Jugular Foramen Syndrome As Initial Presentation of Metastatic Lung Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Morphological Study of Jugular Foramen
Vikas. C. Desai et al /J. Pharm. Sci. & Res. Vol. 9(4), 2017, 456-458 A Morphological Study of Jugular Foramen Vikas. C. Desai1, Pavan P Havaldar2 1. Asst. Prof, Department of Dentistry, BLDE University’s,Shri. B. M. Patil Medical College Hospital and Research Centre,Bijapur – 586103, Karnataka State. 2. Assistant Professor of Anatomy, Gadag Institute of Medical Sciences, Mallasamudra, Mulgund Road, Gadag, Karnataka, India. Abstract Jugular foramen is a large aperture in the base of the skull. It is located behind the carotid canal and is formed by the petrous part of the temporal bone and behind by the occipital bone. The jugular foramen is the main route of venous outflow from the skull and is characterised by laterality based on the predominance of one of the sides. Sigmoid sinus continues as internal jugular vein in posterior part of jugular foramen. Ligation of the internal jugular is sometimes performed during radical neck dissection with the risk of venous infarction, which some adduce to be due to ligation of the dominant internal jugular vein. It is generally said that although the Jugular foramen is larger on the right side compared to the left, its size as well as its height and volume vary in different racial groups and sexes. The foramen’s complex shape, its formation by two bones, and the numerous nerves and venous channels that pass through it further compound its anatomy. The present study was undertaken in 263(526 sides) different medical and dental institutions in Karnataka, India. Out of 263 skulls in 61.21% of cases the right foramina were larger than the left, in 13.68% of cases the left foramina were larger than the right and in 25.09% cases were equal on both sides. -
Vernet Syndrome by Varicella-Zoster Virus Yil Ryun Jo, MD1, Chin Wook Chung, MD2, Jung Soo Lee, MD2, Hye Jeong Park, MD1
Case Report Ann Rehabil Med 2013;37(3):449-452 pISSN: 2234-0645 • eISSN: 2234-0653 http://dx.doi.org/10.5535/arm.2013.37.3.449 Annals of Rehabilitation Medicine Vernet Syndrome by Varicella-Zoster Virus Yil Ryun Jo, MD1, Chin Wook Chung, MD2, Jung Soo Lee, MD2, Hye Jeong Park, MD1 1Department of Rehabilitation Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Seoul; 2Department of Rehabilitation Medicine, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Uijeongbu, Korea Vernet syndrome involves the IX, X, and XI cranial nerves and is most often attributable to malignancy, aneurysm or skull base fracture. Although there have been several reports on Vernet’s syndrome caused by fracture and inflammation, cases related to varicella-zoster virus are rare and have not yet been reported in South Korea. A 32-year-old man, who complained of left ear pain, hoarse voice and swallowing difficulty for 5 days, presented at the emergency room. He showed vesicular skin lesions on the left auricle. On neurologic examination, his uvula was deviated to the right side, and weakness was detected in his left shoulder. Left vocal cord palsy was noted on laryngoscopy. Antibody levels to varicella-zoster virus were elevated in the serum. Electrodiagnostic studies showed findings compatible with left spinal accessory neuropathy. Based on these findings, he was diagnosed with Vernet syndrome, involving left cranial nerves, attributable to varicella-zoster virus. Keywords Varicella-zoster virus, Cranial nerves INTRODUCTION Hunt [2] surmised that the gasserian, geniculate, petrous, accessory, jugular, plexiform, and second and third cer- Vernet syndrome refers to paralysis of the IX, X, and XI vical dorsal root ganglia formed a chain by which inflam- cranial nerves traversing the jugular foramen. -
Biomechanical Analysis of Skull Trauma and Opportunity In
Distriquin et al. European Radiology Experimental (2020) 4:66 European Radiology https://doi.org/10.1186/s41747-020-00194-x Experimental NARRATIVE REVIEW Open Access Biomechanical analysis of skull trauma and opportunity in neuroradiology interpretation to explain the post- concussion syndrome: literature review and case studies presentation Yannick Distriquin1, Jean-Marc Vital2 and Bruno Ella3* Abstract Traumatic head injuries are one of the leading causes of emergency worldwide due to their frequency and associated morbidity. The circumstances of their onset are often sports activities or road accidents. Numerous studies analysed post-concussion syndrome from a psychiatric and metabolic point of view after a mild head trauma. The aim was to help understand how the skull can suffer a mechanical deformation during a mild cranial trauma, and if it can explain the occurrence of some post-concussion symptoms. A multi-step electronic search was performed, using the following keywords: biomechanics properties of the skull, three-dimensional computed tomography of head injuries, statistics on skull injuries, and normative studies of the skull base. We analysed studies related to the observation of the skull after mild head trauma. The analysis of 23 studies showed that the cranial sutures could be deformed even during a mild head trauma. The skull base is a major site of bone shuffle. Three-dimensional computed tomography can help to understand some post-concussion symptoms. Four case studies showed stenosis of jugular foramen and petrous bone asymmetries who can correlate with concussion symptomatology. In conclusion, the skull is a heterogeneous structure that can be deformed even during a mild head trauma. -
The Interperiosteodural Concept Applied to the Jugular Foramen and Its Compartmentalization
LABORATORY INVESTIGATION J Neurosurg 129:770–778, 2018 The interperiosteodural concept applied to the jugular foramen and its compartmentalization Florian Bernard, MD,1 Ilyess Zemmoura, MD, PhD,2–4 Jean Philippe Cottier, MD, PhD,2,5 Henri-Dominique Fournier, MD, PhD,1,6 Louis-Marie Terrier, MD, MSc,2–4 and Stéphane Velut, MD, PhD2–4 1Department of Neurosurgery, CHU Angers; 2Université François–Rabelais de Tours, Inserm, Imagerie et Cerveau, UMR U930, Tours; 3Anatomy Laboratory, Faculté de Médecine, Tours; Departments of 4Neurosurgery and 5Neuroradiology, CHRU de Tours; and 6Anatomy Laboratory, Faculté de Médecine, Angers, France OBJECTIVE The dura mater is made of 2 layers: the endosteal layer (outer layer), which is firmly attached to the bone, and the meningeal layer (inner layer), which directly covers the brain and spinal cord. These 2 dural layers join together in most parts of the skull base and cranial convexity, and separate into the orbital and perisellar compartments or into the spinal epidural space to form the extradural neural axis compartment (EDNAC). The EDNAC contains fat and/or venous blood. The aim of this dissection study was to anatomically verify the concept of the EDNAC by focusing on the dural layers surrounding the jugular foramen area. METHODS The authors injected 10 cadaveric heads (20 jugular foramina) with colored latex and fixed them in formalin. The brainstem and cerebellum of 7 specimens were cautiously removed to allow a superior approach to the jugular fora- men. Special attention was paid to the meningeal architecture of the jugular foramen, the petrosal inferior sinus and its venous confluence with the sigmoid sinus, and the glossopharyngeal, vagus, and accessory nerves. -
Glossopharyngeal & Vagus Nerves
Cranial Nerves 1X-X (Glossopharyngeal & Vagus Nerves) By Dr. Jamela Elmedany Dr. Essam Eldin Salama Objectives • By the end of the lecture, the student will be able to: • Define the deep origin of both Glossopharyngeal and Vagus Nerves. • Locate the exit of each nerve from the brain stem. • Describe the course and distribution of each nerve . • List the branches of both nerves. GLOSSOPHARYNGEAL (1X) CRANIAL NERVE • It is principally a Sensory nerve with preganglionic parasympathetic and few motor fibers. • It has no real nucleus to itself. Instead it shares nuclei with VII and X. Superficial attachment • It arises from the ventral aspect of the medulla by a linear series of small rootlets, in groove between olive and inferior cerebellar peduncle. • It leaves the cranial cavity by passing through the jugular foramen in company with the Vagus , Acessory nerves and the Internal jugular vein. COURSE • It Passes forwards between Internal jugular vein and External carotid artery. • Lies Deep to Styloid process. • Passes between external and internal carotid arteries at the posterior border of Stylopharyngeus then lateral to it. • It reaches the pharynx by passing between middle and inferior constrictors, deep to Hyoglossus, where it breaks into terminal branches. • Component of fibers & Deep origin • SVE fibers: originate from nucleus NST ISN ambiguus (NA), and supply stylopharyngeus muscle. Otic G • GVE fibers: arise from inferior salivatory nucleus (ISN), relay in otic ganglion, the postganglionic fibers supply parotid gland. • SVA fibers: arise from the cells of inferior ganglion, their central NA processes terminate in nucleus of solitary tract (NST), the peripheral processes supply the taste buds on posterior third of tongue. -
Study of Jugular Foramen – a Case Report
IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861.Volume 13, Issue 8 Ver. IV (Aug. 2014), PP 63-67 www.iosrjournals.org Study of Jugular Foramen – A Case Report 1Mr. K. M. Sakthivel, 2Dr. T. K. Balaji, 3Dr. A. S. Moni, 4Dr. G. Narayanan, 5Dr. K. Sathish Kumar, 1Lecturer, Rajas Dental College and Hospital, Nagercoil 2Professor, Chettinad Hospital and Research Institute, Kelambakkam. 3Professor, Rajas Dental College and Hospital, Nagercoil 4Associate Professor, Sivaraj Homoeopathic Medical College, Salem 5Associate Professor, Sivaraj Homoeopathic Medical College, Salem Abstract: The jugular foramen at the base of the skull varies in shape and size the foramen lies at the petrous part of temporal bone and behind by the occipital bone. It’s irregular in shape. Usually the right foramen is larger than the left. The variation in the foramen is observed in different racial group and sexes. The shape and size of foramen is inversely related to size of sigmoid sinus. Petrosal portion contains the inferior petrosal sinus. Sigmoid portion receives the sigmoid sinus. Intrajugular portion contains cranial nerves IX, X and XI. AIM: To analyze the length and width of jugular foramen. To determine the side dominance of the foramen. MATERIALS AND METHODS: A total of 32 jugular foramen in dry adult skulls from Department of Anatomy, CHRI were used for the present study. Sagittal and transverse diameters were measured using digital vernier caliper. OBSERVATIONS: The overall dimensions of Jugular foramen were recorded on both sides. The mean transverse diameter (width) on the right and the left side were 11.779mm and 10.901mm respectively. -
Cranial Nerve Disorders: Clinical Manifestations and Topographyଝ
Radiología. 2019;61(2):99---123 www.elsevier.es/rx UPDATE IN RADIOLOGY Cranial nerve disorders: Clinical manifestations and topographyଝ a,∗ a b c M. Jorquera Moya , S. Merino Menéndez , J. Porta Etessam , J. Escribano Vera , a M. Yus Fuertes a Sección de Neurorradiología, Hospital Clínico San Carlos, Madrid, Spain b Servicio de Neurología, Hospital Clínico San Carlos, Madrid, Spain c Neurorradiología, Hospital Ruber Internacional, Madrid, Spain Received 17 November 2017; accepted 27 September 2018 KEYWORDS Abstract The detection of pathological conditions related to the twelve cranial pairs rep- Cranial pairs; resents a significant challenge for both clinicians and radiologists; imaging techniques are Cranial nerves; fundamental for the management of many patients with these conditions. In addition to knowl- Cranial neuropathies; edge about the anatomy and pathological entities that can potentially affect the cranial pairs, Neuralgia; the imaging evaluation of patients with possible cranial pair disorders requires specific exami- Cranial nerve palsy nation protocols, acquisition techniques, and image processing. This article provides a review of the most common symptoms and syndromes related with the cranial pairs that might require imaging tests, together with a brief overview of the anatomy, the most common underlying processes, and the most appropriate imaging tests for different indications. © 2018 SERAM. Published by Elsevier Espana,˜ S.L.U. All rights reserved. PALABRAS CLAVE Sintomatología derivada de los pares craneales: Clínica y topografía Pares craneales; Resumen La detección de la patología relacionada con los doce pares craneales representa Nervios craneales; un importante desafío, tanto para los clínicos como para los radiólogos. Las técnicas de imagen Neuropatía de pares craneales; son fundamentales para el manejo de muchos de los pacientes. -
Morphometric Aspects of the Jugular Foramen in Dry Skulls of Adult Individuals in Southern Brazil
Original article Morphometric aspects of the jugular foramen in dry skulls of adult individuals in Southern Brazil Pereira, GAM.*, Lopes, PTC., Santos, AMPV. and Krebs, WD. Human Anatomy Laboratory, Brazilian Lutheran University, Av. Farroupilha, 8001, CEP 92425-900, Canoas, RS, Brazil *E-mail: [email protected] Abstract The jugular foramen (JF) lies between the occipital bone and the petrosal portion of the temporal bone, and it allows for the passage of important nervous and vascular elements, such as the glossopharyngeal vagus and accessory nerves, and the internal jugular vein. Glomic tumors, schwannomas, metastatic lesions and infiltrating inflammatory processes are associated with this foramen, which can account for injuries of related structures. Variatons of the JF were already reported regarding shape, size and laterality in one only skull, besides differences related to sex, race and laterality domain, which makes the study of these parameters in the population of southern Brazil significant. Objective: this paper wants to conduct the morphometric analysis of the JF of 111 dry skulls belonging to males and females. Results: the latero-medial the anteroposterior measurements showed significant differences when genera were compared and side was compared, respectively. Of the total amount of the investigated skulls, 0.9% showed a complete septum on both sides; 0.9% showed incomplete septum, and 83.8% lacked the septum. The presence of a domed bony roof was noticed in 68.5% of skulls on both sides. Conclusion: the obtained results presented variations regarding some parameters when compared to previous studies, thus making it evident the significance of race in the morphometric measurements and characteristics of the JF, besides the relevance of studying the kind of impairment which can jeopardize important functions, as the cardiac innervation of the vagus nerve. -
Hydrocephalus and Chiari Malformation Pathophysiology In
Neurochirurgie 65 2019 264–268 Disponible en ligne sur ScienceDirect www.sciencedirect.com Craniosynostosis: State of the Art 2019 Hydrocephalus and Chiari malformation pathophysiology in FGFR2-related faciocraniosynostosis: A review a,b,∗ a a c a,d e,f G. Coll , Y. El Ouadih , F. Abed Rabbo , V. Jecko , L. Sakka , F. Di Rocco a Service de Neurochirurgie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France b Université Clermont Auvergne, CNRS, SIGMA, Institut Pascal, Clermont-Ferrand, France c Service de Neurochirurgie, CHU Bordeaux, Bordeaux, France d Laboratoire d’Anatomie et d’Organogenèse, Laboratoire de Biophysique Sensorielle, NeuroDol, Faculté de Médecine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France e Service de Neurochirurgie Pédiatrique, Hôpital Femme Mère Enfant, Lyon, France f Université Claude Bernard, INSERM 1033, Lyon, France a r t i c l e i n f o a b s t r a c t Article history: Background. – Patients with syndromic faciocraniosynostosis due to the mutation of the fibroblast growth Received 22 June 2019 factor receptor (FGFR) 2 gene present premature fusion of the coronal sutures and of the cranial base Received in revised form 25 August 2019 synchondrosis. Cerebrospinal fluid (CSF) circulation disorders and cerebellar tonsil prolapse are frequent Accepted 3 September 2019 findings in faciocraniosynostosis. Objective. – We reviewed the medical literature on the pathophysiological mechanisms of CSF disorders Keywords: such as hydrocephalus and of cerebellar tonsil prolapse in FGFR2-related faciocraniosynostosis. Complex craniosynostosis Discussion. – Different pathophysiological theories have been proposed, but none elucidated all the symp- Hydrocephalus toms present in Apert, Crouzon and Pfeiffer syndromes. The first theory that addressed CSF circulation Chiari Crouzon disruption was the constrictive theory (cephalocranial disproportion): cerebellum and brain stem are Apert constricted by the small volume of the posterior fossa. -
Morphometric Analysis of the Foramen Magnum and Jugular Foramen in Adult Skulls in Southern Nigerian Population
AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH © 2012, Science Huβ, http://www.scihub.org/AJSIR ISSN: 2153-649X, doi:10.5251/ajsir.2012.3.6.446.448 Morphometric analysis of the foramen magnum and jugular foramen in adult skulls in southern Nigerian population Osunwoke E.A, Oladipo G.S, Gwunireama I.U, Ngaokere J.O. Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt: Nigeria. ABSTRACT A morphometric analysis of the foramen magnum and jugular foramen of adult skulls in southern Nigeria was carried out to demonstrate the anatomical variations in morphology. A total number of 120 dry skulls were used for this study. Measurements were performed by using a digital vernier caliper to span across the lengths and widths of the two foramina. Results revealed that the mean length and width of the foramen magnum was 36.11±0.24mm and 29.65± 0.24mm respectively. The mean length of the right and left jugular foramen was 15.76±0.22mm and 13.39±0.23mm respectively, while the mean width of the right and left jugular foramen was 9.34±0.18mm and 7.54±0.20mm respectively. There was a significant difference between the right and the left jugular foramen. The right jugular foramen was found to be larger than the left in Southern Nigeria. Key words: Morphometry, Foramen magnum, Jugular foramen, Southern Nigeria. INTRODUCTION found bony bridges in 20% and tripartite jugular foramen in 0.7%. The skull forms the skeleton of the head. It is rounded in shape. -
Multiple Cranial Neuropathies
Multiple Cranial Neuropathies Craig G. Carroll, D.O.,1 and William W. Campbell, M.D., M.S.H.A.2 ABSTRACT Patients presenting with multiple cranial neuropathies are not uncommon in neurologic clinical practice. The evaluation of these patients can often be overwhelming due to the vast and complicated etiologies as well as the potential for devastating neurologic outcomes. Dysfunction of the cranial nerves can occur anywhere in their course from intrinsic brainstem dysfunction to their peripheral courses. The focus of this review will be on the extramedullary causes of multiple cranial neuropathies as discussion of the brainstem syndromes is more relevant when considering intrinsic disorders of the brainstem. The goals are to provide the reader with an overview of those extramedullary conditions that have a predilection for causing multiple cranial nerve palsies. In turn, this will serve to provide a practical and systematic approach to allow for a more targeted diagnostic evaluation of this, often cumbersome, presentation. KEYWORDS: Multiple cranial neuropathy, cranial neuropathies, cranial nerve palsies, cranial nerve syndromes, cranial polyneuropathies Evaluating the patient with multiple cranial stem, and thus brainstem syndromes are often organized neuropathies presents a unique challenge for the diag- into eponymic syndromes. However, these classically nostician. The differential diagnosis is broad and in- described eponymic brainstem syndromes were reported cludes many life-threatening processes. Just as with any in an era where disorders such as tuberculomas, syphilitic other neurologic presentation, the first step in the gummas, and tumors were seen more often than today.1 evaluation requires correct localization. Processes affect- Many of these classically described brainstem syndromes ing multiple cranial nerves may involve intramedullary were not due to ischemia. -
Concomitant Injury of Vagus and Hypoglossal Nerves Caused by Fracture of Skull Base: a Case Report and Literature Review
Korean J Neurotrauma. 2020 Oct;16(2):284-291 https://doi.org/10.13004/kjnt.2020.16.e41 pISSN 2234-8999·eISSN 2288-2243 Case Report Concomitant Injury of Vagus and Hypoglossal Nerves Caused by Fracture of Skull Base: A Case Report and Literature Review Sanghoon Lee 1, Jae Sang Oh 2, Doh-Eui Kim 3, and Yuntae Kim 4 1Department of Physical Medicine and Rehabilitation, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea 2Department of Neurosurgery, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea 3Department of Emergency Medicine, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea 4Department of Physical Medicine and Rehabilitation, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea Received: Aug 27, 2020 ABSTRACT Revised: Sep 25, 2020 Accepted: Sep 29, 2020 Injury of lower cranial nerves (CNs) by skull base fracture after head trauma can occur Address for correspondence: sometimes. However, selectively different CN damage on either side is extremely rare. Yuntae Kim A 53-year-old man had difficulty of swallowing, phonation, and articulation after falling Department of Physical Medicine and Rehabilitation, Soonchunhyang University off his bicycle. In physical examination, a deviated tongue to the right side was shown. Cheonan Hospital, Soonchunhyang University Brain computed tomography showed a skull base fracture involving bilateral jugular College of Medicine, 31 Suncheonhyang 6-gil, foramina and right hypoglossal canal. Left vocal cord palsy was confirmed by laryngoscopy. Dongnam-gu, Cheonan 31151, Korea. Electromyography confirmed injury of left superior laryngeal nerve, recurrent laryngeal E-mail: [email protected] nerve, and right hypoglossal nerve.