Analyzing Data Using Python

Total Page:16

File Type:pdf, Size:1020Kb

Analyzing Data Using Python Analyzing data using Python Eric Marsden <[email protected]> The purpose of computing is insight, not numbers. – Richard Hamming These slides costs criteria decision-making Where does this fit into risk engineering? curve fitting data probabilistic model consequence model event probabilities event consequences risks 2 / 47 These slides Where does this fit into risk engineering? curve fitting data probabilistic model consequence model event probabilities event consequences risks costs criteria decision-making 2 / 47 Where does this fit into risk engineering? curve fitting data probabilistic model consequence model event probabilities event consequences These slides risks costs criteria decision-making 2 / 47 Descriptive statistics 3 / 47 Descriptive statistics ▷ Descriptive statistics allow you to summarize information about observations • organize and simplify data to help understand it ▷ Inferential statistics use observations (data from a sample) to make inferences about the total population • generalize from a sample to a population 4 / 47 Descriptive statistics Source: dilbert.com 5 / 47 Measures of central tendency ▷ Central tendency (the “middle” of your data) is measured either by the median or the mean ▷ The median is the point in the distribution where half the values are lower, and half higher • it’s the 0.5 quantile ▷ The (arithmetic) mean (also called the average or the mathematical expectation) is the “center of mass” of the distribution 피(푋) = ∫푏 푥푓 (푥)푑푥 • continuous case: 푎 • discrete case: 피(푋) = ∑푖 푥푖푃(푥푖) ▷ The mode is the element that occurs most frequently in your data 6 / 47 Illustration: fatigue life of aluminium sheeting Measurements of fatigue life (thousands of cycles until rupture) of > import numpy > cycles = numpy.array([370, 1016, 1235,[...] 1560, 1792]) strips of 6061-T6 aluminium sheeting, > cycles.mean() subjected to loads of 21 000 PSI. 1400.9108910891089 > numpy.mean(cycles) 1400.9108910891089 Data from Birnbaum and Saunders > numpy.median(cycles) (1958). 1416.0 Source: Birnbaum, Z. W. and Saunders, S. C. (1958), A statistical model for life-length of materials, Journal of the American Statistical Association, 53(281) 7 / 47 Aside: sensitivity to outliers Note: the mean is quite sensitive to outliers, the median much less. ▷ the median is what’s called a robust measure of central tendency > import numpy > weights = numpy.random.normal(80, 10, 1000) > numpy.mean(weights) 79.83294314806949 > numpy.median(weights) 79.69717178759265 > numpy.percentile(weights, 50) 79.69717178759265 # 50th percentile = 0.5 quantile = median > weights = numpy.append(weights, [10001, 101010]) # outliers > numpy.mean(weights) 190.4630171138418 # <-- big change > numpy.median(weights) 79.70768232050916 # <-- almost unchanged 8 / 47 Measures of central tendency If the distribution of data is symmetrical, then the mean is equal to the median. If the distribution is asymmetric (skewed), the mean is generally closer to the skew than the median. Degree of asymmetry is measured by skewness (Python: scipy.stats.skew()) Negative skew Positive skew 9 / 47 Measures of variability ▷ Variance measures the dispersion (spread) of observations around the mean • 푉푎푟(푋) = 피 [(푋 − 피[푋])2] • continuous case: 휎2 = ∫(푥 − 휇)2푓 (푥)푑푥 where 푓 (푥) is the probability density function of 푋 2 1 푛 2 • discrete case: 휎 = 푛−1 ∑푖=1(푥푖 − 휇) • note: if observations are in metres, variance is measured in 푚2 • Python: array.var() or numpy.var(array) ▷ Standard deviation is the square root of the variance • it has the same units as the mean • Python: array.std() or numpy.std(array) 10 / 47 Exercise: Simple descriptive statistics Task: Choose randomly 1000 integers from a uniform distribution between 100 and 200. Calculate the mean, min, max, variance and standard deviation of this sample. > import numpy > obs = numpy.random.randint(100, 201, 1000) > obs.mean() 149.49199999999999 > obs.min() 100 > obs.max() 200 > obs.var() 823.99793599999998 > obs.std() 28.705364237368595 11 / 47 Histograms: plots of variability Histograms are a sort of bar graph that shows the distribution of data values. The vertical axis import matplotlib.pyplot as plt displays raw counts or proportions. # our Birnbaum and Sanders failure data plt.hist(cycles) To build a histogram: plt.xlabel("Cycles until failure") 1 Subdivide the observations into several equal classes or intervals (called “bins”) 25 20 2 Count the number of observations in each interval 15 3 Plot the number of observations in each 10 interval 5 Note: the width of the bins is important to obtain a 0 500 1000 1500 2000 2500 “reasonable” histogram, but is subjective. Cycles until failure 12 / 47 Quartiles ▷ A quartile is the value that marks one of the divisions that breaks a dataset into four equal parts ▷ The first quartile, at the 25th percentile, divides the 25% of 25% of observations first ¼ of cases from the latter ¾ observations ▷ The second quartile, the median, divides the dataset in 25% of observations half 25% of observations ▷ The third quartile, the 75th percentile, divides the first ¾ of cases from the latter ¼ interquartile range ▷ The interquartile range (IQR) is the distance between the first and third quartiles • 25th percentile and the 75th percentile 13 / 47 Box and whisker plot A “box and whisker” plot or boxplot shows the spread of import matplotlib.pyplot as plt the data plt.boxplot(cycles) ▷ the median (horizontal line) plt.xlabel("Cycles until failure") ▷ lower and upper quartiles Q1 and Q3 (the box) 2500 2000 ▷ upper whisker: last datum < Q3 + 1.5×IQR 1500 ▷ the lower whisker: first datum > Q1 - 1.5×IQR 1000 Cycles until failure 500 ▷ any data beyond the whiskers are typically called 1 outliers Note that some people plot whiskers th and 95 th differently, to represent the 5 percentiles for example, or even the min and max values… 14 / 47 Violin plot Adds a kernel density estimation to a boxplot 2500 2000 1500 import seaborn as sns 1000 sns.violinplot(cycles, orient="v") plt.xlabel("Cycles until failure") 500 0 Cycles until failure 15 / 47 Bias and precision Precise Imprecise Biased Unbiased A good estimator should be unbiased, precise and consistent (converge as sample size increases). 16 / 47 Estimating values ▷ In engineering, providing a point estimate is not enough: we also need to know the associated uncertainty • especially for risk engineering! ▷ One option is to report the standard error ̂휎 ̂휎 • √푛 , where is the sample standard deviation (an estimator for the population standard deviation) and 푛 is the size of the sample • difficult to interpret without making assumptions about the distribution ofthe error (often assumed to be normal) ▷ Alternatively, we might report a confidence interval 17 / 47 Confidence intervals ▷ A two-sided confidence interval is an interval [퐿, 푈] such that C% of the time, the parameter of interest will be included in that interval • most commonly, 95% confidence intervals are used ▷ Confidence intervals are used to describe the uncertainty in apoint estimate • a wider confidence interval means greater uncertainty 18 / 47 Interpreting confidence intervals population mean m m m A 90% confidence interval means that 10% of m the time, the parameter of interest will not be m included in that interval. m Here, for a two-sided confidence interval. m m m m 19 / 47 Interpreting confidence intervals population mean m m m A 90% confidence interval means that 10% of m the time, the parameter of interest will not be m included in that interval. m Here, for a one-sided confidence interval. m m m m 20 / 47 Illustration: fatigue life of aluminium sheeting import seaborn as sns Confidence intervals can be displayed graphically on a barplot, as “error lines”. sns.barplot(cycles, ci=95, capsize=0.1) plt.xlabel("Cycles until failure (95% CI)") Note however that this graphical presentation is ambiguous, because some authors represent the standard deviation on error bars. The caption should always state what the error bars represent. 0 200 400 600 800 1000 1200 1400 Cycles until failure, with 95% confidence interval Data from Birnbaum and Saunders (1958) 21 / 47 Statistical inference population sample Statistical inference means deducing information about a population by examining only a subset of the population (the sample). We use a sample statistic to estimate a population parameter. 22 / 47 How to determine the confidence interval? ▷ If you make assumptions about the distribution of your data (eg. “the observations are normally distributed”), you can calculate the confidence interval for your estimation of the parameter of interest (eg. the mean) using analytical quantile measures ▷ If you don’t want to make too many assumptions, a technique called the bootstrap can help ▷ General idea: • I want to determine how much uncertainty is generated by the fact that I only have a limited sample of my full population • If I had a “full” sample, I could extract a large number of limited samples and examine the amount of variability in those samples (how much does my parameter of interest vary across these samples?) • I only have a limited sample, but I can look at a large number of limited samples from my own limited sample, by sampling with replacement 23 / 47 Bootstrap methods ▷ “Bootstrapping” means resampling your data with replacement ▷ Instead of fitting your model to the original 푋 and 푦, you fit your model to resampled versions of 푋 and 푦 many times ▷ Provides 푛 slightly different models from which we create a confidence interval ▷ Hypothesis: observations
Recommended publications
  • If I Were Doing a Quick ANOVA Analysis
    ANOVA Note: If I were doing a quick ANOVA analysis (without the diagnostic checks, etc.), I’d do the following: 1) load the packages (#1); 2) do the prep work (#2); and 3) run the ggstatsplot::ggbetweenstats analysis (in the #6 section). 1. Packages needed. Here are the recommended packages to load prior to working. library(ggplot2) # for graphing library(ggstatsplot) # for graphing and statistical analyses (one-stop shop) library(GGally) # This package offers the ggpairs() function. library(moments) # This package allows for skewness and kurtosis functions library(Rmisc) # Package for calculating stats and bar graphs of means library(ggpubr) # normality related commands 2. Prep Work Declare factor variables as such. class(mydata$catvar) # this tells you how R currently sees the variable (e.g., double, factor) mydata$catvar <- factor(mydata$catvar) #Will declare the specified variable as a factor variable 3. Checking data for violations of assumptions: a) relatively equal group sizes; b) equal variances; and c) normal distribution. a. Group Sizes Group counts (to check group frequencies): table(mydata$catvar) b. Checking Equal Variances Group means and standard deviations (Note: the aggregate and by commands give you the same results): aggregate(mydata$intvar, by = list(mydata$catvar), FUN = mean, na.rm = TRUE) aggregate(mydata$intvar, by = list(mydata$catvar), FUN = sd, na.rm = TRUE) by(mydata$intvar, mydata$catvar, mean, na.rm = TRUE) by(mydata$intvar, mydata$catvar, sd, na.rm = TRUE) A simple bar graph of group means and CIs (using Rmisc package). This command is repeated further below in the graphing section. The ggplot command will vary depending on the number of categories in the grouping variable.
    [Show full text]
  • Healthy Volunteers (Retrospective Study) Urolithiasis Healthy Volunteers Group P-Value 5 (N = 110) (N = 157)
    Supplementary Table 1. The result of Gal3C-S-OPN between urolithiasis and healthy volunteers (retrospective study) Urolithiasis Healthy volunteers Group p-Value 5 (n = 110) (n = 157) median (IQR 1) median (IQR 1) Gal3C-S-OPN 2 515 1118 (810–1543) <0.001 (MFI 3) (292–786) uFL-OPN 4 14 56392 <0.001 (ng/mL/mg protein) (10–151) (30270-115516) Gal3C-S-OPN 2 52 0.007 /uFL-OPN 4 <0.001 (5.2–113.0) (0.003–0.020) (MFI 3/uFL-OPN 4) 1 IQR, Interquartile range; 2 Gal3C-S-OPN, Gal3C-S lectin reactive osteopontin; 3 MFI, mean fluorescence intensity; 4 uFL-OPN, Urinary full-length-osteopontin; 5 p-Value, Mann–Whitney U-test. Supplementary Table 2. Sex-related difference between Gal3C-S-OPN and Gal3C-S-OPN normalized to uFL- OPN (retrospective study) Group Urolithiasis Healthy volunteers p-Value 5 Male a Female b Male c Female d a vs. b c vs. d (n = 61) (n = 49) (n = 57) (n = 100) median (IQR 1) median (IQR 1) Gal3C-S-OPN 2 1216 972 518 516 0.15 0.28 (MFI 3) (888-1581) (604-1529) (301-854) (278-781) Gal3C-S-OPN 2 67 42 0.012 0.006 /uFL-OPN 4 0.62 0.56 (9-120) (4-103) (0.003-0.042) (0.002-0.014) (MFI 3/uFL-OPN 4) 1 IQR, Interquartile range; 2 Gal3C-S-OPN, Gal3C-S lectin reactive osteopontin; 3MFI, mean fluorescence intensity; 4 uFL-OPN, Urinary full-length-osteopontin; 5 p-Value, Mann–Whitney U-test.
    [Show full text]
  • Violin Plots: a Box Plot-Density Trace Synergism Author(S): Jerry L
    Violin Plots: A Box Plot-Density Trace Synergism Author(s): Jerry L. Hintze and Ray D. Nelson Source: The American Statistician, Vol. 52, No. 2 (May, 1998), pp. 181-184 Published by: American Statistical Association Stable URL: http://www.jstor.org/stable/2685478 Accessed: 02/09/2010 11:01 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=astata. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Statistical Association is collaborating with JSTOR to digitize, preserve and extend access to The American Statistician. http://www.jstor.org StatisticalComputing and Graphics ViolinPlots: A Box Plot-DensityTrace Synergism JerryL.
    [Show full text]
  • Statistical Analysis in JASP
    Copyright © 2018 by Mark A Goss-Sampson. All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the author except for the purposes of research, education or private study. CONTENTS PREFACE .................................................................................................................................................. 1 USING THE JASP INTERFACE .................................................................................................................... 2 DESCRIPTIVE STATISTICS ......................................................................................................................... 8 EXPLORING DATA INTEGRITY ................................................................................................................ 15 ONE SAMPLE T-TEST ............................................................................................................................. 22 BINOMIAL TEST ..................................................................................................................................... 25 MULTINOMIAL TEST .............................................................................................................................. 28 CHI-SQUARE ‘GOODNESS-OF-FIT’ TEST............................................................................................. 30 MULTINOMIAL AND Χ2 ‘GOODNESS-OF-FIT’ TEST. ..........................................................................
    [Show full text]
  • Beanplot: a Boxplot Alternative for Visual Comparison of Distributions
    Beanplot: A Boxplot Alternative for Visual Comparison of Distributions Peter Kampstra VU University Amsterdam Abstract This introduction to the R package beanplot is a (slightly) modified version of Kamp- stra(2008), published in the Journal of Statistical Software. Boxplots and variants thereof are frequently used to compare univariate data. Boxplots have the disadvantage that they are not easy to explain to non-mathematicians, and that some information is not visible. A beanplot is an alternative to the boxplot for visual comparison of univariate data between groups. In a beanplot, the individual observations are shown as small lines in a one-dimensional scatter plot. Next to that, the estimated density of the distributions is visible and the average is shown. It is easy to compare different groups of data in a beanplot and to see if a group contains enough observations to make the group interesting from a statistical point of view. Anomalies in the data, such as bimodal distributions and duplicate measurements, are easily spotted in a beanplot. For groups with two subgroups (e.g., male and female), there is a special asymmetric beanplot. For easy usage, an implementation was made in R. Keywords: exploratory data analysis, descriptive statistics, box plot, boxplot, violin plot, density plot, comparing univariate data, visualization, beanplot, R, graphical methods, visu- alization. 1. Introduction There are many known plots that are used to show distributions of univariate data. There are histograms, stem-and-leaf-plots, boxplots, density traces, and many more. Most of these plots are not handy when comparing multiple batches of univariate data. For example, com- paring multiple histograms or stem-and-leaf plots is difficult because of the space they take.
    [Show full text]
  • Chapter 6: Graphics
    Chapter 6 Graphics Modern computers with high resolution displays and graphic printers have rev- olutionized the visual display of information in fields ranging from computer- aided design, through flow dynamics, to the spatiotemporal attributes of infec- tious diseases. The impact on statistics is just being felt. Whole books have been written on statistical graphics and their contents are quite heterogeneous– simple how-to-do it texts (e.g., ?; ?), reference works (e.g., Murrell, 2006) and generic treatment of the principles of graphic presentation (e.g., ?). There is even a web site devoted to learning statistics through visualization http: //www.seeingstatistics.com/.Hence,itisnotpossibletobecomprehensive in this chapter. Instead, I focus on the types of graphics used most often in neu- roscience (e.g., plots of means) and avoid those seldom used in the field (e.g., pie charts, geographical maps). The here are four major purposes for statistical graphics. First, they are used to examine and screen data to check for abnormalities and to assess the distributions of the variables. Second, graphics are very useful aid to exploratory data analysis (??). Exploratory data analysis, however, is used for mining large data sets mostly for the purpose of hypothesis generation and modification, so that use of graphics will not be discussed here. Third, graphics can be used to assess both the assumptions and the validity of a statistical model applied to data. Finally, graphics are used to present data to others. The third of these purposes will be discussed in the appropriate sections on the statistics. This chapter deals with the first and last purposes–examining data and presenting results.
    [Show full text]
  • Dynamics of Hydrological Model Parameters: Calibration and Reliability
    Dynamics of hydrological model parameters: calibration and reliability Tian Lan1, Kairong Lin1,2,3, Xuezhi Tan1,2,3, Chong-Yu Xu4, Xiaohong Chen1,2,3 1Center for Water Resources and Environment, Sun Yat-sen University, Guangzhou, 510275, China. 2Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, Guangzhou 510275, China. 3School of Civil Engineering, Sun Yat-sen University, Guangzhou, 510275, China. 4Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316 Oslo, Norway Correspondence to: Kairong Lin ([email protected]) Contents of this file 1 Case study and data 2 HYMOD model 3 SCE-UA 4 Violin plot 5 Multi-metric evaluation 6 Evaluation of sub-period calibration schemes in Mumahe basin and Xunhe basin 7 Convergence performance in Mumahe basin and Xunhe basin using ECP-VP References Introduction This supporting information includes eight sections that support the analysis. The 1 Case study and data section is used to support the 2 Background section in the main manuscript. The 2 HYMOD model section is used to support the 3.1 Sub-period calibration section in the main manuscript. The 3 SCE-UA algorithm section and 4 Violin plot section are used to support the 3.2 A tool for reliability evaluation section in the main manuscript. The 5 Multi-metric evaluation section and 6 Evaluation of sub-period calibration schemes in Mumahe basin and Xunhe basin section are used to account for 4.1 Evaluation of calibration schemes section in the main manuscript. The 7 Convergence performance in Mumahe basin and Xunhe basin using ECP-VP section is used to supplement 4.3 Evaluation of reliability section in the main manuscript.
    [Show full text]
  • Modern Statistics for Modern Biology
    Contents 3 High Quality Graphics in R 5 3.1 Goals for this Chapter .......................... 5 3.2 Base R Plotting .............................. 6 3.3 An Example Dataset ........................... 7 3.4 ggplot2 .................................. 8 3.5 The Grammar of Graphics ........................ 9 3.6 1D Visualisations ............................. 12 3.6.1 Data tidying I – matrices versus data.frame . 12 3.6.2 Barplots ............................. 13 3.6.3 Boxplots ............................. 13 3.6.4 Violin plots ........................... 13 3.6.5 Dot plots and beeswarm plots . 14 3.6.6 Density plots ........................... 14 3.6.7 ECDF plots ............................ 15 3.6.8 Transformations ......................... 15 3.6.9 Data tidying II - wide vs long format . 16 3.7 2D Visualisation: Scatter Plots ...................... 17 3.7.1 Plot shapes ............................ 18 3.8 3–5D Data ................................. 19 3.8.1 Faceting ............................. 21 3.8.2 Interactive graphics ....................... 22 3.9 Colour ................................... 23 3.9.1 Heatmaps ............................ 24 3.9.2 Colour spaces .......................... 26 3.10 Data Transformations .......................... 27 3.11 Saving Figures .............................. 27 3.12 Biological Data with ggbio ........................ 28 3.13 Recap of this Chapter ........................... 29 3.14 Exercises ................................. 29 6 Multiple Testing 31 6.1 Goals for this Chapter .........................
    [Show full text]
  • Moving Beyond P Values: Everyday Data Analysis with Estimation Plots
    bioRxiv preprint doi: https://doi.org/10.1101/377978 ; this version posted April 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Moving beyond ​P​ values: Everyday data analysis with estimation plots Joses Ho​ 1​, Tayfun Tumkaya​ 1, 2​, Sameer Aryal​ 1, 3 ,​ Hyungwon Choi​ 1, 4​, Adam Claridge-Chang​ 1, 2, 5, 6 1. Institute for Molecular and Cell Biology, A*STAR, Singapore 138673 2. Department of Physiology, National University of Singapore, Singapore 3. Center for Neural Science, New York University, New York, NY, USA 4. Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 5. Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 6. Correspondence Introduction Over the past 75 years, a number of statisticians have advised that the data-analysis method known as null-hypothesis significance testing (NHST) should be deprecated ​(Berkson, 1942; Halsey et al., 2015; Wasserstein et al., 2019)​. The limitations of NHST have been extensively discussed, with a broad consensus that current statistical practice in the biological sciences needs reform. However, there is less agreement on reform’s specific nature, with vigorous debate surrounding what would constitute a suitable alternative (Altman et al., 2000; Benjamin et al., 2017; Cumming and Calin-Jageman, 2016)​. An emerging view is that a more complete analytic technique would use statistical graphics to estimate effect sizes and evaluate their uncertainty ​(Cohen, 1994; Cumming and Calin-Jageman, 2016)​.
    [Show full text]
  • A Machine Learning Framework for Computationally Expensive Transient Models Prashant Kumar1,4, Kushal Sinha 2,3*, Nandkishor K
    www.nature.com/scientificreports OPEN A machine learning framework for computationally expensive transient models Prashant Kumar1,4, Kushal Sinha 2,3*, Nandkishor K. Nere2,3, Yujin Shin1,5, Raimundo Ho1, Laurie B. Mlinar3 & Ahmad Y. Sheikh1 Transient simulations of dynamic systems, using physics-based scientifc computing tools, are practically limited by availability of computational resources and power. While the promise of machine learning has been explored in a variety of scientifc disciplines, its application in creation of a framework for computationally expensive transient models has not been fully explored. Here, we present an ensemble approach where one such computationally expensive tool, discrete element method, is combined with time-series forecasting via auto regressive integrated moving average and machine learning methods to simulate a complex pharmaceutical problem: development of an agitation protocol in an agitated flter dryer to ensure uniform solid bed mixing. This ensemble approach leads to a signifcant reduction in the computational burden, while retaining model accuracy and performance, practically rendering simulations possible. The developed machine-learning model shows good predictability and agreement with the literature, demonstrating its tremendous potential in scientifc computing. Machine learning has emerged as one of the most promising technologies in the past decade due to its capability to provide valuable insights1 into vast amounts of data generated during the Internet era. Rapid democratization of machine learning tools has allowed for the successful adoption of the technology in a wide range of felds including robotics, computer vision2, speech and natural language processing3, autonomous driving4, neurosci- ence, drug-discovery5 and in fundamental sciences6. However, its application to computational sciences, and applied computational physics in general, has been limited.
    [Show full text]
  • Effect of Continuous Saline Bladder Irrigation with Concomitant Single Instillation of Chemotherapy After Transurethral Resecti
    MOLECULAR AND CLINICAL ONCOLOGY 13: 6, 2020 Effect of continuous saline bladder irrigation with concomitant single instillation of chemotherapy after transurethral resection on intravesical recurrence in patients with non‑muscle‑invasive bladder cancer KENJI KURODA, SHINSUKE TASAKI, AKINORI SATO, JUNICHI ASAKUMA, AKIO HORIGUCHI and KEIICHI ITO Department of Urology, National Defense Medical College, Tokorozawa, Saitama 359‑8513, Japan Received April 29, 2019; Accepted June 1, 2020 DOI: 10.3892/mco.2020.2079 Abstract. A single immediate instillation of chemotherapy the matched groups B and C (P=0.0255 and P=0.0023, respec‑ following transurethral resection of bladder tumor (TURBT) tively). In conclusion, SIC alone could provide a higher IVR‑free is effective in preventing intravesical recurrence (IVR) in survival rate than CSBI with DXR or CSBI with SIC. patients with non‑muscle‑invasive urothelial bladder carcinoma (NMIBC). However, continuous saline bladder irrigation (CSBI) Introduction is also performed with a single instillation of chemotherapy (SIC), but its inhibitory effect on IVR remains unclear. In the present Bladder cancer can present in different pathological stages. study, the effect of CSBI with concomitant SIC following TUR Approximately 80% of all bladder cancers initially present on IVR was evaluated in patients with NMIBC. A retrospec‑ as non‑muscle‑invasive bladder carcinoma (NMIBC) (1). tive review of 253 patients who underwent TURBT and were Transurethral resection of bladder tumor (TURBT) is known clinically and histologically diagnosed with NMIBC at National as the gold standard therapeutic method for NMIBC; however, Defense Medical College Hospital was performed. Doxorubicin the recurrence rate ranges between 40 and 80% regardless of (DXR) was administered to all patients.
    [Show full text]
  • Raincloud Plots: a Multi-Platform Tool for Robust Data Visualization
    Raincloud plots: a multi-platform tool for robust data visualization Micah Allen1, Davide Poggiali2,3, Kirstie Whitaker1,4, Tom Rhys Marshall5, Rogier Kievit6,7 1Department of Psychiatry, University of Cambridge, UK 2Department of Mathematics, University of Padova, Padova, Italy 3Padova Neuroscience Center, University of Padova, Padova, Italy 4Alan Turing Institute, London, UK 5Department of Experimental Psychology, University of Oxford, UK 6Department of Psychology, University of Cambridge, UK 7Max-Planck Centre for Computational Psychiatry and Aging, London/Berlin Correspondence should be addressed to Micah Allen, Cambridge Psychiatry: [email protected] Abstract Across scientific disciplines, there is a rapidly growing recognition of the need for more statistically robust, transparent approaches to data visualization. Complimentary to this, many scientists have realized the need for plotting tools that accurately and transparently convey key aspects of statistical effects and raw data with minimal distortion. Previously common approaches, such as plotting conditional mean or median barplots together with error-bars have been criticized for distorting effect size, hiding underlying patterns in the raw data, and obscuring the assumptions upon which the most commonly used statistical tests are based. Here we describe a data visualization approach which overcomes these issues, providing maximal statistical information while preserving the desired ‘inference at a glance’ nature of barplots and other similar visualization devices. These “raincloud plots” can visualize raw data, probability density, and key summary statistics such as median, mean, and relevant confidence intervals in an appealing and flexible format with minimal redundancy. In this tutorial paper we provide basic demonstrations of the strength of raincloud plots and similar approaches, outline potential modifications for their optimal use, and provide open-source code for their streamlined implementation in R, Python and Matlab (https://github.com/RainCloudPlots/RainCloudPlots).
    [Show full text]