab - Uni FR AML 2014 (2) I Part 2: Train the best network you can design for MNIST and report classification error I Part 3: Give us up to 3 models that we can call using lua ! we will test this on our secret test-data I Regarding the presentation: As before I have borrowed slides/examples from the torch developers who do a much better job than me at explaining their work Today..
    [Show full text]
  • Deep Learning Software Spring 2020 Today
    Deep Learning Software Spring 2020 Today ● Homework 1 is out, due Feb 6 ● Conda and Jupyter Notebook ● Deep Learning Software ● Keras ● Tensorflow ● Numpy ● Google Cloud Platform Conda ● A package management system for Python Jupyter notebook ● A web application that where you can code, interact, record and plot. ● Allow for remote interaction when you are working on the cloud ● You will be using it for HW1 Deep Learning Software Deep Learning Software Caffe(UCB) Caffe2(Facebook) Paddle (Baidu) Torch(NYU/Facebook) PyTorch(Facebook) CNTK(Microsoft) Theano(U Montreal) TensorFlow(Google) MXNet(Amazon) Keras (High Level Wrapper) Deep Learning Software: Most Popular Caffe(UCB) Caffe2(Facebook) Paddle (Baidu) Torch(NYU/Facebook) PyTorch(Facebook) CNTK(Microsoft) Theano(U Montreal) TensorFlow(Google) MXNet(Amazon) Keras (High Level Wrapper) Deep Learning Software: Today Caffe(UCB) Caffe2(Facebook) Paddle (Baidu) Torch(NYU/Facebook) PyTorch(Facebook) CNTK(Microsoft) Theano(U Montreal) TensorFlow(Google) MXNet(Amazon) Keras (High Level Wrapper) Mobile Platform ● Tensorflow Lite: ○ Released last November Why do we use deep learning frameworks? ● Easily build big computational graphs ○ Not the case in HW1 ● Easily compute gradients in computational graphs ● GPU support (cuDNN, cuBLA...etc) ○ Not required in HW1 Keras ● A high-level deep learning framework ● Built on other deep-learning frameworks ○ Theano ○ Tensorflow ○ CNTK ● Easy and Fun! Keras: A High-level Wrapper ● Pass on a layer of instances in the constructor ● Or: simply add layers. Make sure the dimensions match. Keras: Compile and train! Epoch: 1 epoch means going through all the training dataset once Numpy ● The fundamental package in Python for: ○ Scientific Computing ○ Data Science ● Think in terms of vectors/Matrices ○ Refrain from using for loops! ○ Similar to Matlab Numpy ● Basic vector operations ○ Sum, mean, argmax….
    [Show full text]