Tese Diones Krinski 2014.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Tese Diones Krinski 2014.Pdf UNIVERSIDADE FEDERAL DO PARANÁ DIONES KRINSKI “ARTRÓPODES ASSOCIADOS AO ARROZ DE TERRAS ALTAS, Oryza sativa, EM NOVO PROGRESSO, ESTADO DO PARÁ: NÍVEIS DE DANOS E ESTRATÉGIAS PARA MANEJO” CURITIBA 2014 DIONES KRINSKI “ARTRÓPODES ASSOCIADOS AO ARROZ DE TERRAS ALTAS, Oryza sativa, EM NOVO PROGRESSO, ESTADO DO PARÁ: NÍVEIS DE DANOS E ESTRATÉGIAS PARA MANEJO” Tese apresentada ao Programa de Pós- Graduação em Ciências Biológicas – Zoologia, Setor de Ciências Biológicas da Universidade Federal do Paraná, como requisito parcial à obtenção do título de Doutor em Ciências, área de concentração Zoologia. Orientador: Dr. Luís Amilton Foerster CURITIBA 2014 Ficha catalográfica K92a Krinski, Diones Artrópodes associados ao arroz de terras altas, Oryza sativa, em Novo Progresso, estado do Pará: níveis de danos e estratégias para manejo / Diones Krinski – Curitiba [PR], 2014. 326f.: il.; 21x29,7 cm. Tese de doutorado em Ciências (Zoologia). Universidade Federal do Paraná, Programa de Pós-graduação em Zoologia. Orientador: Dr. Luís Amilton Foerster. 1. Zoologia Aplicada. 2. Agronomia. 3. Danos e Estragos nas Plantas. I. Krinski, D. II. Título. CDU – 591.6+632 iii . iv Dedicatória À toda minha família, em especial aos meus irmãos Anderson Krinski e Rodrigo D. Krinski, meus pais, Claudio Krinski e Marlete Florentino e ao meu amigo e companheiro Marcos Rosa da Rocha, por me apoiarem nessa etapa da minha vida. DEDICO! v vi Epígrafe "A ciência trabalha na fronteira entre o conhecimento e a ignorância. Não temos medo de admitir o que não sabemos. Não existe vergonha nisso. A única vergonha é fingir que temos todas as respostas." Neil deGrasse Tyson vii Lista de Figuras Figura 1.1. Mapa da Fazenda Florentino, Novo Progresso/PA (7°07'45.71"S 55°23'21.13"W). Locais das amostragens de artrópodes em plantação de arroz. Delimitação de cor amarela: área sem aplicação de produtos fitossanitários. Delimitação vermelha: área com aplicação de produtos fitossanitários. Fonte: GoogleEarth com modificações (Diones Krinski)....................................................... 17 Figura 1.2. Mapa das áreas de coletas de artrópodes. Croqui das metodologias de coletas, com armadilha de solo, pano de batida e rede entomológica. Delimitação de cor amarela: área sem aplicação de produtos fitossanitários. Delimitação vermelha: área com aplicação de produtos fitossanitários........................................................ 18 Figura 1.3. Porcentagem (e quantidade de exemplares) de cada gênero de formigas coletado em áreas com e sem aplicação de produtos fitossanitários. Amostragem por armadilha de solo (tipo pitfall). Fazenda Florentino, Novo Progresso/PA, 2010- 2011........................................................................................................................... 27 Figura 1.4. Flutuação populacional dos gêneros Acromyrmex, Camponotus, Dorimyrmex e Solenopsis encontrados em áreas com e sem aplicação de produtos fitossanitários. Amostragem por armadilhas de solo (pitfalls). Setas indicam as datas de aplicação de produtos fitossanitários (14/jan/2011: Ally+Herbadox+Pounce; e 5/fev/2011: Parathion+Odin+Priori). Fazenda Florentino, Novo Progresso/PA, 2010- 2011........................................................................................................................... 28 Figura 1.5. Flutuação populacional de Oebalus poecilus (linhas pontilhadas) e Oebalus ypsilongriseus (linhas continuas) em área de cultivo de arroz com e sem aplicação de agroquímicos. Amostragem por rede de varredura. Setas: datas das aplicações dos produtos fitossanitários (14/jan/2011: Ally+Herbadox+Pounce; e 5/fev/2011: Parathion+Odin+Priori). Fazenda Florentino, Novo Progresso/PA, 2010- 2011........................................................................................................................... 32 Figura 1.6. Flutuação populacional de Mormidea maculata em área de cultivo de arroz com e sem aplicação de agroquímicos. Amostragem por rede de varredura. Setas: datas das aplicações dos produtos fitossanitários (14/jan/2011: Ally+Herbadox+Pounce; e 5/fev/2011: Parathion+Odin+Priori). Fazenda Florentino, Novo Progresso/PA, 2010-2011................................................................................ 33 Figura 1.7. Flutuação populacional de Tibraca limbativentris em área de cultivo de arroz com e sem aplicação de agroquímicos. Setas: datas das aplicações dos produtos fitossanitários (14/jan/2011: Ally+Herbadox+Pounce; e 5/fev/2011: Parathion+Odin+Priori). Fazenda Florentino, Novo Progresso/PA, 2010-2011........ 34 Figura 1.8. Flutuação populacional de Tibraca limbativentris em área de cultivo de arroz em diferentes metodologias de amostragem (rede de varredura, armadilha de solo e pano de batida). Setas: datas das aplicações dos produtos fitossanitários (14/jan/2011: Ally+Herbadox+Pounce; e 5/fev/2011: Parathion+Odin+Priori). Fazenda Florentino, Novo Progresso/PA, 2010-2011............................................................... 35 viii Figura 1.9. Flutuação populacional de Mocis latipes (número médio por semana amostrada) e seus parasitoides (Diptera, Tachinidae) em área com e sem aplicação de agroquímicos. Setas: datas das aplicações dos produtos fitossanitários (14/jan/2011: Ally+Herbadox+Pounce; e 5/fev/2011: Parathion+Odin+Priori). Fazenda Florentino, Novo Progresso/PA, 2010-2011............................................................... 40 Figura 1.10. Flutuação populacional de Neoconocephalus sp. em área sem aplicação de agroquímicos. Amostragem por rede de varredura e armadilha de solo (pitfalls). Setas: datas das aplicações dos produtos fitossanitários (14/jan/2011: Ally+Herbadox+Pounce; e 5/fev/2011: Parathion+Odin+Priori). Fazenda Florentino, Novo Progresso/PA, 2010-2011................................................................................ 41 Figura 1.11. Flutuação populacional de Tetrix subulata em área sem aplicação de agroquímicos. Amostragem por rede de varredura. Setas: datas das aplicações dos produtos fitossanitários (14/jan/2011: Ally+Herbadox+Pounce; e 5/fev/2011: Parathion+Odin+Priori). Fazenda Florentino, Novo Progresso/PA, 2010- 2011........................................................................................................................... 42 Figura 1.12. Flutuação populacional de lepidópteros e pentatomídeos em área de cultivo de arroz com aplicação de agroquímicos. Setas: datas das aplicações dos produtos fitossanitários. Amostragem por rede de varredura (Hemiptera) e pano de batida (Lepidoptera). Setas: datas das aplicações dos produtos fitossanitários (14/jan/2011: Ally+Herbadox+Pounce; e 5/fev/2011: Parathion+Odin+Priori). Fazenda Florentino, Novo Progresso/PA, 2010-2011............................................................... 49 Figura 1.13. Flutuação populacional de lepidópteros e pentatomídeos em área de cultivo de arroz sem aplicação de agroquímicos. Amostragem por rede de varredura (Hemiptera) e pano de batida (Lepidoptera). Fazenda Florentino, Novo Progresso/PA, 2010-2011.................................................................................................................. 50 Figure 2.1 Collection area. Farm Florentino, Novo Progresso, Pará State, Brazil... 70 Figure 2.2 Hypatropis inermis. A) Feeding position with the head down; B) Male and female copulating on rice stems; C) Comparison of the size of H. inermis (right) with Tibraca limbativentris.………………...……................................................................ 71 Figure 3.1 Percentage of defoliation used in the experiments.……………………… 81 Figure 3.2 Average number of spikelets per panicles. Bars of the same color followed by same letters between the percentages of defoliation did not differ by Kruskal-Wallis test (p <0.05). Black bars: filled spikelets (H= 227 225, p <0.001); Gray bars: empty spikelets (H= 254 884, p <0.001); Above the bars: total of spikelets (H= 222 582 p <0.001)……………………………………………….……….…………………...……...... 84 Figure 3.3 Mean values, standard errors and linear regression (with R2). a) Number of filled grains per panicle; b) Average number of empty grains per panicle in the different phenological stages and percentage of defoliation…………….…………...……..…… 89 ix Figure 3.4 Mean values, standard errors and linear regression (with R2). a) Average total number of grains (empty and full) per panicle; b) Percentage of damage for each percentage of defoliation and different phenological stages…...………..…………… 90 Figure 3.5 Mean values and linear regression (with R2). a) Average weight of filled grains per panicle; b) Average weight of 100 grains of rice in the different phenological stages and percentage of defoliation…………………………………….……….……… 91 Figure 4.1 Model of the "cage" made with plastic bottles (2-L PET) for use in the experiment (A): 1) Perforated plastic bottle and the clipping regions; 2) veil fabric forming a fabric tunnel; 3) cut plastic bottle; d) fabric tube glued in the bottle; 4) cages placed on rice plants; 5) number of stink bugs that were placed in cages with plants; and 6) tied cage [closed] with a strip of fabric. (B): Cages installed in culture of rice containing stink bugs.…..………………………………………………………………. 103 Figure 4.2 Mean number of filled grains (black columns), empty spikelets (gray columns), and total spikelets per panicle (black columns plus gray columns) after infestation with different amounts of adults of the Tibraca limbativentris. A) V8 stage; B) V12 stage; C) R3/R4 stage. Bars followed by the same lowercase letters between the various infestations do not
Recommended publications
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Insect Survey of Four Longleaf Pine Preserves
    A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia.
    [Show full text]
  • Venoms of Heteropteran Insects: a Treasure Trove of Diverse Pharmacological Toolkits
    Review Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits Andrew A. Walker 1,*, Christiane Weirauch 2, Bryan G. Fry 3 and Glenn F. King 1 Received: 21 December 2015; Accepted: 26 January 2016; Published: 12 February 2016 Academic Editor: Jan Tytgat 1 Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (G.F.K.) 2 Department of Entomology, University of California, Riverside, CA 92521, USA; [email protected] (C.W.) 3 School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (B.G.F.) * Correspondence: [email protected]; Tel.: +61-7-3346-2011 Abstract: The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide- rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5- trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals.
    [Show full text]
  • Exposing the Structure of an Arctic Food Web Helena K
    Exposing the structure of an Arctic food web Helena K. Wirta1,†, Eero J. Vesterinen2,†, Peter A. Hamback€ 3, Elisabeth Weingartner3, Claus Rasmussen4, Jeroen Reneerkens5,6, Niels M. Schmidt6, Olivier Gilg7,8 & Tomas Roslin1 1Department of Agricultural Sciences, University of Helsinki, Latokartanonkaari 5, FI-00014 Helsinki, Finland 2Department of Biology, University of Turku, Vesilinnantie 5, FI-20014 Turku, Finland 3Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden 4Department of Bioscience, Aarhus University, Ny Munkegade 114, DK–8000 Aarhus, Denmark 5Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC Groningen, The Netherlands 6Arctic Research Centre, Department of Bioscience, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark 7Laboratoire Biogeosciences, UMR CNRS 6282, Universite de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France 8Groupe de Recherche en Ecologie Arctique, 16 rue de Vernot, 21440 Francheville, France Keywords Abstract Calidris, DNA barcoding, generalism, Greenland, Hymenoptera, molecular diet How food webs are structured has major implications for their stability and analysis, Pardosa, Plectrophenax, specialism, dynamics. While poorly studied to date, arctic food webs are commonly Xysticus. assumed to be simple in structure, with few links per species. If this is the case, then different parts of the web may be weakly connected to each other, with Correspondence populations and species united by only a low number of links. We provide the Helena K. Wirta, Department of Agricultural first highly resolved description of trophic link structure for a large part of a Sciences, University of Helsinki, Latokartanonkaari 5, FI-00014 Helsinki, Finland. high-arctic food web.
    [Show full text]
  • New Evidence for the Presence of the Telomere Motif (TTAGG)N in the Family Reduviidae and Its Absence in the Families Nabidae
    COMPARATIVE A peer-reviewed open-access journal CompCytogen 13(3): 283–295 (2019)Telomere motif (TTAGG ) in Cimicomorpha 283 doi: 10.3897/CompCytogen.v13i3.36676 RESEARCH ARTICLEn Cytogenetics http://compcytogen.pensoft.net International Journal of Plant & Animal Cytogenetics, Karyosystematics, and Molecular Systematics New evidence for the presence of the telomere motif (TTAGG) n in the family Reduviidae and its absence in the families Nabidae and Miridae (Hemiptera, Cimicomorpha) Snejana Grozeva1, Boris A. Anokhin2, Nikolay Simov3, Valentina G. Kuznetsova2 1 Cytotaxonomy and Evolution Research Group, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia 1000, 1 Tsar Osvoboditel, Bulgaria2 Department of Karyosystematics, Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Universitetskaya nab., 1, Russia 3 National Museum of Natural History, Bulgarian Academy of Sciences, Sofia 1000, 1 Tsar Osvoboditel, Bulgaria Corresponding author: Snejana Grozeva ([email protected]) Academic editor: M. José Bressa | Received 31 May 2019 | Accepted 29 August 2019 | Published 20 September 2019 http://zoobank.org/9305DF0F-0D1D-44FE-B72F-FD235ADE796C Citation: Grozeva S, Anokhin BA, Simov N, Kuznetsova VG (2019) New evidence for the presence of the telomere motif (TTAGG)n in the family Reduviidae and its absence in the families Nabidae and Miridae (Hemiptera, Cimicomorpha). Comparative Cytogenetics 13(3): 283–295. https://doi.org/10.3897/CompCytogen.v13i3.36676 Abstract Male karyotype and meiosis in four true bug species belonging to the families Reduviidae, Nabidae, and Miridae (Cimicomorpha) were studied for the first time using Giemsa staining and FISH with 18S ribo- somal DNA and telomeric (TTAGG)n probes. We found that Rhynocoris punctiventris (Herrich-Schäffer, 1846) and R.
    [Show full text]
  • Assabet River National Wildlife Refuge Final Comprehensive Conservation Plan January 2005
    U.S. Fish & Wildlife Service Assabet River National Wildlife Refuge Final Comprehensive Conservation Plan January 2005 This goose, designed by J.N. “Ding” Darling, has become the symbol of the National Wildlife Refuge System The U.S. Fish and Wildlife Service is the principle federal agency for conserving, protecting, and enhancing fish and wildlife in their habitats for the continuing benefit of the American people. The Service manages the 96-million acre National Wildlife Refuge System comprised of 544 national wildlife refuges and thousands of waterfowl production areas. It also operates 65 national fish hatcheries and 78 ecological services field stations. The agency enforces federal wildlife laws, manages migratory bird populations, restores significant fisheries, conserves and restores wildlife habitat such as wetlands, administers the Endangered Species Act, and helps foreign governments with their conservation efforts. It also oversees the Federal Aid program which distributes hundreds of millions of dollars in excise taxes on fishing and hunting equipment to state wildlife agencies. Comprehensive Conservation Plans provide long term guidance for management decisions; set forth goals, objectives, and strategies needed to accomplish refuge purposes; and, identify the Service’s best estimate of future needs. These plans detail program planning levels that are sometimes substantially above current budget allocations and, as such, are primarily for Service strategic planning and program prioritization purposes. The plans do not constitute
    [Show full text]
  • 1902-60 2 659.Pdf
    2020 ACTA ENTOMOLOGICA 60(2): 659–665 MUSEI NATIONALIS PRAGAE doi: 10.37520/aemnp.2020.047 ISSN 1804-6487 (online) – 0374-1036 (print) www.aemnp.eu RESEARCH PAPER Oblongiala zimbabwensis, a new assassin bug genus and species from Zimbabwe, with a key to the Afrotropical genera of Peiratinae (Hemiptera: Heteroptera: Reduviidae) Yingqi LIU1), Zhuo CHEN1), Michael D. WEBB2) & Wanzhi CAI1,*) 1) Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China; e-mails: [email protected]; [email protected]; [email protected] 2) Department of Life Sciences (Insects), The Natural History Museum, Cromwell Road, London SW7 5BD, UK; e-mail: [email protected] *) Corresponding author: e-mail: [email protected] Accepted: Abstract. Oblongiala zimbabwensis Liu & Cai gen. & sp. nov. is described from Zimbabwe 4th December 2020 and placed in the subfamily Peiratinae (Hemiptera: Reduviidae). Habitus, male genitalia Published online: and some diagnostic characters of the new species are illustrated. The affi nities of the new 12th December 2020 genus are discussed with a key provided to help distinguish peiratine genera distributed in the Afrotropical Region. Key words. Hemiptera, Heteroptera, Reduviidae, Peiratinae, assassin bug, taxonomy, key, new genus, new species, Zimbabwe, Afrotropical Region Zoobank: http://zoobank.org/urn:lsid:zoobank.org:pub:DA43D4C5-E9E0-4D69-A52F-EBC69725F8A0 © 2020 The Authors. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Licence. Introduction Afrotropical peiratine genera, including the redescriptions of Parapirates Villiers, 1959 (C 1995) and Rapites Containing more than 300 described species in 32 gene- Villiers, 1948 (C 1999) as well as the revisions ra, Peiratinae is the sixth largest subfamily in Reduviidae of Peirates Serville, 1831 (C M 1995, (M C 1990, C 2002, C C 1997), Pachysandalus Jeannel, 1916 (C- 2007, Z W 2011, M 2012, W 2002), Bekilya Villiers, 1949 and Hovacoris Villiers, et al.
    [Show full text]
  • A Comparison of the External Morphology and Functions of Labial Tip Sensilla in Semiaquatic Bugs (Hemiptera: Heteroptera: Gerromorpha)
    Eur. J. Entomol. 111(2): 275–297, 2014 doi: 10.14411/eje.2014.033 ISSN 1210-5759 (print), 1802-8829 (online) A comparison of the external morphology and functions of labial tip sensilla in semiaquatic bugs (Hemiptera: Heteroptera: Gerromorpha) 1 2 JOLANTA BROŻeK and HERBERT ZeTTeL 1 Department of Zoology, Faculty of Biology and environmental Protection, University of Silesia, Bankowa 9, PL 40-007 Katowice, Poland; e-mail: [email protected] 2 Natural History Museum, entomological Department, Burgring 7, 1010 Vienna, Austria; e-mail: [email protected] Key words. Heteroptera, Gerromorpha, labial tip sensilla, pattern, morphology, function, apomorphic characters Abstract. The present study provides new data on the morphology and distribution of the labial tip sensilla of 41 species of 20 gerro- morphan (sub)families (Heteroptera: Gerromorpha) obtained using a scanning electron microscope. There are eleven morphologically distinct types of sensilla on the tip of the labium: four types of basiconic uniporous sensilla, two types of plate sensilla, one type of peg uniporous sensilla, peg-in-pit sensilla, dome-shaped sensilla, placoid multiporous sensilla and elongated placoid multiporous sub- apical sensilla. Based on their external structure, it is likely that these sensilla are thermo-hygrosensitive, chemosensitive and mechano- chemosensitive. There are three different designs of sensilla in the Gerromorpha: the basic design occurs in Mesoveliidae and Hebridae; the intermediate one is typical of Hydrometridae and Hermatobatidae, and the most specialized design in Macroveliidae, Veliidae and Gerridae. No new synapomorphies for Gerromorpha were identified in terms of the labial tip sensilla, multi-peg structures and shape of the labial tip, but eleven new diagnostic characters are recorded for clades currently recognized in this infraorder.
    [Show full text]
  • Heteroptera, Reduviidae, Harpactorinae) *
    Redescription of theS. Grozeva Neotropical & genusN. Simov Aristathlus (Eds) (Heteroptera, 2008 Reduviidae, Harpactorinae) 85 ADVANCES IN HETEROPTERA RESEARCH Festschrift in Honour of 80th Anniversary of Michail Josifov, pp. 85-103. © Pensoft Publishers Sofi a–Moscow Redescription of the Neotropical genus Aristathlus (Heteroptera, Reduviidae, Harpactorinae) * D. Forero1, H.R. Gil-Santana2 & P.H. van Doesburg3 1 Division of Invertebrate Zoology (Entomology), American Museum of Natural History, New York, New York 10024–5192; and Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York 14853–2601, USA. E-mail: [email protected] 2 Departamento de Entomologia, Instituto Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, 21045-900, Brazil. E-mail: [email protected] 3 Nationaal Natuurhistorisch Museum, Postbus 9517, 2300 RA Leiden, Th e Netherlands. E-mail: [email protected] ABSTRACT Th e Neotropical genus Aristathlus Bergroth 1913, is redescribed. Digital dorsal habitus photographs for A. imperatorius Bergroth and A. regalis Bergroth, the two included species, are provided. Selected morphological structures are documented with scanning electron micrographs. Male genitalia are documented for the fi rst time with digital photomicrographs and line drawings. New distributional records in South America are given for species of Aristathlus. Keywords: Harpactorini, Hemiptera, male genitalia, Neotropical region, taxonomy. INTRODUCTION Reduviidae is the second largest family of Heteroptera with more than 6000 species described (Maldonado 1990). Despite not having an agreement about the suprageneric classifi cation of Reduviidae (e.g., Putshkov & Putshkov 1985; Maldonado 1990), * Th is paper is dedicated to Michail Josifov on the occasion of his 80th birthday. 86 D. Forero, H.R. Gil-Santana & P.H.
    [Show full text]
  • Synopsis of the Heteroptera Or True Bugs of the Galapagos Islands
    Synopsis of the Heteroptera or True Bugs of the Galapagos Islands ' 4k. RICHARD C. JROESCHNE,RD SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 407 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Archives of Agriculture and Environmental Science
    ISSN (Online) : 2456-6632 Archives of Agriculture and Environmental Science An International Journal Volume 4 | Issue 2 Agriculture and Environmental Science Academy www.aesacademy.org Scan to view it on the web Archives of Agriculture and Environmental Science (Abbreviation: Arch. Agr. Environ. Sci.) ISSN: 2456-6632 (Online) An International Research Journal of Agriculture and Environmental Sciences Volume 4 Number 2 2019 Abstracted/Indexed: The journal AAES is proud to be a registered member of the following leading abstracting/indexing agencies: Google Scholar, AGRIS-FAO, CrossRef, Informatics, jGate @ e-Shodh Sindhu, WorldCat Library, OpenAIRE, Zenodo ResearchShare, DataCite, Index Copernicus International, Root Indexing, Research Gate etc. All Rights Reserved © 2016-2019 Agriculture and Environmental Science Academy Disclaimer: No part of this booklet may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission of the publisher. However, all the articles published in this issue are open access articles which are distributed under the terms of the Creative Commons Attribution 4.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited For information regarding permission, write us [email protected]. An official publication of Agriculture and Environmental Science Academy 86, Gurubaksh Vihar (East) Kankhal Haridwar-249408 (Uttarakhand), India Website: https://www.aesacademy.org Email: [email protected] Phone: +91-98971-89197 Archives of Agriculture and Environmental Science (An International Research Journal) (Abbreviation: Arch. Agri. Environ. Sci.) Aims & Objectives: The journal is an official publication of Agriculture and Environmental Science Academy.
    [Show full text]