Analysis of Experimental Bone Tools from Swartkrans Cave, South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Experimental Bone Tools from Swartkrans Cave, South Africa Georgia State University ScholarWorks @ Georgia State University Anthropology Theses Department of Anthropology 5-10-2019 Analysis of experimental bone tools from Swartkrans Cave, South Africa Sara Gardner Georgia State University Follow this and additional works at: https://scholarworks.gsu.edu/anthro_theses Recommended Citation Gardner, Sara, "Analysis of experimental bone tools from Swartkrans Cave, South Africa." Thesis, Georgia State University, 2019. https://scholarworks.gsu.edu/anthro_theses/144 This Thesis is brought to you for free and open access by the Department of Anthropology at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Anthropology Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. ANALYSIS OF EXPERIMENTAL BONE TOOLS FROM SWARTKRANS CAVE, SOUTH AFRICA by SARA GARDNER Under the Direction of Frank L’Engle Williams, PhD ABSTRACT Early Pleistocene deposits from Swartkrans Cave, South Africa, yield the remains of Paranthropus robustus and ungulate bone fragments that were manipulated through short-term use. An experimental tool set (n=30) modeled after those from Swartkrans Cave was created using fresh ungulate long bones to demonstrate wear caused by extracting termites, tubers, or both resources, and molded after 30, 60, 90 and 120 minutes of use. Scratch length, breadth, and angle were recorded for all scratches < 80 µm in breadth. The highest standard deviation of scratch angle is seen in the tools used to dig both termites and tubers, whereas the lowest standard deviation is seen in the tools used for digging only termites. Statistical comparison of these results with original bone tool data from Swartkrans suggests that P. robustus, utilized the bone tools for termite harvesting. These results have implications for reconstructing the diet of early hominins in southern Africa. INDEX WORDS: Bone, Tool, Australopithecus, Evolution, Diet, Paleoanthropology, Tuber, Termite, Swartkrans, Hominin, Paranthropus, South Africa ANALYSIS OF EXPERIMENTAL BONE TOOLS FROM SWARTKRANS CAVE, SOUTH AFRICA by SARA GARDNER A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Arts in the College of Arts and Sciences Georgia State University 2019 Copyright by SARA GARDNER 2019 ANALYSIS OF EXPERIMENTAL BONE TOOLS FROM SWARTKRANS CAVE, SOUTH AFRICA by SARA GARDNER Committee Chair: Frank L’Engle Williams Committee: Jeffrey Glover Bethany Turner-Livermore Electronic Version Approved: Office of Graduate Studies College of Arts and Sciences Georgia State University May 2019 vi DEDICATION This thesis is dedicated to everyone who supported me at any capacity through this journey; to my partner, JG, who has been the best confidant and most reliable bird-person in my life; and to my best friends, Sadie and Erin, who kept me grounded with weekly long-distance phone calls for two years. And most of all, I wish to dedicate this thesis to my late Aunt Sue who wrapped me in her unconditional love and support from the moment I was born. I hope to continue making you proud, Aunt Sue, and finding happiness in the moments we had together. “Death leaves a heartache no one can heal, but love leaves a memory no one can steal.” vii ACKNOWLEDGEMENTS Thank you, Dr. Frank L’Engle Williams, for chairing my committee and introducing me to these bone tools which allowed me to move forward with this thesis; to Jeffrey Glover and Bethany Turner-Livermore, for guiding me through this elaborate process and helping me to become a better academic; to Jason Heaton and Travis Pickering, for creating the bone tool replicas on which I conducted hours and hours of analysis; and to Dr. Kathryn Kozaitis, who has been a shining light to the Anthropology Department at Georgia State. And thank you to my colleagues Alex Kim and Macie Orrand. Thank you for knowing where to guide me when I feel lost. viii TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................... VII LIST OF TABLES .......................................................................................................... XI LIST OF FIGURES ...................................................................................................... XII LIST OF ABBREVIATIONS ..................................................................................... XIII 1 INTRODUCTION ...................................................................................................... 1 1.1 Searching in South Africa................................................................................... 2 1.1.1 Swartkrans Cave ............................................................................................. 4 1.1.2 Dating of members .......................................................................................... 5 1.1.3 Discoveries at Swartkrans Cave ..................................................................... 2 1.2 A robust, human-like hominin ........................................................................... 2 1.3 Bone tools ............................................................................................................. 5 1.3.1 Osteodontokeratic culture ............................................................................... 5 1.4 Diet ........................................................................................................................ 9 1.4.1 Masticatory morphology ................................................................................. 9 1.4.2 Isotopic analysis ............................................................................................ 16 1.5 Expected results ................................................................................................. 19 2 EXPERIMENT ......................................................................................................... 21 2.1 Bob Brain’s hypothesis ..................................................................................... 22 ix 2.1.1 Hypothesis development ................................................................................ 22 2.1.2 Experiment .................................................................................................... 23 2.2 Lucinda Backwell’s experiment ....................................................................... 24 2.2.1 Backwell’s methods ....................................................................................... 26 2.2.2 Statistical analysis ......................................................................................... 28 2.3 Methods .............................................................................................................. 29 2.3.1 Replicas at Georgia State University ............................................................ 30 2.4 Null hypothesis .................................................................................................. 31 2.4.1 Initial observations ........................................................................................ 32 2.4.2 Microwear analysis ....................................................................................... 36 3 RESULTS .................................................................................................................. 38 3.1 Scratch angle data ............................................................................................. 39 3.1.1 Tuber tools ..................................................................................................... 40 3.1.2 Termite tools .................................................................................................. 42 3.1.3 Tuber and termite tools ................................................................................. 44 3.2 Analysis of scratch data .................................................................................... 45 3.3 Inclusion of original bone tool data ................................................................. 48 3.4 Discussion ........................................................................................................... 50 4 CONCLUSIONS ....................................................................................................... 52 REFERENCES ................................................................................................................ 55 x APPENDICES ................................................................................................................ 59 Appendix A: Tool data by time .................................................................................. 59 Appendix A.1 : 5 minutes ......................................................................................... 59 Appendix A.2 : 30 minutes ....................................................................................... 59 Appendix A.3 : 60 minutes ....................................................................................... 60 Appendix A.4 : 90 minutes ....................................................................................... 60 Appendix A.5 : 120 minutes ..................................................................................... 61 xi LIST OF TABLES Table 1 Key for Figure 2 ................................................................................................................. 1 Table 2 Experimental bone tool replicas .....................................................................................
Recommended publications
  • The Palaeontology of Haas Gat a Preliminary Account
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wits Institutional Repository on DSPACE Palaeont. afr., 28, 29-33 (1991) THE PALAEONTOLOGY OF HAAS GAT A PRELIMINARY ACCOUNT by A.W. Keyser Geological Survey, Private Bag X112, Pretoria 0001, Republic of South Africa ABSTRACT Haasgat is a cave on the steep western slope of the upper reach of the Witwatersrand Spruit, on the farm Leeuwenkloof 480 lQ, in the Brits District. It was heavily mined for flowstone (calcite). The cave contains a deposit offossiliferous cave silt and breccia that was partially removed by the miners and dumped on the steep slopes of the valley. The original entrance was probably a shallow inclined pit, leading into an upper chamber and then into the preserved depository. Both porcupines and carnivores served as accumulating agents for the bones. Fossils of the primates Parapapio and Cercopifhecoides, hyaena (Chasmaporthetes), fox, porcupines, several species of bovids and two species of Hyrax have been recovered. An insufficient number of fossils have been prepared to determine the age of the deposit with certainty. The deposit was provisionally thought to be of Pliocene age because of the occurrence of Parapapio. At this stage it would be unwise to correlate this occurrence with any other caves in this age range. It is concluded that the cave silts were deposited by flash floods, under a wetter climatic regime than that of the present. MAIN FEATURES AND ORIGIN OF THE DEPOSIT Haasgat is the remains of what once was a more extensive cave on the farm Leeuwenkloof 48 JQ in the Brits District.
    [Show full text]
  • Dental Pathology, Wear and Developmental Defects in South African Hominins
    Dental pathology, wear and developmental defects in South African hominins IAN EDWARD TOWLE A thesis submitted in partial fulfilment of the requirements of Liverpool John Moores University for the degree of Doctor of Philosophy June 2017 Abstract Studying different types of dental pathology, wear, and developmental defects can allow inferences into diet and behaviour in a variety of ways. In this project data on these different variables were collected for South African hominins and compared with extant primates. The species studied include Paranthropus robustus, Australopithecus africanus, A. sediba, early Homo, Homo naledi, baboons, chimpanzees and gorillas. Macroscopic examination of each specimen was performed, with a 10X hand lens used to verify certain pathologies. Variables recorded include antemortem chipping, enamel hypoplasia, caries, occlusal wear, tertiary dentine, abscesses, and periodontal disease. Clear differences in frequencies were found in the different South African hominin species. Homo naledi displays high rates of chipping, especially small fractures above molar wear facets, likely reflecting a diet containing high levels of contaminants. Other noteworthy results include the high levels of pitting enamel hypoplasia in P. robustus molars compared to other species, likely due to a species-specific enamel formation property or developmental disturbance. The low rates of chipping in P. robustus does not fit with this species being a hard food specialist. Instead, the wear best supports a diet of low-quality tough vegetation. Australopithecus africanus likely had a broad diet, with angled molar wear, lack of caries, and high chipping frequencies supporting this conclusion. Seven new carious lesions are described, two from H. naledi and five P.
    [Show full text]
  • The Partial Skeleton Stw 431 from Sterkfontein – Is It Time to Rethink the Plio-Pleistocene Hominin Diversity in South Africa?
    doie-pub 10.4436/JASS.98020 ahead of print JASs Reports doi: 10.4436/jass.89003 Journal of Anthropological Sciences Vol. 98 (2020), pp. 73-88 The partial skeleton StW 431 from Sterkfontein – Is it time to rethink the Plio-Pleistocene hominin diversity in South Africa? Gabriele A. Macho1, Cinzia Fornai 2, Christine Tardieu3, Philip Hopley4, Martin Haeusler5 & Michel Toussaint6 1) Earth and Planetary Science, Birkbeck, University of London, London WC1E 7HX, England; School of Archaeology, University of Oxford, Oxford OX1 3QY, England email: [email protected]; [email protected] 2) Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Anthropology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria 3) Muséum National d’Histoire Naturelle, 55 rue Buffon, 75005 Paris, France 4) Earth and Planetary Science, Birkbeck, University of London, London WC1E 7HX; Department of Earth Sciences, University College London, London, WC1E 6BT, England 5) Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland 6) retired palaeoanthropologist, Belgium email: [email protected] Summary - The discovery of the nearly complete Plio-Pleistocene skeleton StW 573 Australopithecus prometheus from Sterkfontein Member 2, South Africa, has intensified debates as to whether Sterkfontein Member 4 contains a hominin species other than Australopithecus africanus. For example, it has recently been suggested that the partial skeleton StW 431 should be removed from the A. africanus hypodigm and be placed into A. prometheus. Here we re-evaluate this latter proposition, using published information and new comparative data. Although both StW 573 and StW 431 are apparently comparable in their arboreal (i.e., climbing) and bipedal adaptations, they also show significant morphological differences.
    [Show full text]
  • Recent Origin of Low Trabecular Bone Density in Modern Humans
    Recent origin of low trabecular bone density in modern humans Habiba Chirchira,b,1, Tracy L. Kivellc,d, Christopher B. Ruffe, Jean-Jacques Hublind, Kristian J. Carlsonf,g, Bernhard Zipfelf, and Brian G. Richmonda,b,h,1 aCenter for the Advanced Study of Hominid Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052; bHuman Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560; cAnimal Postcranial Evolution Laboratory, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, United Kingdom; dDepartment of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany; eCenter for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, MD 21205; fEvolutionary Studies Institute, The University of the Witwatersrand, Braamfontein 2000 Johannesburg, South Africa; gDepartment of Anthropology, Indiana University, Bloomington, IN 47405; and hDivision of Anthropology, American Museum of Natural History, New York, NY 10024 Edited by Erik Trinkaus, Washington University, St. Louis, MO, and approved November 26, 2014 (received for review June 23, 2014) Humans are unique, compared with our closest living relatives humans relative to earlier hominins generally has been attributed (chimpanzees) and early fossil hominins, in having an enlarged to a decrease in daily physical activity via technological and body size and lower limb joint surfaces in combination with a rel- cultural innovations (6, 10, 13–15, 19–22). atively gracile skeleton (i.e., lower bone mass for our body size). There also is evidence that increased activity level and me- Some analyses have observed that in at least a few anatomical chanical loading increases trabecular bone mineral density within regions modern humans today appear to have relatively low tra- limb bones (ref.
    [Show full text]
  • Paranthropus Boisei: Fifty Years of Evidence and Analysis Bernard A
    Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences Fall 11-28-2007 Paranthropus boisei: Fifty Years of Evidence and Analysis Bernard A. Wood George Washington University Paul J. Constantino Biological Sciences, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Biological and Physical Anthropology Commons Recommended Citation Wood B and Constantino P. Paranthropus boisei: Fifty years of evidence and analysis. Yearbook of Physical Anthropology 50:106-132. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. YEARBOOK OF PHYSICAL ANTHROPOLOGY 50:106–132 (2007) Paranthropus boisei: Fifty Years of Evidence and Analysis Bernard Wood* and Paul Constantino Center for the Advanced Study of Hominid Paleobiology, George Washington University, Washington, DC 20052 KEY WORDS Paranthropus; boisei; aethiopicus; human evolution; Africa ABSTRACT Paranthropus boisei is a hominin taxon ers can trace the evolution of metric and nonmetric var- with a distinctive cranial and dental morphology. Its iables across hundreds of thousands of years. This pa- hypodigm has been recovered from sites with good per is a detailed1 review of half a century’s worth of fos- stratigraphic and chronological control, and for some sil evidence and analysis of P. boi se i and traces how morphological regions, such as the mandible and the both its evolutionary history and our understanding of mandibular dentition, the samples are not only rela- its evolutionary history have evolved during the past tively well dated, but they are, by paleontological 50 years.
    [Show full text]
  • Surface Model and Tomographic Archive of Fossil Primate and Other
    RESEARCH ARTICLE Surface Model and Tomographic Archive of Fossil Primate and Other Mammal Holotype and Paratype Specimens of the Ditsong National Museum of Natural History, Pretoria, South Africa Justin W. Adams1*, Angela Olah2,3, Matthew R. McCurry1,3, Stephany Potze4 a11111 1 Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia, 2 Department of Biological Sciences, Faculty of Sciences, Monash University, Clayton, Victoria, Australia, 3 Geosciences, Museum Victoria, Carlton, Victoria, Australia, 4 Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum of Natural History, Pretoria, South Africa * [email protected] OPEN ACCESS Citation: Adams JW, Olah A, McCurry MR, Potze S (2015) Surface Model and Tomographic Archive of Abstract Fossil Primate and Other Mammal Holotype and Nearly a century of paleontological excavation and analysis from the cave deposits of the Paratype Specimens of the Ditsong National Museum of Natural History, Pretoria, South Africa. PLoS ONE Cradle of Humankind UNESCO World Heritage Site in northeastern South Africa underlies 10(10): e0139800. doi:10.1371/journal.pone.0139800 much of our understanding of the evolutionary history of hominins, other primates and other Editor: Brenda A Wilson, University of Illinois at mammal lineages in the late Pliocene and early Pleistocene of Africa. As one of few desig- Urbana-Champaign, UNITED STATES nated fossil repositories, the Plio-Pleistocene Palaeontology Section of the Ditsong National Received: January 29, 2015 Museum of Natural History (DNMNH; the former Transvaal Museum) curates much of the mammalian faunas recovered from the fossil-rich deposits of major South African hominin- Accepted: September 17, 2015 bearing localities, including the holotype and paratype specimens of many primate, carni- Published: October 6, 2015 vore, and other mammal species (Orders Primates, Carnivora, Artiodactyla, Eulipotyphla, Copyright: © 2015 Adams et al.
    [Show full text]
  • Teaching Materials Associated with Module 1 Taung Child
    Teaching Materials Associated With Module 1 Taung Child: - Discovered in 1924 by Australian anatomy professor Raymond Dart - Among the first human fossils to be found in Africa - Dated to between 2.5 and 3 million years ago - Based on dental eruption patterns, Taung child’s age at death was ~3.3 years old - It is thought that an eagle killed Taung child based on what appear to be talon puncture marks on the skull Discovery of Taung Child: - Dart’s discovery: “Australian anatomy professor Raymond Dart was adjusting the collar of his dress suit in preparation for a friend’s wedding when a box, shipped from a limestone quarry near Taung, South Africa, arrived at the doorstep of his Johannesburg home in November 1924. Dart abandoned his collar to dig through the package’s contents—all the while ignoring the grumblings of his wife and the groom, who were anxious to begin the wedding ceremony. Inside the box, he found a fossilized mold of a brain and a matching child’s skull partially buried in stone. Dart quickly realized the significance of the finding, and by February 1925 had published an article in Nature identifying a new species: Australopithecus africanus. The 2.5-million-year-old “Taung Child” or “Taung Baby,” as Dart called it, was the first member of the Australopithecus genus discovered, and it challenged contemporary ideas about human evolution.” – The Scientist Magazine - This can be considered “armchair paleoanthropology” as Dart did not participate in the excavation of Taung child himself. Instead, he was sent the samples and completed the analysis from Johannesburg.
    [Show full text]
  • 1St Uj Palaeo-Research Symposium
    PROGRAMME 1ST UJ PALAEO-RESEARCH SYMPOSIUM in combination with the 2ND PALAEO-TRACKS SYMPOSIUM Monday 13 November 2017 Funded by the African Origins Platform of the National Research Foundation of South Africa Through the Palaeo-TrACKS Research Programme 08:30 Arrival, coffee & loading of Power Point presentations Freshly brewed tea and coffee with a selection of freshly baked croissants, Danish pastries & muffins 09:00 5 min Welcome Prof Alex Broadbent (Executive Dean of Humanities & Professor of Philosophy, University of Johannesburg) Introduction of Chairs Morning session: Prof Kammila Naidoo, Humanities Deputy Dean Research & Professor of Sociology Afternoon session: Prof Marlize Lombard, Director of the Centre for Anthropological Research 09:05 10 min Opening address Prof Angina Parekh (Deputy Vice Chancellor: Academic and Institutional Planning, University of Johannesburg) SESSION 1: INVITED KEYNOTE LECTURES 09:15 30 min The Rising Star fossil discoveries and human origins Prof John Hawks (Vilas-Borghesi Distinguished Achievement Professor of Anthropology, University of Wisconsin-Madison, USA) Abstract: Discoveries in the Dinaledi and Lesedi Chambers of the Rising Star cave system have transformed our knowledge of South African fossil hominins during the Middle Pleistocene. The research strategies undertaken in the Rising Star cave system provide a strong framework for inter- disciplinary work in palaeo-anthropology. This talk gives an overview of the Rising Star research project, focusing on the processes that have enabled effective
    [Show full text]
  • Paranthropus Through the Looking Glass COMMENTARY Bernard A
    COMMENTARY Paranthropus through the looking glass COMMENTARY Bernard A. Wooda,1 and David B. Pattersona,b Most research and public interest in human origins upper jaw fragment from Malema in Malawi is the focuses on taxa that are likely to be our ancestors. southernmost evidence. However, most of what we There must have been genetic continuity between know about P. boisei comes from fossils from Koobi modern humans and the common ancestor we share Fora on the eastern shore of Lake Turkana (4) and from with chimpanzees and bonobos, and we want to know sites in the Nachukui Formation on the western side of what each link in this chain looked like and how it be- the lake (Fig. 1A). haved. However, the clear evidence for taxic diversity The cranial and dental morphology of P.boisei is so in the human (aka hominin) clade means that we also distinctive its remains are relatively easy to identify (5). have close relatives who are not our ancestors (1). Two Unique features include its flat, wide, and deep face, papers in PNAS focus on the behavior and paleoenvi- flexed cranial base, large and thick lower jaw, and ronmental context of Paranthropus boisei, a distinctive small incisors and canines combined with massive and long-extinct nonancestral relative that lived along- chewing teeth. The surface area available for process- side our early Homo ancestors in eastern Africa between ing food is extended both forward—by having premo- just less than 3 Ma and just over 1 Ma. Both papers use lar teeth that look like molars—and backward—by the stable isotopes to track diet during a largely unknown, unusually large third molar tooth crowns, all of which but likely crucial, period in our evolutionary history.
    [Show full text]
  • Renewed Investigations at Taung; 90 Years After the Discovery of Australopithecus Africanus
    Renewed investigations at Taung; 90 years after the discovery of Australopithecus africanus Brian F. Kuhn1*, Andy I.R. Herries2,1, Gilbert J. Price3, Stephanie E. Baker1, Philip Hopley4,5, Colin Menter1 & Matthew V. Caruana1 1Centre for Anthropological Research (CfAR), House 10, Humanities Research Village, University of Johannesburg, Bunting Road Campus, Auckland Park, 2092, South Africa 2The Australian Archaeomagnetism Laboratory, Department of Archaeology and History, La Trobe University, Melbourne Campus, Bundoora, 3086, VIC, Australia 3School of Earth Sciences, University of Queensland, St Lucia, QLD, Australia 4Department of Earth and Planetary Sciences, Birkbeck, University of London, London, WC1E 7HX, U.K. 5Department of Earth Sciences, University College London, London, WC1E 6BT, U.K. Received 10 July 2015. Accepted 15 July 2016 2015 marked the 90th anniversary of the description of the first fossil of Australopithecus africanus, commonly known as the Taung Child, which was unearthed during blasting at the Buxton-Norlim Limeworks (referred to as the BNL) 15 km SE of the town of Taung, South Africa. Subsequently, this site has been recognized as a UNESCO World Heritage site on the basis of its importance to southern African palaeoanthropology. Some other sites such as Equus Cave and Black Earth Cave have also been investigated; but the latter not since the 1940s. These sites indicate that the complex of palaeontological and archaeological localities at the BNL preserve a time sequence spanning the Pliocene to the Holocene. The relationship of these various sites and how they fit into the sequence of formation of tufa, landscapes and caves at the limeworks have also not been investigated or discussed in detail since Peabody’s efforts in the 1940s.
    [Show full text]
  • Australopiths Wading? Homo Diving?
    Symposium: Water and Human Evolution, April 30th 1999, University Gent, Flanders, Belgium Proceedings Australopiths wading? Homo diving? http://allserv.rug.ac.be/~mvaneech/Symposium.html http://www.flash.net/~hydra9/marcaat.html Marc Verhaegen & Stephen Munro – 23 July 1999 Abstract Asian pongids (orangutans) and African hominids (gorillas, chimpanzees and humans) split 14-10 million years ago, possibly in the Middle East, or elsewhere in Eurasia, where the great ape fossils of 12-8 million years ago display pongid and/or hominid features. In any case, it is likely that the ancestors of the African apes, australopithecines and humans, lived on the Arabian-African continent 8-6 million years ago, when they split into gorillas and humans-chimpanzees. They could have frequently waded bipedally, like mangrove proboscis monkeys, in the mangrove forests between Eurasia and Africa, and partly fed on hard-shelled fruits and oysters like mangrove capuchin monkeys: thick enamel plus stone tool use is typically seen in capuchins, hominids and sea otters. The australopithecines might have entered the African inland along rivers and lakes. Their dentition suggests they ate mostly fruits, hard grass-like plants, and aquatic herbaceous vegetation (AHV). The fossil data indicates that the early australopithecines of 4-3 million years ago lived in waterside forests or woodlands; and their larger, robust relatives of 2-1 million years ago in generally more open milieus near marshes and reedbeds, where they could have waded bipedally. Some anthropologists believe the present-day African apes evolved from australopithecine-like ancestors, which would imply that knuckle-walking gorillas and chimpanzees evolved in parallel from wading- climbing ‘aquarborealists’.
    [Show full text]
  • Taung Child's Skull and Brain Not Human-Like in Expansion
    Taung Child's skull and brain not human- like in expansion 25 August 2014 The results have been published online in the journal Proceedings of the National Academy of Sciences (PNAS) on Monday, 25 August 2014. The Taung Child has historical and scientific importance in the fossil record as the first and best example of early hominin brain evolution, and theories have been put forward that it exhibits key cranial adaptations found in modern human infants and toddlers. To test the ancientness of this evolutionary adaptation, Dr Kristian J. Carlson, Senior Researcher from the Evolutionary Studies Institute at the University of the Witwatersrand, and colleagues, Professor Ralph L. Holloway from Columbia University and Douglas C. Broadfield from Florida Atlantic University, performed an in silico dissection of the Taung fossil using high- resolution computed tomography. Taung child – Facial forensic reconstruction by Arc- "A recent study has described the roughly 3 million- Team, Antrocon NPO, Cicero Moraes, University of Padua. Credit: Cicero Moraes/CC BY-SA 3.0 year-old fossil, thought to have belonged to a 3 to 4-year-old, as having a persistent metopic suture and open anterior fontanelle, two features that facilitate post-natal brain growth in human infants The Taung Child, South Africa's premier hominin when their disappearance is delayed," said discovered 90 years ago by Wits University Carlson. Professor Raymond Dart, never ceases to transform and evolve the search for our collective origins. By subjecting the skull of the first australopith discovered to the latest technologies in the Wits University Microfocus X-ray Computed Tomography (CT) facility, researchers are now casting doubt on theories that Australopithecus africanus shows the same cranial adaptations found in modern human infants and toddlers – in effect disproving current support for the idea that this early hominin shows infant brain development in the prefrontal region similar to that of modern humans.
    [Show full text]