Separation and Poincaré Profiles Corentin Le Coz

Total Page:16

File Type:pdf, Size:1020Kb

Separation and Poincaré Profiles Corentin Le Coz Separation and Poincaré profiles Corentin Le Coz To cite this version: Corentin Le Coz. Separation and Poincaré profiles. Group Theory [math.GR]. Université Paris-Saclay, 2020. English. NNT : 2020UPASM014. tel-03192929 HAL Id: tel-03192929 https://tel.archives-ouvertes.fr/tel-03192929 Submitted on 8 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Prols de séparation et de Poincaré Separation and Poincaré proles Thèse de doctorat de l'Université Paris-Saclay Ecole Doctorale de Mathématiques Hadamard (EDMH, ED 574) Spécialité de doctorat : Mathématiques fondamentales Unité de recherche : Université Paris-Saclay, CNRS, Laboratoire de mathématiques d'Orsay, 91405, Orsay, France. Référent : Faculté des sciences d'Orsay Thèse présentée et soutenue le 23 septembre 2020, à l'Institut de Mathématique d'Orsay, par Corentin LE COZ Composition du jury : Pierre PANSU Président Professeur, Université Paris-Saclay Gábor PETE Rapporteur et examinateur Chercheur sénior, Institut Alfréd Rényi Laurent SALOFF-COSTE Rapporteur et examinateur Professeur, Université Cornell Goulnara ARZHANTSEVA Examinatrice Professeur, Université de Vienne Romain TESSERA Directeur Directeur de recherche, CNRS Jérémie BRIEUSSEL Codirecteur Maître de conférences, Université de Monpellier NNT: 2020UPASM014 Thèse de doctorat de Thèse Ce travail a été réalisé au Laboratoire de Mathématiques d'Orsay, Université Paris-Saclay. Il a été soutenu par l'Agence Nationale de la Recherche dans le cadre des projets ANR-14-CE25-0004 GAMME et ANR-16-CE40-0022-01 AGIRA. Remerciements Je tiens `aremercier mes directeurs de th`esepour leur accompagnement durant ces trois ann´ees de recherche. Depuis mon stage de Master, Romain Tessera a toujours su me communiquer son entousiasthme d´ebordant. Sa vivacit´ed'esprit et son go^utde transmettre m'ont permis de travailler d'une mani`ereagr´eable.Je lui suis tr`esreconnaissant d'avoir cru en moi, malgr´eles difficult´esque j'ai pu manifester au d´epart,et de m'avoir incit´e`apouruivre ma voie dans la recherche en math´ematiques. J'ai eu la chance d'avoir J´er´emieBrieussel comme codirecteur de th`ese.Il a su me partager son go^utdu travail bien fait, en m'incitant `ad´evelopper au maximum mes id´ees. Je veux le remercier d'avoir favoris´eune atmosph`erede confiance, qui m'a aid´e`atravailler sereinement. Je remercie vivement les membres du jury de ma soutenance de th`ese: Pierre Pansu, Goulnara Arzhantseva, et plus particuli`erement G´abor Pete et Laurent Saloff-Coste qui ont accept´ed'^etrerapporteurs et m'ont fourni des rapports tr`esd´etaill´es. A Orsay, j'ai b´en´efici´ed'un environnement d'exception. J'ai bien travaill´eavec Gabriel et Suraj, puis avec Timoth´ee,Pierre-Louis et Irving. A la piscine ou ailleurs, j'ai pu me changer les id´eesavec Guillaume et Camille. Il y a aussi eu les parties de tennis avec Salim, et tout simplement les d´ejeunersconviviaux entre doctorants. Je remercie M´elaniepour la confiance qu'elle m'a accord´eedurant notre collaboration en Master MEEF, et de m'avoir donn´ego^ut`ala vulgarisation des math´ematiques. J'ai aussi une pens´eepour Mme Santoni, qui m'a donn´ego^utaux math´ematiques en classe pr´eparatoire.J'ai compris avec elle que la beaut´edes math´ematiquesse r´ev`eleau sein m^eme de leur rigueur. Cela a ´et´epour moi un tournant majeur, dans ma vie ´etudiante ainsi que dans ma vie personnelle. Je souhaite remercier mes beaux-parents de nous avoir accueilli pendant le confinement du printemps dernier. Leur aide pr´ecieusem'a permis de r´edigerce manuscrit sereinement. Je remercie enfin mes parents pour tout ce qu'ils m'ont apport´edepuis mon enfance. Avec le recul des ann´eeset mon r^olede jeune Papa, je me rends compte de la g´en´erosit´eet de la patience dont j'ai b´en´efici´ejusqu’`apr´esent, et b´en´eficieencore aujourd'hui. Cela fait presque trois ans que je partage ma vie avec Bertille. Trois ann´eesde complicit´e et de joie profonde. J'admire que tu me suives dans mes ´elansmath´ematiques,sans rechigner lorsque notre d^ınerse transforme en un expos´einterminable. Enfin, il y a Cl´ement et Marie qui me donnent du bonheur chaque jour. \Il est plus beau d'´eclairer que de briller seulement" Saint Thomas d'Aquin R´esum´e(en fran¸cais) Ce manuscrit de th`eser´ecapitulemes travaux de recherche sur le profil de s´eparationet les profils de Poincar´e. Le profil de s´eparationest apparu en 2012 dans un article fondateur de Benjamini, Schramm et Tim´ar. La d´efinitiondonn´ee tirait ses origines dans des travaux ant´erieurs,dans le domaine du calcul formel : principalement des ´etudes de Lipton et Tra- jan concernant les graphes planaires, et de Miller, Teng, Thurston et Vavasis concernant des graphes d'intersection. Le profil de s´eparationutile en th´eorieg´eom´etriquedes groupes, mon domaine de recherche, `acause de sa propri´et´ede monotonie par plongements grossiers. Il a ´et´e g´en´eralis´epar Hume, Mackay et Tessera en 2019 en une gamme continue de profils, appel´es profils de Poincar´e. La premi`erepartie de cette th`eseconstitue l'´etatde l'art concernant ces profils. J'y ai d´etaill´eles r´esultatsles plus marquants du point de vue de la th´eorieg´eom´etrique des groupes. J'ai souvent propos´edes esquisses de preuves, me passant de certains d´etailstechniques. Je renvoie aux articles originaux pour les d´emontrations compl`etes. A l'oppos´e,j'ai plusieurs fois donn´edes preuves de propri´et´esbien connues des sp´ecialistes,qui ne sont g´en´eralement pas d´emontr´eesdans les articles de recherche. J'esp`ereque cela pourra rendre service aux d´ebutants. Les deux parties suivantes sont des adaptations de pr´e-publications,fruits de mes travaux des trois ann´eespass´ees. Le contenu de la deuxi`emepartie a ´et´e´ecriten collaboration avec Gournay. L'objectif y est de comparer le profil de s´eparationavec d'autres quantit´es mieux connues : le profil isop´erim´etrique,la compression des plongements dans les espaces de Hilbert, et la croissance du volume des boules. La troisi`emepartie correspond `aune pr´e-publicationqui porte sur la prescription de grands profils de Poincar´e.Ceci est r´ealis´een utilisant une construction d´evelopp´eepar Brieussel et Zheng en 2015. La compression des plongements dans les espacs Lp, et la th´eoriespectrale des graphes en degr´enon born´esont les principaux ingr´edients de ce projet. iv Abstract (english language) The goal of this thesis report is to present my research concerning separation profile and Poincar´eprofiles. Separation profiles first appeared in 2012 in a seminal article written by Benjamini, Schramm and Tim´ar. This definition was based on preceding research, in the field of computer science, mainly work of Lipton and Trajan concerning planar graphs, and of Miller, Teng, Thurston and Vavasis concerning overlap graphs. Separation profiles play now a role in geometric group theory, where my personal interests lies, because of their property of monotonicity under coarse embeddings. These were generalized by Hume, Mackay and Tessera in 2019 into a spectrum of profiles, called Poincar´eprofiles. The first part of this thesis is a summary what we know on these profiles. I have given the most important results, in the point of view of geometric group theory. I often give sketches of proofs, and refer to references for complete proofs. On the other hand, we have several times detailed some basic facts that are likely to be easy exercises for specialists and are not usually proved in research articles. We hope that this will help novices. The two next parts are adapted from two preprints, fruit of my research of the past three years. The content of the second part was written in collaboration with Gournay. Its purpose is to compare the separation profile with other well-studied quantities: isoperimetric profile, compression of embeddings in Hilbert spaces, volume growth. The third part corresponds to a preprint concerning the prescription of high Poincar´epro- files. This is done using a construction developed by Brieussel and Zheng in 2015. Compression of embeddings into Lp spaces and spectral graph theory in unbounded degrees context are the two main ingredients of this project. v Contents R´esum´e(en fran¸cais) iv Abstract (English language) v Notations x Introduction (en fran¸cais) xii Introduction (English language) xviii I Separation profile and Poincar´eprofiles: a survey 1 1 Prehistory of the separation profile 3 1.1 The planar separator theorem . .3 1.2 The geometric separator theorem . .5 2 Geometric obstructions to a coarse embedding 7 2.1 Coarse embeddings . .7 2.1.1 Definition . .7 2.1.2 Coarse embeddings into a Hilbert space . .8 2.1.3 Quasi-isometric embeddings . .9 2.2 Monotone invariants . .9 2.2.1 Volume growth . .9 2.2.2 Asymptotic dimension . 11 3 Separation profile and Lp-Poincar´eprofiles 13 3.1 Definitions . 13 3.1.1 Separation profile . 13 3.1.2 Poincar´eprofiles . 14 3.1.3 Comparing profiles . 19 3.1.4 Regular and coarse regular maps .
Recommended publications
  • Isoperimetric Inequalities in Unbounded Convex Bodies
    Isoperimetric inequalities in unbounded convex bodies Gian Paolo Leonardi Manuel Ritor´e Efstratios Vernadakis Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Uni- versita` di Modena e Reggio Emilia, 41100 Modena, Italy E-mail address: [email protected] Departamento de Geometr´ıa y Topolog´ıa, Universidad de Granada, E–18071 Granada, Espana˜ E-mail address: [email protected] Departamento de Geometr´ıa y Topolog´ıa, Universidad de Granada, E–18071 Granada, Espana˜ E-mail address: [email protected] arXiv:1606.03906v2 [math.MG] 23 Jun 2016 2010 Mathematics Subject Classification. Primary: 49Q10, 52A40. Secondary: 49Q20 Key words and phrases. Isoperimetric inequalities; isoperimetric profile; isoperimetric regions; convex bodies; asymptotic cylinders; rigidity; isoperimetric dimension Gain Paolo Leonardi has been supported by GNAMPA (project name: Problemi isoperimetrici e teoria della misura in spazi metrici, 2015) and by PRIN (project name: Calcolo delle Variazioni, 2010-2011). Manuel Ritor´ehas been supported by MICINN-FEDER grant MTM2013-48371-C2-1-P and Junta de Andaluc´ıagrants FQM-325 and P09-FQM-5088. Efstratios Vernadakis has been supported by Junta de Andaluc´ıa grant P09-FQM-5088. Contents Chapter 1. Introduction 1 1.1. Historical background 1 1.2. Outline of contents 4 Chapter 2. Convex bodies and finite perimeter sets 9 2.1. Convex bodies and local convergence in Hausdorff distance 9 2.2. Finite perimeter sets and isoperimetric profile 14 Chapter 3. Unbounded convex bodies of uniform geometry 17 3.1. Asymptotic cylinders 17 3.2. Convex bodies of uniform geometry 21 3.3. Density estimates and a concentration lemma 25 3.4. Examples 30 Chapter 4.
    [Show full text]
  • Characteristic Invariants of Noncompact Riemannian Manifolds
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology. Vol. 23. No. 3. pp. 289-301. 1984 cao-9383/84 $3.00 + .Oa Printed in the U.S.A. o 1984 Pergamon Press Ltd. CHARACTERISTIC INVARIANTS OF NONCOMPACT RIEMANNIAN MANIFOLDS TADEUSZJANUSZKIEWICZ (Received 6 March 1983) IT IS WELL known that on some noncompact riemannian manifolds the volume form is not the differential of a bounded form. This observation can be traced back to Plante’s thesis[ 191; and was stated explicitly by Sullivan in [22]. In the foliation theory such a noncompact manifold can arise as a leaf in a foliation of a compact manifold. The metric-or in fact the equivalence class of metrics-is the restriction of a riemannian metric on the ambient manifold. Usually the observation of Plante is phrased in the dual language: Some leaves give rise to asymptotic homology classes of the ambient manifold. The dimension of these classes is the same as the dimension of leaves. One of the points we want to make in this paper is the following observation: The cohomology of the bounded de Rham complex of a riemannian manifold can be nontrivial also in dimensions smaller than the dimension of a manifold. Thus in the case of leaves we have asymptotic homology classes of the ambient manifold also in dimensions smaller than the dimension of the leaf. Of course those homology classes do not have such an immediate connection with the transverse structure as it happens in the case of Plante’s homology classes, but they can be used to connect geometry of leaves, topology of the ambient manifold and dynamical properties of foliation.
    [Show full text]
  • Compensation Couples and Isoperimetric Estimates for Vector Fields
    COLLOQUIUM MATHEMATICUM VOL. 74 1997 NO. 1 COMPENSATION COUPLES AND ISOPERIMETRIC ESTIMATES FOR VECTOR FIELDS BY BRUNO FRANCHI (BOLOGNA) AND RICHARD L. WHEEDEN (NEW BRUNSWICK, NEW JERSEY) n Let Ω R be a bounded, connected, open set, and let X1,...,Xp be real smooth⊂ vector fields defined in a neighborhood of Ω. We will say that X1,...,Xp satisfy H¨ormander’s condition of order m, or that they are of type m, if X1,...,Xp together with their commutators of length at most m span Rn at each point of Ω. It is well known that it is possible to associate with X1,...,Xp a canonical metric ̺ as follows ([FP], [NSW]): we say that an absolutely continuous curve γ : [0, T ] Ω is a subunit curve if → 2 2 γ′(t),ξ X (γ(t)),ξ |h i| ≤ |h j i| Xj for all ξ Rn and a.e. t [0, T ], and we define ̺(x,y) for x,y Ω by ∈ ∈ ∈ ̺(x,y)=inf T : a subunit curve γ : [0, T ] Ω with γ(0)=x, γ(T )=y . { ∃ → } The geometry of the metric space (Ω, ̺) is fully described in [NSW]; in particular, it is shown there that (Ω, ̺) is a metric space of homogeneous type with respect to Lebesgue measure, i.e. and there exist C > 0 and δ0 > 0 such that (1) B(x, 2δ) C B(x, δ) | |≤ | | for all x Ω and δ < δ0, where B(x, r)= y Ω : ̺(x,y) < r is a metric ball, and∈ for any measurable set E, E denotes{ ∈ its Lebesgue} measure.
    [Show full text]
  • ON ISOPERIMETRIC PROFILES of PRODUCT SPACES Contents 1
    ON ISOPERIMETRIC PROFILES OF PRODUCT SPACES THIERRY COULHON, ALEXANDER GRIGOR’YAN, AND DANIEL LEVIN Abstract. Let p ∈ [1, +∞]. Given the Lp-isoperimetric profile of two non-compact Riemann- ian manifolds M and N, we compute the Lp-isoperimetric profile of the product M × N. Contents 1. Introduction 1 1.1. Dimensions of non-compact Riemannian manifolds 1 1.2. The cases p =1, 2, +∞ 4 1.3. Statement of the main result 5 2. Equivalence of ψ-isoperimetric and F -Sobolev inequalities 7 3. F -Sobolev inequality on a product manifold 9 4. Proof of the main theorem 11 5. An example and an application 11 6. One-parameter log-Sobolev inequalities and ultracontractivity 12 7. A more general setting 17 8. Appendix: Euclidean inequalities 18 References 20 1. Introduction We start with an almost tautological identity for the product of Euclidean spaces: Rd = Rn × Rm,where d = m + n. This simple fact says that dimensions of Euclidean spaces add up under direct product. The aim of this paper is to show that this fact admits an analogue for isoperimetric dimensions of non-compact Riemannian manifolds (and more general spaces, see Section 7 below). As we will see, the isoperimetric dimension is in general not a number, but rather a family of functions indexed by a parameter p ∈ [1, +∞]; we shall give a formula that enables one to compute this family of functions for a product, given the ones associated with the factors, and generalizes the addition of dimensions in the Euclidean case. 1.1. Dimensions of non-compact Riemannian manifolds.
    [Show full text]
  • Isoperimetric Inequalities in Unbounded Convex Bodies Gian
    Isoperimetric inequalities in unbounded convex bodies Gian Paolo Leonardi Manuel Ritor´e Efstratios Vernadakis Author address: Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Uni- versita` di Modena e Reggio Emilia, 41100 Modena, Italy E-mail address: [email protected] Departamento de Geometr´ıa y Topolog´ıa, Universidad de Granada, E{18071 Granada, Espana~ E-mail address: [email protected] Departamento de Geometr´ıa y Topolog´ıa, Universidad de Granada, E{18071 Granada, Espana~ E-mail address: [email protected] Contents List of symbols1 Chapter 1. Introduction3 1.1. Historical background3 1.2. Outline of contents6 Chapter 2. Convex bodies and finite perimeter sets 11 2.1. Convex bodies and local convergence in Hausdorff distance 11 2.2. Finite perimeter sets and isoperimetric profile 15 Chapter 3. Unbounded convex bodies of uniform geometry 19 3.1. Asymptotic cylinders 19 3.2. Convex bodies of uniform geometry 23 3.3. Density estimates and a concentration lemma 27 3.4. Examples 32 Chapter 4. A generalized existence result 39 4.1. Preliminary results 39 4.2. The main result 42 Chapter 5. Concavity of the isoperimetric profile 49 5.1. Continuity of the isoperimetric profile 49 5.2. Approximation by smooth sets 50 5.3. Concavity of the isoperimetric profile 52 Chapter 6. Sharp isoperimetric inequalities and isoperimetric rigidity 59 6.1. Convex bodies with non-degenerate asymptotic cone 59 6.2. The isoperimetric profile for small volumes 64 6.3. Isoperimetric rigidity 67 Chapter 7. Asymptotic behavior of the isoperimetric profile of an unbounded convex body 73 7.1. An asymptotic isoperimetric inequality 73 7.2.
    [Show full text]
  • PERCOLATION BEYOND Zd, MANY QUESTIONS and a FEW ANSWERS
    Elect. Comm. in Probab. 1 (1996) 71-82 ELECTRONIC COMMUNICATIONS in PROBABILITY PERCOLATION BEYOND Zd, MANY QUESTIONS AND A FEW ANSWERS ITAI BENJAMINI & ODED SCHRAMM The Weizmann Institute, Mathematics Department, Rehovot 76100, ISRAEL e-mail: [email protected]&[email protected] AMS 1991 Subject classification: 60K35, 82B43 Keywords and phrases: Percolation, criticality, planar graph, transitive graph, isoperimeteric inequality. Abstract A comprehensive study of percolation in a more general context than the usual J:I!- setting is proposed, with particular focus on Cayley graphs, almost transitive graphs, and planar graphs. Results concerning uniqueness of infinite clusters and inequalities for the critical value Pc are given, and a simple planar example exhibiting uniqueness and non-uniqueness for different p > Pc is analyzed. Numerous varied conjectures and problems are proposed, with the hope of setting goals for future research in percolation theory. 1 Introduction Percolation has been mostly studied in the lattices 'lI.,d, or in ]Rd. Recently, several researchers have looked beyond this setting. For instance, Lyons (1996) gives an overview of current knowledge about percolation on trees, while Grimmett and Newman (1990) study percolation on (regular tree) x'll.,. The starting point for a study of percolation on the Euclidean lattices is the fact that the critical probability for percolation, denoted Pc, is smaller than one. (See below for exact definitions and see Grimmett (1989) for background on percolation). The first step in a study of percolation on other graphs, for instance Cayley graphs of finitely generated groups, will be to prove that the critical probability for percolation on these graphs is smaller than one.
    [Show full text]
  • Laplacians of Graphs and Cheeger Inequalities
    Laplacians of graphs and Cheeger inequalities F. R. K. Chung Bell Communications Research Morristown, New Jersey 07960 Abstract We define the Laplacian for a general graph and then examine several isoperimetric inequalities which relate the eigenvalues of the Laplacian to a number of graphs invariants such as vertex or edge expansions and the isoperimetric dimension of a graph. 1 Introduction The study of eigenvalues of graphs has a long history, dated back to the early days of graph theory. In fact, the birth of graph theory was closely associated with the investigation of molecules by chemists [4] while eigenvalues play an important role. There have been a great deal of literature in using matrix theory and algebraic techniques to study the adjacency matrices of graphs. There are a number of excellent books and survey articles on spectra of graphs, such as Biggs [3], Cvetkovi´c, Doob and Sachs [10] and Seidel [18]. The major approaches in spectral graph theory before 1980’s were essen- tially “algebraic” with emphasis on the symmetries of strongly regular graphs. In contrast, the advances and breakthroughs in the past ten years are often “ge- ometric”. For example, the successful constructions of expander graphs [14, 15] take advantages of the relationship between eigenvalues and isoperimetric prop- erties of graphs. Roughly speaking, isoperimetric properties concern the sizes of the neighborhood of a set of vertices. Here, “size” refers to some appropriate measure on graphs such as the (weighted) number of vertices or edges. The term “expander” or “expansion” usually means that the sizes of the neighborhood of a subset can be lower bounded as a function of the size of the subset.
    [Show full text]
  • Coarse Geometry and Randomness
    Coarse Geometry and Randomness Itai Benjamini October 30, 2013 Contents 1 Introductory graph and metric notions 5 1.1 The Cheeger constant . .5 1.2 Expander graphs . .7 1.3 Isoperimetric dimension . .8 1.4 Separation . .9 1.5 Rough isometry . .9 1.6 Ends . 11 1.7 Graph growth and the Cheeger constant . 12 1.8 Scale invariant graphs . 14 1.9 Examples of graphs . 16 2 On the structure of vertex transitive graphs 21 2.1 Scaling limits . 21 2.2 Questions . 22 3 The hyperbolic plane and hyperbolic graphs 24 3.1 The hyperbolic plane . 24 3.2 Hyperbolic graphs . 26 4 Percolation on graphs 32 4.1 Bernoulli percolation . 32 4.2 The critical probability . 32 4.3 Exponential intersection tail . 35 4.4 Self avoiding walk . 37 5 Local limits of graphs 39 5.1 The local metric . 39 5.2 Locality of pc ................................. 40 5.3 Unimodular random graphs . 41 5.4 Applications . 44 5.5 Some examples . 45 5.6 Growth and subdiffusivity exponents . 47 1 6 Random planar geometry 49 6.1 Uniform infinite planar triangulation (UIPT) . 49 6.2 Circle packing . 50 6.3 Stochastic hyperbolic infinite quadrangulation (SHIQ) . 51 6.4 Sphere packing of graphs in Euclidean space . 52 7 Growth and isoperimetric profile of planar graphs 54 8 Critical percolation on non-amenable groups 57 8.1 Does percolation occurs at the critical value? . 57 8.2 Invariant percolation . 59 8.3 θ(pc) = 0 when h(G) > 0........................... 61 9 Uniqueness of the infinite percolation cluster 63 9.1 Uniqueness in Zd...............................
    [Show full text]
  • Large Scale Conformal Maps Pierre Pansu
    Large scale conformal maps Pierre Pansu To cite this version: Pierre Pansu. Large scale conformal maps. 2016. hal-01297830v1 HAL Id: hal-01297830 https://hal.archives-ouvertes.fr/hal-01297830v1 Preprint submitted on 4 Apr 2016 (v1), last revised 25 Nov 2017 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Large scale conformal maps Pierre Pansu∗ April 4, 2016 Abstract Roughly speaking, let us say that a map between metric spaces is large scale conformal if it maps packings by large balls to large quasi-balls with limited overlaps. This quasi-isometry invariant no- tion makes sense for finitely generated groups. Inspired by work by Benjamini and Schramm, we show that under such maps, some kind of dimension increases: exponent of volume growth for nilpotent groups, conformal dimension of the ideal boundary for hyperbolic groups. A purely metric space notion of ℓp-cohomology plays a key role. Contents 1 Introduction 3 1.1 Microscopic conformality ................. 3 1.2 Mesoscopic conformality ................. 3 1.3 A new class of maps ................... 4 1.4 Examples ......................... 4 1.5 Results ........................... 5 1.6 Proof of Theorem 1 .................... 6 1.7 Proof of Theorem 2 ...................
    [Show full text]
  • On Isoperimetric Profiles of Product Spaces
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY Volume 11, Number 1, 85-120, 2003 On Isoperimetric Profiles of Product Spaces THIERRY COULHON, ALEXANDER GRIGOR'YAN, AND DANIEL LEVIN Let p £ [1,-foo]. Given the Lp-isoperimetric profile of two non- compact Riemannian manifolds M and AT, we compute the Lp- isoperimetric profile of the product M x N. 1. Introduction. We start with an almost tautological identity for the product of Euclidean spaces: Erf = W1 x M771, where d — m + n. This simple fact says that dimensions of Euclidean spaces add up under direct product. The aim of this paper is to show that this fact admits an analogue for isoperimetric dimensions of non-compact Riemannian manifolds (and more general spaces, see Section 7 below). As we will see, the correct notion of dimension here is not a number, but rather a family of functions indexed by a parameter p € [l,+oo], the family of p-isoperimetric profiles] we shall give a formula that enables one to compute this family of functions for a product, given the ones associated with the factors, and generalizes the addition of dimensions in the Euclidean case. 1.1. p-isoperimetric profiles of non-compact Riemannian mani- folds. Let M be a Riemannian manifold. The notion of topological dimen- sion of M does not reflect the geometry of M in the large. One of the ways to capture the large scale structure of M is by using isoperimetric inequali- ties. Let fjb be the Riemannian measure on M, or more generally, a measure with a positive C00 density a with respect to the Riemannian measure.
    [Show full text]
  • Discrete Isoperimetric Inequalities
    Discrete Isoperimetric Inequalities Fan Chung University of California at San Diego La Jolla, CA 92093-0112 1 Introduction One of the earliest problems in geometry is the isoperimetric problem, which was considered by the ancient Greeks. The problem is to find, among all closed curves of a given length, the one which encloses the maximum area. Isoperimetric problems for the discrete domain are in the same spirit but with different complexity. A basic model for communication and computational networks is a graph G =(V;E) consisting of a set V of vertices and a prescribed set E of unordered pairs of vertices. For a subset X of vertices, there are two types of boundaries: • The edge boundary @(X )={{u; v}∈E : u∈X; v ∈ V \ X}: • The vertex boundary δ(X)={v∈V \X : {v; u}∈E for some u ∈ X}: Numerous questions arise in examining the relations between @(X),δ(X) and the sizes of X.Herethe size of a subset of vertices may mean the number of vertices, the number of incident edges, or some other appropriate measure defined on graphs. In this paper, we will survey spectral techniques for studying discrete isoperimetric inequalities and the like. In addition, a number of applications in extremal graph theory and random walks will be included. This paper is organized as follows: Section 1 A brief introduction and an outline are given. Section 2 Definitions and notations of the combinatorial Laplacian and normalized Laplacian are intro- duced as well as the historical matrix-tree theorem. Section 3 Enumeration of spanning trees using eigenvalues of the combinatorial and normalized Laplacians Section 4 Complimentary to the isoperimetric inequalities is the discrepancy inequalities.
    [Show full text]
  • Isoperimetric Inequalities in Unbounded Convex Bodies
    Isoperimetric inequalities in unbounded convex bodies Gian Paolo Leonardi Manuel Ritor´e Efstratios Vernadakis Author address: Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Uni- versita` di Modena e Reggio Emilia, 41100 Modena, Italy E-mail address: [email protected] Departamento de Geometr´ıa y Topolog´ıa & Research Unit Modeling Nature (MNat), Universidad de Granada, E{18071 Granada, Espana~ E-mail address: [email protected] Departamento de Geometr´ıa y Topolog´ıa, Universidad de Granada, E{18071 Granada, Espana~ E-mail address: [email protected] Contents List of symbols1 Chapter 1. Introduction3 1.1. Historical background3 1.2. Outline of contents6 Chapter 2. Convex bodies and finite perimeter sets 11 2.1. Convex bodies and local convergence in Hausdorff distance 11 2.2. Finite perimeter sets and isoperimetric profile 15 Chapter 3. Unbounded convex bodies of uniform geometry 19 3.1. Asymptotic cylinders 19 3.2. Convex bodies of uniform geometry 23 3.3. Density estimates and a concentration lemma 27 3.4. Examples 32 Chapter 4. A generalized existence result 39 4.1. Preliminary results 39 4.2. The main result 42 Chapter 5. Concavity of the isoperimetric profile 49 5.1. Continuity of the isoperimetric profile 49 5.2. Approximation by smooth sets 50 5.3. Concavity of the isoperimetric profile 52 Chapter 6. Sharp isoperimetric inequalities and isoperimetric rigidity 59 6.1. Convex bodies with non-degenerate asymptotic cone 59 6.2. The isoperimetric profile for small volumes 64 6.3. Isoperimetric rigidity 67 Chapter 7. Asymptotic behavior of the isoperimetric profile of an unbounded convex body 73 7.1.
    [Show full text]