CHAPTER 3 Propositional Semantics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Boolean Satisfiability Solvers: Techniques and Extensions
Boolean Satisfiability Solvers: Techniques and Extensions Georg WEISSENBACHER a and Sharad MALIK a a Princeton University Abstract. Contemporary satisfiability solvers are the corner-stone of many suc- cessful applications in domains such as automated verification and artificial intelli- gence. The impressive advances of SAT solvers, achieved by clever engineering and sophisticated algorithms, enable us to tackle Boolean Satisfiability (SAT) problem instances with millions of variables – which was previously conceived as a hope- less problem. We provide an introduction to contemporary SAT-solving algorithms, covering the fundamental techniques that made this revolution possible. Further, we present a number of extensions of the SAT problem, such as the enumeration of all satisfying assignments (ALL-SAT) and determining the maximum number of clauses that can be satisfied by an assignment (MAX-SAT). We demonstrate how SAT solvers can be leveraged to solve these problems. We conclude the chapter with an overview of applications of SAT solvers and their extensions in automated verification. Keywords. Satisfiability solving, Propositional logic, Automated decision procedures 1. Introduction Boolean Satisfibility (SAT) is the problem of checking if a propositional logic formula can ever evaluate to true. This problem has long enjoyed a special status in computer science. On the theoretical side, it was the first problem to be classified as being NP- complete. NP-complete problems are notorious for being hard to solve; in particular, in the worst case, the computation time of any known solution for a problem in this class increases exponentially with the size of the problem instance. On the practical side, SAT manifests itself in several important application domains such as the design and verification of hardware and software systems, as well as applications in artificial intelligence. -
Deduction (I) Tautologies, Contradictions And
D (I) T, & L L October , Tautologies, contradictions and contingencies Consider the truth table of the following formula: p (p ∨ p) () If you look at the final column, you will notice that the truth value of the whole formula depends on the way a truth value is assigned to p: the whole formula is true if p is true and false if p is false. Contrast the truth table of (p ∨ p) in () with the truth table of (p ∨ ¬p) below: p ¬p (p ∨ ¬p) () If you look at the final column, you will notice that the truth value of the whole formula does not depend on the way a truth value is assigned to p. The formula is always true because of the meaning of the connectives. Finally, consider the truth table table of (p ∧ ¬p): p ¬p (p ∧ ¬p) () This time the formula is always false no matter what truth value p has. Tautology A statement is called a tautology if the final column in its truth table contains only ’s. Contradiction A statement is called a contradiction if the final column in its truth table contains only ’s. Contingency A statement is called a contingency or contingent if the final column in its truth table contains both ’s and ’s. Let’s consider some examples from the book. Can you figure out which of the following sentences are tautologies, which are contradictions and which contingencies? Hint: the answer is the same for all the formulas with a single row. () a. (p ∨ ¬p), (p → p), (p → (q → p)), ¬(p ∧ ¬p) b. -
Reasoning with Ambiguity
Noname manuscript No. (will be inserted by the editor) Reasoning with Ambiguity Christian Wurm the date of receipt and acceptance should be inserted later Abstract We treat the problem of reasoning with ambiguous propositions. Even though ambiguity is obviously problematic for reasoning, it is no less ob- vious that ambiguous propositions entail other propositions (both ambiguous and unambiguous), and are entailed by other propositions. This article gives a formal analysis of the underlying mechanisms, both from an algebraic and a logical point of view. The main result can be summarized as follows: sound (and complete) reasoning with ambiguity requires a distinction between equivalence on the one and congruence on the other side: the fact that α entails β does not imply β can be substituted for α in all contexts preserving truth. With- out this distinction, we will always run into paradoxical results. We present the (cut-free) sequent calculus ALcf , which we conjecture implements sound and complete propositional reasoning with ambiguity, and provide it with a language-theoretic semantics, where letters represent unambiguous meanings and concatenation represents ambiguity. Keywords Ambiguity, reasoning, proof theory, algebra, Computational Linguistics Acknowledgements Thanks to Timm Lichte, Roland Eibers, Roussanka Loukanova and Gerhard Schurz for helpful discussions; also I want to thank two anonymous reviewers for their many excellent remarks! 1 Introduction This article gives an extensive treatment of reasoning with ambiguity, more precisely with ambiguous propositions. We approach the problem from an Universit¨atD¨usseldorf,Germany Universit¨atsstr.1 40225 D¨usseldorf Germany E-mail: [email protected] 2 Christian Wurm algebraic and a logical perspective and show some interesting surprising results on both ends, which lead up to some interesting philosophical questions, which we address in a preliminary fashion. -
A Computer-Verified Monadic Functional Implementation of the Integral
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 411 (2010) 3386–3402 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs A computer-verified monadic functional implementation of the integral Russell O'Connor, Bas Spitters ∗ Radboud University Nijmegen, Netherlands article info a b s t r a c t Article history: We provide a computer-verified exact monadic functional implementation of the Riemann Received 10 September 2008 integral in type theory. Together with previous work by O'Connor, this may be seen as Received in revised form 13 January 2010 the beginning of the realization of Bishop's vision to use constructive mathematics as a Accepted 23 May 2010 programming language for exact analysis. Communicated by G.D. Plotkin ' 2010 Elsevier B.V. All rights reserved. Keywords: Type theory Functional programming Exact real analysis Monads 1. Introduction Integration is one of the fundamental techniques in numerical computation. However, its implementation using floating- point numbers requires continuous effort on the part of the user in order to ensure that the results are correct. This burden can be shifted away from the end-user by providing a library of exact analysis in which the computer handles the error estimates. For high assurance we use computer-verified proofs that the implementation is actually correct; see [21] for an overview. It has long been suggested that, by using constructive mathematics, exact analysis and provable correctness can be unified [7,8]. Constructive mathematics provides a high-level framework for specifying computations (Section 2.1). -
Edinburgh Research Explorer
Edinburgh Research Explorer Propositions as Types Citation for published version: Wadler, P 2015, 'Propositions as Types', Communications of the ACM, vol. 58, no. 12, pp. 75-84. https://doi.org/10.1145/2699407 Digital Object Identifier (DOI): 10.1145/2699407 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Communications of the ACM General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 Propositions as Types ∗ Philip Wadler University of Edinburgh [email protected] 1. Introduction cluding Agda, Automath, Coq, Epigram, F#,F?, Haskell, LF, ML, Powerful insights arise from linking two fields of study previously NuPRL, Scala, Singularity, and Trellys. thought separate. Examples include Descartes’s coordinates, which Propositions as Types is a notion with mystery. Why should it links geometry to algebra, Planck’s Quantum Theory, which links be the case that intuitionistic natural deduction, as developed by particles to waves, and Shannon’s Information Theory, which links Gentzen in the 1930s, and simply-typed lambda calculus, as devel- thermodynamics to communication. -
Solving the Boolean Satisfiability Problem Using the Parallel Paradigm Jury Composition
Philosophæ doctor thesis Hoessen Benoît Solving the Boolean Satisfiability problem using the parallel paradigm Jury composition: PhD director Audemard Gilles Professor at Universit´ed'Artois PhD co-director Jabbour Sa¨ıd Assistant Professor at Universit´ed'Artois PhD co-director Piette C´edric Assistant Professor at Universit´ed'Artois Examiner Simon Laurent Professor at University of Bordeaux Examiner Dequen Gilles Professor at University of Picardie Jules Vernes Katsirelos George Charg´ede recherche at Institut national de la recherche agronomique, Toulouse Abstract This thesis presents different technique to solve the Boolean satisfiability problem using parallel and distributed architec- tures. In order to provide a complete explanation, a careful presentation of the CDCL algorithm is made, followed by the state of the art in this domain. Once presented, two proposi- tions are made. The first one is an improvement on a portfo- lio algorithm, allowing to exchange more data without loosing efficiency. The second is a complete library with its API al- lowing to easily create distributed SAT solver. Keywords: SAT, parallelism, distributed, solver, logic R´esum´e Cette th`ese pr´esente diff´erentes techniques permettant de r´esoudre le probl`eme de satisfaction de formule bool´eenes utilisant le parall´elismeet du calcul distribu´e. Dans le but de fournir une explication la plus compl`ete possible, une pr´esentation d´etaill´ee de l'algorithme CDCL est effectu´ee, suivi d'un ´etatde l'art. De ce point de d´epart,deux pistes sont explor´ees. La premi`ereest une am´eliorationd'un algorithme de type portfolio, permettant d'´echanger plus d'informations sans perte d’efficacit´e. -
A Multi-Modal Analysis of Anaphora and Ellipsis
University of Pennsylvania Working Papers in Linguistics Volume 5 Issue 2 Current Work in Linguistics Article 2 1998 A Multi-Modal Analysis of Anaphora and Ellipsis Gerhard Jaeger Follow this and additional works at: https://repository.upenn.edu/pwpl Recommended Citation Jaeger, Gerhard (1998) "A Multi-Modal Analysis of Anaphora and Ellipsis," University of Pennsylvania Working Papers in Linguistics: Vol. 5 : Iss. 2 , Article 2. Available at: https://repository.upenn.edu/pwpl/vol5/iss2/2 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/pwpl/vol5/iss2/2 For more information, please contact [email protected]. A Multi-Modal Analysis of Anaphora and Ellipsis This working paper is available in University of Pennsylvania Working Papers in Linguistics: https://repository.upenn.edu/pwpl/vol5/iss2/2 A Multi-Modal Analysis of Anaphora and Ellipsis Gerhard J¨ager 1. Introduction The aim of the present paper is to outline a unified account of anaphora and ellipsis phenomena within the framework of Type Logical Categorial Gram- mar.1 There is at least one conceptual and one empirical reason to pursue such a goal. Firstly, both phenomena are characterized by the fact that they re-use semantic resources that are also used elsewhere. This issue is discussed in detail in section 2. Secondly, they show a striking similarity in displaying the characteristic ambiguity between strict and sloppy readings. This supports the assumption that in fact the same mechanisms are at work in both cases. (1) a. John washed his car, and Bill did, too. b. John washed his car, and Bill waxed it. -
12 Propositional Logic
CHAPTER 12 ✦ ✦ ✦ ✦ Propositional Logic In this chapter, we introduce propositional logic, an algebra whose original purpose, dating back to Aristotle, was to model reasoning. In more recent times, this algebra, like many algebras, has proved useful as a design tool. For example, Chapter 13 shows how propositional logic can be used in computer circuit design. A third use of logic is as a data model for programming languages and systems, such as the language Prolog. Many systems for reasoning by computer, including theorem provers, program verifiers, and applications in the field of artificial intelligence, have been implemented in logic-based programming languages. These languages generally use “predicate logic,” a more powerful form of logic that extends the capabilities of propositional logic. We shall meet predicate logic in Chapter 14. ✦ ✦ ✦ ✦ 12.1 What This Chapter Is About Section 12.2 gives an intuitive explanation of what propositional logic is, and why it is useful. The next section, 12,3, introduces an algebra for logical expressions with Boolean-valued operands and with logical operators such as AND, OR, and NOT that Boolean algebra operate on Boolean (true/false) values. This algebra is often called Boolean algebra after George Boole, the logician who first framed logic as an algebra. We then learn the following ideas. ✦ Truth tables are a useful way to represent the meaning of an expression in logic (Section 12.4). ✦ We can convert a truth table to a logical expression for the same logical function (Section 12.5). ✦ The Karnaugh map is a useful tabular technique for simplifying logical expres- sions (Section 12.6). -
Logic, Proofs
CHAPTER 1 Logic, Proofs 1.1. Propositions A proposition is a declarative sentence that is either true or false (but not both). For instance, the following are propositions: “Paris is in France” (true), “London is in Denmark” (false), “2 < 4” (true), “4 = 7 (false)”. However the following are not propositions: “what is your name?” (this is a question), “do your homework” (this is a command), “this sentence is false” (neither true nor false), “x is an even number” (it depends on what x represents), “Socrates” (it is not even a sentence). The truth or falsehood of a proposition is called its truth value. 1.1.1. Connectives, Truth Tables. Connectives are used for making compound propositions. The main ones are the following (p and q represent given propositions): Name Represented Meaning Negation p “not p” Conjunction p¬ q “p and q” Disjunction p ∧ q “p or q (or both)” Exclusive Or p ∨ q “either p or q, but not both” Implication p ⊕ q “if p then q” Biconditional p → q “p if and only if q” ↔ The truth value of a compound proposition depends only on the value of its components. Writing F for “false” and T for “true”, we can summarize the meaning of the connectives in the following way: 6 1.1. PROPOSITIONS 7 p q p p q p q p q p q p q T T ¬F T∧ T∨ ⊕F →T ↔T T F F F T T F F F T T F T T T F F F T F F F T T Note that represents a non-exclusive or, i.e., p q is true when any of p, q is true∨ and also when both are true. -
Logic, Sets, and Proofs David A
Logic, Sets, and Proofs David A. Cox and Catherine C. McGeoch Amherst College 1 Logic Logical Statements. A logical statement is a mathematical statement that is either true or false. Here we denote logical statements with capital letters A; B. Logical statements be combined to form new logical statements as follows: Name Notation Conjunction A and B Disjunction A or B Negation not A :A Implication A implies B if A, then B A ) B Equivalence A if and only if B A , B Here are some examples of conjunction, disjunction and negation: x > 1 and x < 3: This is true when x is in the open interval (1; 3). x > 1 or x < 3: This is true for all real numbers x. :(x > 1): This is the same as x ≤ 1. Here are two logical statements that are true: x > 4 ) x > 2. x2 = 1 , (x = 1 or x = −1). Note that \x = 1 or x = −1" is usually written x = ±1. Converses, Contrapositives, and Tautologies. We begin with converses and contrapositives: • The converse of \A implies B" is \B implies A". • The contrapositive of \A implies B" is \:B implies :A" Thus the statement \x > 4 ) x > 2" has: • Converse: x > 2 ) x > 4. • Contrapositive: x ≤ 2 ) x ≤ 4. 1 Some logical statements are guaranteed to always be true. These are tautologies. Here are two tautologies that involve converses and contrapositives: • (A if and only if B) , ((A implies B) and (B implies A)). In other words, A and B are equivalent exactly when both A ) B and its converse are true. -
Introduction to the Boolean Satisfiability Problem
Introduction to the Boolean Satisfiability Problem Spring 2018 CSCE 235H Introduction to Discrete Structures URL: cse.unl.edu/~cse235h All questions: Piazza Satisfiability Study • 7 weeks • 30 min lectures in recitation • ~2 hours of homework per week • Goals: – Exposure to fundamental research in CS – Understand how to model problems – Learn to use SAT solver, MiniSAT CSCE 235 Logic 2 Boolean Satisfiability Problem • Given: – A Boolean formula • Question: – Is there an assignment of truth values to the Boolean variables such that the formula holds true? CSCE 235 Logic 3 Boolean Satisfiability Problem a ( a b) _ ¬ ^ (a a) (b b) _ ¬ ! ^ ¬ CSCE 235 Logic 4 Boolean Satisfiability Problem a ( a b) _ ¬ ^ SATISFIABLE a=true, b=true (a a) (b b) _ ¬ ! ^ ¬ CSCE 235 Logic 5 Boolean Satisfiability Problem a ( a b) _ ¬ ^ SATISFIABLE a=true, b=true (a a) (b b) _ ¬ ! ^ ¬ UNSATISFIABLE Left side of implication is a tautology. Right side of implication is a contradiction. True cannot imply false. CSCE 235 Logic 6 Applications of SAT • Scheduling • Resource allocation • Hardware/software verification • Planning • Cryptography CSCE 235 Logic 7 Conjunctive Normal Form • Variable a, b, p, q, x1,x2 • Literal a, a, q, q, x , x ¬ ¬ 1 ¬ 1 • Clause (a b c) _ ¬ _ • Formula (a b c) _ ¬ _ (b c) ^ _ ( a c) ^ ¬ _ ¬ CSCE 235 Logic 8 Converting to CNF • All Boolean formulas can be converted to CNF • The operators can be rewritten in , , terms of ! $,⊕, ¬ _ ^ • , , can be rearranged using ¬– De Morgan_ ^ ’s Laws – Distributive Laws – Double Negative • May result in exponential -
Lecture 1: Propositional Logic
Lecture 1: Propositional Logic Syntax Semantics Truth tables Implications and Equivalences Valid and Invalid arguments Normal forms Davis-Putnam Algorithm 1 Atomic propositions and logical connectives An atomic proposition is a statement or assertion that must be true or false. Examples of atomic propositions are: “5 is a prime” and “program terminates”. Propositional formulas are constructed from atomic propositions by using logical connectives. Connectives false true not and or conditional (implies) biconditional (equivalent) A typical propositional formula is The truth value of a propositional formula can be calculated from the truth values of the atomic propositions it contains. 2 Well-formed propositional formulas The well-formed formulas of propositional logic are obtained by using the construction rules below: An atomic proposition is a well-formed formula. If is a well-formed formula, then so is . If and are well-formed formulas, then so are , , , and . If is a well-formed formula, then so is . Alternatively, can use Backus-Naur Form (BNF) : formula ::= Atomic Proposition formula formula formula formula formula formula formula formula formula formula 3 Truth functions The truth of a propositional formula is a function of the truth values of the atomic propositions it contains. A truth assignment is a mapping that associates a truth value with each of the atomic propositions . Let be a truth assignment for . If we identify with false and with true, we can easily determine the truth value of under . The other logical connectives can be handled in a similar manner. Truth functions are sometimes called Boolean functions. 4 Truth tables for basic logical connectives A truth table shows whether a propositional formula is true or false for each possible truth assignment.