Absorptive and Postabsorptive States in a Nutshell

Total Page:16

File Type:pdf, Size:1020Kb

Absorptive and Postabsorptive States in a Nutshell Absorptive and Postabsorptive States in a Nutshell Absorptive State As stated in class, following a meal carbohydrates are broken down to simple sugars by various hydrolases in the brush border of the intestine and are imported into intestinal enterocytes using a sodium symport (step “1” in Figure 1). Proteins are broken down to amino acids (AAs), which are imported into intestinal enterocytes also using a sodium symport. AAs and glucose then enter the bloodstream and are delivered to the liver via the hepatic portal vein (“2” in Figure 1). Lipids take a different route as most are packaged into chylomicrons (“3” in Figure 1), which enter lacteals and eventually enter the blood stream through the thoracic duct. Insulin Insulin Insulin GH Estrogens Insulin Androgens Insulin Insulin Insulin 2 2 1 3 Figure 1. Overview of the absorptive state (after Vander’s Human Physiology, McGraw Hill) As blood glucose and amino acid concentrations rise following the meal, insulin is released from beta cells of the pancreatic islets. Insulin is the major hormone, directing organs, tissues and cells in terms of what to do with the absorbed nutrients during the absorptive state. All tissues increase their uptake and utilization of AAs and glucose, glucose for energy in part to fuel protein synthesis of the imported AAs under the control of growth hormone (GH) and androgens/estrogens. The liver regulates the levels of glucose and amino acids in the blood arriving at the hepatic portal vein before the blood reaches the inferior vena cava, stabilizing glucose levels at or below 150 mg/dl following a meal. Hepatocytes convert the glucose to glycogen (glycogenesis) until liver stores are met (about 5% by weight) and also use the glucose for its energetic needs (glycolysis). If excess glucose remains in the blood, hepatocytes will convert it to triglycerides and export them in VLDLs, to be taken up by adipose tissues. The liver also regulates plasma amino acid levels (between 35 and 65 mg/dl), but not as precisely as it does glucose levels. Hepatocytes use the amino acids for protein synthesis or they may convert abundant ones to less abundant ones and export them for circulation to other tissues to be used for protein synthesis. In adipose tissue, insulin directs adipocytes to take up fatty acids and glycerol for triglyceride synthesis (lipogenesis). Glucose is taken up to fuel their synthesis and amino acids are imported as needed for protein synthesis. Postabsorptive State As the absorptive state comes to an end, enterocytes stop providing glucose to the hepatic portal circulation. Peripheral tissues continue to take up glucose at first until plasma glucose levels dip below about 80 mg/dl at which point hepatocytes begin to catabolize their glycogen stores (glycogenolysis) into glucose in response to the rising levels of glucagon (released by alpha cells of the pancreatic islets) and epinephrine, thus beginning the post-absorptive state (step “1” in Figure 2). After about four hours of liver glycogenolysis, liver stores start to become depleted and blood glucose levels begin to fall (to about 70 mg/dl). At this point the liver stabilizes glucose levels by undergoing gluconeogenesis (“2” in Figure 2) under the direction of glucocorticoids that have been released from the adrenal cortex. To make glucose, the liver takes up glycerol, lactate, and amino acids from the blood as well as fatty acids to power gluconeogenesis. The circulating fatty acids, and the glycerol used for gluconeogenesis, have been mobilized from adipose tissue under the direction of the increased circulating levels of glucocorticoids and epinephrine. As the duration of the post-absorptive state lengthens, the liver becomes more and more active in the import of amino acids for gluconeogenesis (from glucogenic AAs) and the synthesis of ketones (ketogenesis) (from ketogenic AAs). Figure 2. Overview of the post-absorptive state (after glucocorticoids Glucagon epinephrine epinephrineVander’s Human Physiology, McGraw Hill glucocorticoids epinephrine 5 3 During the beginning of the post-absorptive state, skeletal muscle obtains some of its energy from using its stored glycogen, undergoing glycogenolysis as directed by circulating glucagon and epinephrine. However, as circulating levels of fatty acids and ketones rise, Glucagon glucocorticoids these nutrients become 1 epinephrine increasingly important energy sources for skeletal muscle (“4” in Figure 2). Skeletal muscles continue to break down fatty acids, ketones and glycogen, with some of the pyruvate that is generated from glycogenolysis being 2 converted to 4 lactic acid, which diffuses out of the glucocorticoids muscle into circulation to be used by other tissues (e.g., by liver for gluconeogenesis or by peripheral tissues for energy) (“3” in Figure 2). If the post- glucocorticoids absorptive state is long enough that adipose tissue reserves begin to become depleted, cathespins begin to break down contractile proteins in skeletal 4 muscles for energy (starvation mode) (“5” in Figure 2). 6 In regard to peripheral tissues during the post-absorptive state, as circulating levels of lipids and ketones rise, peripheral tissues decrease their reliance on circulating glucose and increase their reliance on these compounds. Neural tissues continue to rely on glucose, that is until glucose levels are insufficient to meet their energetic demands, at which point they have no choice but to rely on circulating ketones (“6” in Figure 2). .
Recommended publications
  • Effects of Glucagon, Glycerol, and Glucagon Plus Glycerol On
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2011 Effects of glucagon, glycerol, and glucagon plus glycerol on gluconeogenesis, lipogenesis, and lipolysis in periparturient Holstein cows Nimer Mehyar Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Mehyar, Nimer, "Effects of glucagon, glycerol, and glucagon plus glycerol on gluconeogenesis, lipogenesis, and lipolysis in periparturient Holstein cows" (2011). Graduate Theses and Dissertations. 11923. https://lib.dr.iastate.edu/etd/11923 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Effects of glucagon, glycerol, and glucagon plus glycerol on gluconeogenesis, lipogenesis, and lipolysis in periparturient Holstein cows by Nimer Mehyar A thesis submitted to graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Biochemistry Program of Study Committee: Donald C. Beitz, Major Professor Ted W. Huiatt Kenneth J. Koehler Iowa State University Ames, Iowa 2011 Copyright Nimer Mehyar, 2011. All rights reserved ii To My Mother To Ghada Ali, Sarah, and Hassan
    [Show full text]
  • • Glycolysis • Gluconeogenesis • Glycogen Synthesis
    Carbohydrate Metabolism! Wichit Suthammarak – Department of Biochemistry, Faculty of Medicine Siriraj Hospital – Aug 1st and 4th, 2014! • Glycolysis • Gluconeogenesis • Glycogen synthesis • Glycogenolysis • Pentose phosphate pathway • Metabolism of other hexoses Carbohydrate Digestion! Digestive enzymes! Polysaccharides/complex carbohydrates Salivary glands Amylase Pancreas Oligosaccharides/dextrins Dextrinase Membrane-bound Microvilli Brush border Maltose Sucrose Lactose Maltase Sucrase Lactase ‘Disaccharidase’ 2 glucose 1 glucose 1 glucose 1 fructose 1 galactose Lactose Intolerance! Cause & Pathophysiology! Normal lactose digestion Lactose intolerance Lactose Lactose Lactose Glucose Small Intestine Lactase lactase X Galactose Bacteria 1 glucose Large Fermentation 1 galactose Intestine gases, organic acid, Normal stools osmotically Lactase deficiency! active molecules • Primary lactase deficiency: อาการ! genetic defect, การสราง lactase ลด ลงเมออายมากขน, พบมากทสด! ปวดทอง, ถายเหลว, คลนไสอาเจยนภาย • Secondary lactase deficiency: หลงจากรบประทานอาหารทม lactose acquired/transient เชน small bowel เปนปรมาณมาก เชนนม! injury, gastroenteritis, inflammatory bowel disease! Absorption of Hexoses! Site: duodenum! Intestinal lumen Enterocytes Membrane Transporter! Blood SGLT1: sodium-glucose transporter Na+" Na+" •! Presents at the apical membrane ! of enterocytes! SGLT1 Glucose" Glucose" •! Co-transports Na+ and glucose/! Galactose" Galactose" galactose! GLUT2 Fructose" Fructose" GLUT5 GLUT5 •! Transports fructose from the ! intestinal lumen into enterocytes!
    [Show full text]
  • Glycogenolysis and Pentose Phosphate Pathway
    E-content M.Sc. Zoology (Semester-II) Paper: CC7 Unit: 2.3 Topic: Glycogenolysis and Pentose Phosphate Pathway Dr. Gajendra Kumar Azad Assistant Professor Post Graduate Department of Zoology Patna University, Patna 1 Glycogenolysis Glycogen is a polymer of glucose and is a primary carbohydrate storage form in animals. The glycogen is composed of units of glucose linked by α(1, 4) and branches have α(1, 6) occurring approximately every 8-12 residues. Each glycogen molecule have a single reducing and multiple non-reducing ends. Figure: Glycogen structure Because glycogen contains so many glucoses, it acts like a battery backup for the body, providing a quick source of glucose when needed and providing a place to store excess glucose when glucose concentrations in the blood rise. 2 Breakdown of glycogen (glycogenolysis) involves following steps All steps of glycogenolysis occurs in cytosol Step 1: Release of glucose 1-phosphate from glycogen Step 2: Rearrangement of the remaining glycogen molecule Step 3: Conversion of glucose 1-phosphate to glucose 6-phosphate Glucose 6-phosphate can have following fates: 1) broken down by glycolysis 2) converted to glucose by gluconeogenesis, 3) oxidized in the pentose phosphate pathway. Phosphoglucomutase glucose 1-phosphate glucose 6-phosphate Figure: Steps of glycogenolysis 3 Step 1: Release of glucose 1-phosphate from glycogen Glycogen Phosphorylase catalyses breakdown of glycogen into glucose-1- phosphate. Note that the phosphate does not come from ATP. Since ATP is not used to put phosphate on glucose-1-phosphate, thus this reaction saves energy. Glycogen phosphorylase The reaction that produces glucose-1-phosphate from glycogen is a phosphorolysis, not a hydrolysis reaction.
    [Show full text]
  • Glucose and Lipid Metabolism in Insulin Resistance
    Umeå University Medical Dissertations New Series No 817 * ISSN 0346-6612 * ISBN 91-7305-359-7 ___________________________________________________________________________ From the Department of Public Health and Clinical Medicine, Medicine, Umeå University, S-901 85 Umeå, Sweden Glucose and lipid metabolism in insulin resistance – an experimental study in fat cells Jonas Burén Umeå 2002 ISBN 91-7305-359-7 © Copyright: Jonas Burén Department of Public Health and Clinical Medicine, Medicine, Umeå University, S-901 85 Umeå, Sweden Printed in Sweden by Landstingstryckeriet, Umeå, 2002 2 CONTENTS ABSTRACT 4 LIST OF PAPERS 5 ABBREVIATIONS 6 INTRODUCTION 7 Insulin resistance 8 The role of insulin in glucose and lipid turnover 8 Insulin signalling 10 Cellular glucose transport 13 Cellular insulin resistance 14 Lipid metabolism and the adipose tissue in insulin resistance 16 Human insulin resistance and type 2 diabetes 18 Neuroendocrine and humoral factors causing insulin resistance in vivo 19 AIMS 25 METHODS 26 Animals (study I, II) 26 Patients and healthy volunteers (study III, IV) 26 Cell preparation 26 Cell culture 27 Glucose uptake 27 Insulin binding 28 Lipolysis 28 Western blot analysis of proteins in cell lysates and membranes 28 PKB phosphorylation 29 Lipoprotein lipase (LPL) and hepatic lipase (HL) 29 Blood chemistry 30 Insulin sensitivity in vivo 30 Standardized meal test 30 Statistical analyses 31 SUMMARY OF RESULTS 32 Paper I 32 Paper II 33 Paper III 33 Paper IV 35 DISCUSSION 36 Effects of glucocorticoids 36 Effects of elevated glucose and insulin concentrations 37 In vivo insulin resistance in type 2 diabetes – is glucotoxicity critical? 40 Postprandial blood lipids and lipoprotein lipase 42 SUMMARY 44 CONCLUDING REMARKS 45 POPULÄRVETENSKAPLIG SAMMANFATTNING PÅ SVENSKA 46 ACKNOWLEDGEMENTS 49 REFERENCES 50 PAPERS I-IV 3 ABSTRACT Type 2 diabetes is usually caused by a combination of pancreatic β-cell failure and insulin resistance in target tissues like liver, muscle and fat.
    [Show full text]
  • Fatty Acid Synthesis ANSC/NUTR 618 Lipids & Lipid Metabolism Fatty Acid Synthesis I
    Handout 5 Fatty Acid Synthesis ANSC/NUTR 618 Lipids & Lipid Metabolism Fatty Acid Synthesis I. Overall concepts A. Definitions 1. De novo synthesis = synthesis from non-fatty acid precursors a. Carbohydrate precursors (glucose and lactate) 1) De novo fatty acid synthesis uses glucose absorbed from the diet rather than glucose synthesized by the liver. 2) De novo fatty acid synthesis uses lactate derived primarily from glucose metabolism in muscle and red blood cells. b. Amino acid precursors (e.g., alanine, branched-chain amino acids) 1) De novo fatty acid synthesis from amino acids is especially important during times of excess protein intake. 2) Use of amino acids for fatty acid synthesis may result in nitrogen overload (e.g., the Atkins diet). c. Short-chain organic acids (e.g., acetate, butyrate, and propionate) 1) The rumen of ruminants is a major site of short-chain fatty acid synthesis. 2) Only small amounts of acetate circulate in non-ruminants. 2. Lipogenesis = fatty acid or triacylglycerol synthesis a. From preformed fatty acids (from diet or de novo fatty acid synthesis) b. Requires source of carbon (from glucose or lactate) for glycerol backbone 3T3-L1 Preadipocytes at confluence. No lipid 3T3-L1 Adipocytes after 6 days of filling has yet occurred. differentiation. Dark spots are lipid droplets. 1 Handout 5 Fatty Acid Synthesis B. Tissue sites of de novo fatty acid biosynthesis 1. Liver. In birds, fish, humans, and rodents (approx. 50% of fatty acid biosynthesis). 2. Adipose tissue. All livestock species synthesize fatty acids in adipose tissue; rodents synthesize about 50% of their fatty acids in adipose tissue.
    [Show full text]
  • Fructose and Mannose in Inborn Errors of Metabolism and Cancer
    H OH metabolites OH Review Fructose and Mannose in Inborn Errors of Metabolism and Cancer Elizabeth L. Lieu †, Neil Kelekar †, Pratibha Bhalla † and Jiyeon Kim * Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607, USA; [email protected] (E.L.L.); [email protected] (N.K.); [email protected] (P.B.) * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: History suggests that tasteful properties of sugar have been domesticated as far back as 8000 BCE. With origins in New Guinea, the cultivation of sugar quickly spread over centuries of conquest and trade. The product, which quickly integrated into common foods and onto kitchen tables, is sucrose, which is made up of glucose and fructose dimers. While sugar is commonly associated with flavor, there is a myriad of biochemical properties that explain how sugars as biological molecules function in physiological contexts. Substantial research and reviews have been done on the role of glucose in disease. This review aims to describe the role of its isomers, fructose and mannose, in the context of inborn errors of metabolism and other metabolic diseases, such as cancer. While structurally similar, fructose and mannose give rise to very differing biochemical properties and understanding these differences will guide the development of more effective therapies for metabolic disease. We will discuss pathophysiology linked to perturbations in fructose and mannose metabolism, diagnostic tools, and treatment options of the diseases. Keywords: fructose and mannose; inborn errors of metabolism; cancer Citation: Lieu, E.L.; Kelekar, N.; Bhalla, P.; Kim, J. Fructose and Mannose in Inborn Errors of Metabolism and Cancer.
    [Show full text]
  • Carbohydrate Metabolism I & II Central Aspects of Macronutrient
    Carbohydrate Metabolism I & II - General concepts of glucose metabolism - - Glycolysis - -TCA - FScN4621W Xiaoli Chen, PhD Food Science and Nutrition University of Minnesota 1 Central Aspects of Macronutrient Metabolism Macronutrients (carbohydrate, lipid, protein) Catabolic metabolism Oxidation Metabolites (smaller molecules) Anabolic metabolism Energy (ATP) Synthesis of cellular components or energy stores Chemical Reactions Cellular Activities 2 Central Aspects of Macronutrient Metabolism High-energy compounds ◦ ATP (adenosine triphosphate) ◦ NADPH (reduced nicotinamide adenine dinucleotide phosphate) ◦ NADH (reduced nicotinamide adenine dinucleotide) ◦ FADH2 (reduced flavin adenine dinucleotide) Oxidation of macronutrients NADH NADPH FADH2 ATP and NADPH are required ATP for anabolic metabolism 3 1 Unit I General Concepts of Glucose Metabolism Metabolic pathways of glucose Glucose homeostasis Glucose transport in tissues Glucose metabolism in specific tissues 4 Overview Digestion, Absorption and Transport of Carbs ◦ Final products of digestion: ________, ________, and ________ Cellular fuels ◦ Glucose, fatty acids, ketone bodies, amino acids, other gluoconeogenic precursors (glycerol, lactate, propionate) Glucose: primary metabolic fuel in humans ◦ Provide 32% to 70% of the energy in diet of American population All tissues are able to use glucose as energy fuels ◦ Glucose has different metabolic fate in different tissues Physiological states determine glucose metabolic fate ◦ Fed/fasted – glucose is metabolized through distinct
    [Show full text]
  • Insulin Controls Triacylglycerol Synthesis Through Control of Glycerol Metabolism and Despite Increased Lipogenesis
    nutrients Article Insulin Controls Triacylglycerol Synthesis through Control of Glycerol Metabolism and Despite Increased Lipogenesis Ana Cecilia Ho-Palma 1,2 , Pau Toro 1, Floriana Rotondo 1, María del Mar Romero 1,3,4, Marià Alemany 1,3,4, Xavier Remesar 1,3,4 and José Antonio Fernández-López 1,3,4,* 1 Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; [email protected] (A.C.H.-P.); [email protected] (P.T.); fl[email protected] (F.R.); [email protected] (M.d.M.R.); [email protected] (M.A.); [email protected] (X.R.) 2 Faculty of Medicine, Universidad Nacional del Centro del Perú, 12006 Huancayo, Perú 3 Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain 4 Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBER-OBN), 08028 Barcelona, Spain * Correspondence: [email protected]; Tel: +34-93-4021546 Received: 7 February 2019; Accepted: 22 February 2019; Published: 28 February 2019 Abstract: Under normoxic conditions, adipocytes in primary culture convert huge amounts of glucose to lactate and glycerol. This “wasting” of glucose may help to diminish hyperglycemia. Given the importance of insulin in the metabolism, we have studied how it affects adipocyte response to varying glucose levels, and whether the high basal conversion of glucose to 3-carbon fragments is affected by insulin. Rat fat cells were incubated for 24 h in the presence or absence of 175 nM insulin and 3.5, 7, or 14 mM glucose; half of the wells contained 14C-glucose. We analyzed glucose label fate, medium metabolites, and the expression of key genes controlling glucose and lipid metabolism.
    [Show full text]
  • Regulation of Muscle Glycogen Metabolism During Exercise: Implications for Endurance Performance and Training Adaptations
    nutrients Review Regulation of Muscle Glycogen Metabolism during Exercise: Implications for Endurance Performance and Training Adaptations Mark A. Hearris, Kelly M. Hammond, J. Marc Fell and James P. Morton * Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; [email protected] (M.A.H.); [email protected] (K.M.H.); [email protected] (J.M.F.) * Correspondence: [email protected]; Tel.: +44-151-904-6233 Received: 9 January 2018; Accepted: 27 February 2018; Published: 2 March 2018 Abstract: Since the introduction of the muscle biopsy technique in the late 1960s, our understanding of the regulation of muscle glycogen storage and metabolism has advanced considerably. Muscle glycogenolysis and rates of carbohydrate (CHO) oxidation are affected by factors such as exercise intensity, duration, training status and substrate availability. Such changes to the global exercise stimulus exert regulatory effects on key enzymes and transport proteins via both hormonal control and local allosteric regulation. Given the well-documented effects of high CHO availability on promoting exercise performance, elite endurance athletes are typically advised to ensure high CHO availability before, during and after high-intensity training sessions or competition. Nonetheless, in recognition that the glycogen granule is more than a simple fuel store, it is now also accepted that glycogen is a potent regulator of the molecular cell signaling pathways that regulate the oxidative phenotype. Accordingly, the concept of deliberately training with low CHO availability has now gained increased popularity amongst athletic circles. In this review, we present an overview of the regulatory control of CHO metabolism during exercise (with a specific emphasis on muscle glycogen utilization) in order to discuss the effects of both high and low CHO availability on modulating exercise performance and training adaptations, respectively.
    [Show full text]
  • Chem331 Glycogen Metabolism
    Glycogen metabolism Glycogen review - 1,4 and 1,6 α-glycosidic links ~ every 10 sugars are branched - open helix with many non-reducing ends. Effective storage of glucose Glucose storage Liver glycogen 4.0% 72 g Muscle glycogen 0.7% 245 g Blood Glucose 0.1% 10 g Large amount of water associated with glycogen - 0.5% of total weight Glycogen stored in granules in cytosol w/proteins for synthesis, degradation and control There are very different means of control of glycogen metabolism between liver and muscle Glycogen biosynthetic and degradative cycle Two different pathways - which do not share enzymes like glycolysis and gluconeogenesis glucose -> glycogen glycogenesis - biosynthetic glycogen -> glucose 1-P glycogenolysis - breakdown Evidence for two paths - Patients lacking phosphorylase can still synthesize glycogen - hormonal regulation of both directions Glycogenolysis (glycogen breakdown)- Glycogen Phosphorylase glycogen (n) + Pi -> glucose 1-p + glycogen (n-1) • Enzyme binds and cleaves glycogen into monomers at the end of the polymer (reducing ends of glycogen) • Dimmer interacting at the N-terminus. • rate limiting - controlled step in glycogen breakdown • glycogen phosphorylase - cleavage of 1,4 α glycosidic bond by Pi NOT H2O • Energy of phosphorolysis vs. hydrolysis -low standard state free energy change -transfer potential -driven by Pi concentration -Hydrolysis would require additional step s/ cost of ATP - Think of the difference between adding a phosphate group with hydrolysis • phosphorylation locks glucose in cell (imp. for muscle) • Phosphorylase binds glycogen at storage site and the catalytic site is 4 to 5 glucose residues away from the catalytic site. • Phosphorylase removes 1 residue at a time from glycogen until 4 glucose residues away on either side of 1,6 branch point – stericaly hindered by glycogen storage site • Cleaves without releasing at storage site • general acid/base catalysts • Inorganic phosphate attacks the terminal glucose residue passing through an oxonium ion intermediate.
    [Show full text]
  • Effects of Free Fatty Acids Per Se on Glucose Production, Gluconeogenesis, and Glycogenolysis Peter Staehr,1 Ole Hother-Nielsen,1 Bernard R
    Effects of Free Fatty Acids Per Se on Glucose Production, Gluconeogenesis, and Glycogenolysis Peter Staehr,1 Ole Hother-Nielsen,1 Bernard R. Landau,2 Visvanathan Chandramouli,2 Jens Juul Holst,3 and Henning Beck-Nielsen1 Insulin-independent effects of a physiological increase thermore, in clamp studies of type 2 diabetic patients, in free fatty acid (FFA) levels on fasting glucose pro- impaired suppression of glucose production by insulin duction, gluconeogenesis, and glycogenolysis were appears related to impaired suppression of plasma FFA 2 assessed by administering [6,6- H2]-glucose and deuteri- levels (6). However, in vivo effects of FFA on glucose 2 ated water ( H2O) in 12 type 1 diabetic patients, during production, gluconeogenesis, and glycogenolysis in the 6-h infusions of either saline or a lipid emulsion. Insulin fasted state are less clear. ؍ was either fully replaced (euglycemic group, n 6), or The in vivo studies are complicated by the fact that During .(6 ؍ underreplaced (hyperglycemic group, n saline infusions, plasma FFA levels remained un- FFAs are potent insulin secretagogues (1). Since glycogen- changed. Glucose concentrations decreased from 6.7 ؎ olysis, in particular, is very sensitive to insulin (7,8), even to 5.3 ؎ 0.4 mmol/l and 11.9 ؎ 1.0 to 10.5 ؎ 1.0 small changes in its levels may bias studies on the effects 0.4 mmol/l in the euglycemic and hyperglycemic group, re- of FFAs. To assess the direct effects of FFA per se on these spectively. Accordingly, glucose production declined pathways, endogenous insulin secretion has therefore ؊ ؊ from 84 ؎ 5to63؎ 5mg⅐ m 2 ⅐ min 1 and from 84 ؎ 5 been inhibited in a number of studies by administering ؊2 ؊1 to 68 ؎ 4mg⅐ m ⅐ min , due to declining rates of somatostatin (SRIF) (9–14), but conclusions still differ glycogenolysis but unaltered rates of gluconeogenesis.
    [Show full text]
  • Metabolism of Sugars: a Window to the Regulation of Glucose and Lipid Homeostasis by Splanchnic Organs
    Clinical Nutrition 40 (2021) 1691e1698 Contents lists available at ScienceDirect Clinical Nutrition journal homepage: http://www.elsevier.com/locate/clnu Narrative Review Metabolism of sugars: A window to the regulation of glucose and lipid homeostasis by splanchnic organs Luc Tappy Faculty of Biology and Medicine, University of Lausanne, Switzerland, Ch. d’Au Bosson 7, CH-1053 Cugy, Switzerland article info summary Article history: Background &aims: Dietary sugars are absorbed in the hepatic portal circulation as glucose, fructose, or Received 14 September 2020 galactose. The gut and liver are required to process fructose and galactose into glucose, lactate, and fatty Accepted 16 December 2020 acids. A high sugar intake may favor the development of cardio-metabolic diseases by inducing Insulin resistance and increased concentrations of triglyceride-rich lipoproteins. Keywords: Methods: A narrative review of the literature regarding the metabolic effects of fructose-containing Fructose sugars. Gluconeogenesis Results: Sugars' metabolic effects differ from those of starch mainly due to the fructose component of de novo lipogenesis Intrahepatic fat concentration sucrose. Fructose is metabolized in a set of fructolytic cells, which comprise small bowel enterocytes, Enterocyte hepatocytes, and kidney proximal tubule cells. Compared to glucose, fructose is readily metabolized in an Hepatocyte insulin-independent way, even in subjects with diabetes mellitus, and produces minor increases in glycemia. It can be efficiently used for energy production, including during exercise. Unlike commonly thought, fructose when ingested in small amounts is mainly metabolized to glucose and organic acids in the gut, and this organ may thus shield the liver from potentially deleterious effects. Conclusions: The metabolic functions of splanchnic organs must be performed with homeostatic con- straints to avoid exaggerated blood glucose and lipid concentrations, and thus to prevent cellular damages leading to non-communicable diseases.
    [Show full text]