Stephanie Dupuy Phd Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Stephanie Dupuy Phd Thesis N-HETEROCYCLIC CARBENE GOLD HYDROXIDE COMPLEXES AS BOND ACTIVATION REAGENTS Stéphanie Dupuy A Thesis Submitted for the Degree of PhD at the University of St Andrews 2014 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/6613 This item is protected by original copyright N-Heterocyclic Carbene Gold Hydroxide Complexes as Bond Activation Reagents Stéphanie Dupuy This thesis is submitted in partial fulfilment for the degree of PhD at the University of St Andrews 18/08/2014 i Candidate’s declarations I, Stéphanie Dupuy, hereby certify that this thesis, which is approximately 65,000 words in length, has been written by me, and that it is the record of work carried out by me, or principally by myself in collaboration with others as acknowledged, and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in September 2010 and as a candidate for the degree of PhD in September 2011; the higher study for which this is a record was carried out in the University of St Andrews between 2010 and 2014. Date …………….. signature of candidate ………………. ii iii Supervisor’s declaration I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of PhD in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree. Date …………….. signature of supervisor ………………. iv v Permission for publication In submitting this thesis to the University of St Andrews I understand that I am giving permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby. I also understand that the title and the abstract will be published, and that a copy of the work may be made and supplied to any bona fide library or research worker, that my thesis will be electronically accessible for personal or research use unless exempt by award of an embargo as requested below, and that the library has the right to migrate my thesis into new electronic forms as required to ensure continued access to the thesis. I have obtained any third-party copyright permissions that may be required in order to allow such access and migration, or have requested the appropriate embargo below. The following is an agreed request by candidate and supervisor regarding the publication of this thesis: -Access to printed copy and electronic publication of this thesis through the University of St Andrews. Date ……………… signature of candidate ………………. signature of supervisor ……………… vi vii Dedicated to my grandfather Dediée à mon grand-père “Survivre à une souffrance intolérable, c’est tolérer l’intolérable” Robert Sabatier viii ix Acknowledgments These past 4 years as PhD student have been quite a journey. I have learnt a lot and owe a great deal of thanks to many people that supported me during this time and made me become a better, grown and mature person. First and foremost I want to give a wide thank to all the people that have come to my life over these years and that have made me the person that I am today. I would have certainly not make it until the end of this adventure without you. I would like to thank Prof. Steven P. Nolan for giving me the opportunity to do my doctoral studies in his research group. You have always pushed me to achieve things and I won’t hide that it has been hard and painful sometimes but that at the end I must reckon that it has always made me outdo myself and got the best out of me. Thank you also for the huge freedom that you gave me in the lab and that allowed me to enrich greatly my knowledge. Now comes the time to thank some outstanding postdocs that came by in our group and never said no to a young graduate that was seeking advice, explanations or when, at the end bombarding them with chapter reading. In particular, Dr Anthony Chartoire (Beaaaavverrr) and Dr Anthony Martin (Rrrrrouuu rrrrououu Pidgeon) that have made our lab a fantastic place to work in with their everyday animal jokes that always brought a big laugh to me even in bad days. You have both provided me with lots of guidance and tried hard to insert some knowledge into my stubborn head and I am forever grateful. Beaver thank you also for not getting tired to listen to my eternal “I’m jinxed anyway I should stop chemistry and do pizza deliveries”. A huge thank to Dr David Nelson or “Jacques Cousteau” or “Fluffy Pony” for your everyday good mood, your invaluable time in explaining things, your patience and your caring as well as unforgettable moment during our organometallic seminars. You are a true great chemist (“Parlez-vous le Francais? Ehmmm no”). I would like to thank the past and current members of the lab that I had the privilege to meet for their support, encouragement and that have made our work area an amazing place to work in. Special thank to Dr Pierrick Nun who supervised me when I arrived and succeeded in coping with my stubbornness, Dr Jose Fernandez Salas (Pepito), Dr Sebastien Meires (my workalcoholic night colleague), Dr Fady Nahra (thanks for the countless dancing time attempts in and outside the lab!), Frederic Izquierdo (Maurrrrrriiiice, thanks for the food rationing during these last two years). Thanks a lot guys! During those 4 years, I have met countless people and some of them have come to be very close friends. I wish to thank first Adrian Gomez-Suarez for being a great colleague to work with, his everyday good mood, his Spanish personality that will leave me some very good memories. I could always count on you during those 4 years and I want tot thank you for that x Acknowledgments (and obviously as well for not getting desperate with my incapacity to handle computer software). Next, a great praise to another “Spaniard”: my tiny partner Dr Alba Collado-Martinez or Mlle petit penguin. You have become one of my closest friends here. I will never forget your continued support in driving me to be a better chemist and person, your guidance and listening. I would not have got out of this thesis in one piece without you la signorita pinguinita. You have been the shoulder I needed toward the end of that PhD. My sanity is intact thanks to you. Thank you for sharing not only your knowledge but your healthy way of living, your organization and trying to pass them to me (even of it seems I am a hopeless cause...). You have taken so much care and become a surrogate “mommy” to me. You especially deserve credit for putting up with me at bad days and some nights out (“I love mojitos”). For just being you, thank you. You are so tiny ☺ To not only one of our best lab technician but also a personal friend, I want to thank Julie Mayen. Ma poule, merci d’être venue et revenue en Ecosse. Tu fais partie des gens qui m’ont donné la force de finir cette thèse et qui m’ont soutenu le plus. Je n’y serais jamais arrivée sans toi. Ne perds jamais cette bonne humeur et positive attitude qui te definissent, they are golden. Je garde a tout jamais avec moi ton fameux dicton “Ca va aller”. Garde moi une petite place sur ton canap’ a Nice! To my family, thank you for your support during all these years and always believing in me. I could never repay all you have done for me. Thank you for your love. Last but not least, I would like to express my deepest gratitude to my best friend Aurore. We have come a long way since we met 20 years ago and though we lost track of sight of each other for some years, we finally reunited again and I’m thankful for that everyday. It is even too difficult to find words to express my gratefulness to you. You are my rock and my shoulder. Your strength and your faith in me has always encouraged and motivated me to advance further and not give up. You are my family and no matter the distance or twist in our lives I will never again let our friendship get lost. A final thank to my fellow 4-year PhD colleagues Simone Manzini, Scott Patrick, Byron Truscott and Adrian Gomez-Suarez. It has been a long road since we all started together 4 years ago. We have matured, laughed and suffered altogether and we could always count on each other. You are amazing people and I am glad to have shared this journey with you guys. We did it! xi Author Contributions The majority of the work reported in this thesis has been published as peer-reviewed journal articles as described below. Unless stated otherwise, the work reported is all my own work and I was the primary researcher on all projects and prepared all published manuscripts: Chapter 2: - Adapted with permission from “The Role of Metal Hydroxide Complexes in Late Transition Metal-Mediated Transmetalation Reaction: The Case of Gold”, Dupuy, S.; Crawford, L.; Bühl, M.; Slawin, A. M. Z.; Nolan, S. P., Adv. Synth. Catal. 2012, 354, 2380.
Recommended publications
  • FULL PAPER (CF3)3Au As a Highly Acidic Organogold(III) Fragment
    FULL PAPER (CF3)3Au as a Highly Acidic Organogold(III) Fragment Alberto Pérez-Bitrián,[a] Miguel Baya,[a] José M. Casas,[a] Larry R. Falvello,[b] Antonio Martín,[a] and Babil Menjón*[a] Dedicated to Professor Juan Forniés on the occasion of his 70th birthday Abstract: The Lewis acidity of perfluorinated trimethylgold, (CF3)3Au, was soon realized that fluorination of the organic group R has been assessed by theoretical and experimental methods. It has resulted in enhancement of the Lewis acidity in the F [9–11] been found that the (CF3)3Au unit is much more acidic than its non- corresponding R 3B derivatives. In fact, the most widely fluorinated homologue (CH3)3Au, probably setting the upper limit in used borane is by far (C6F5)3B, which exhibits a considerable [12] the acidity scale for any neutral R3Au organogold(III) species. The Lewis acidity. The perfluoromethyl-derivative (CF3)3B would significant acidity increase upon fluorination is in line with the CF3 be expected to exhibit even stronger Lewis acidity. Although this group being in fact more electron-widthdrawing than CH3. The compound has not yet been isolated as such, its derivatives [13] solvate (CF3)3Au·OEt2 (1) is presented as a convenient synthon of (CF3)3B·L and, especially the singular carbonyl compound [14] the unsaturated, 14-electron species (CF3)3Au. Thus, the weakly (CF3)3BCO, evidence a greatly enhanced acidity of the [15,16] coordinated ether molecule in 1 is readily replaced by a variety of (CF3)3B moiety. neutral ligands affording a wide range of (CF3)3AuL compounds, The trifluoromethyl group, CF3, exhibits properties departing which have been isolated and conveniently characterized.
    [Show full text]
  • Organogold Chemistry: I Structure and Synthesis
    Organogold Chemistry: I Structure and Synthesis R V Parish Department a/Chemistry, UMIST, Manchester, M60 1QD, UK Organogold chemistry is enjoying a resurgence of interest as useful applications, largely physical or medicinal, are being found. There is also a wide range of novel molecules, some with curious structures. This article reviews the structures and syntheses of recently discovered gold compounds. A later article will describe their reactions and applications. Organogold derivatives have been known for almost example, reference 2), and deals with the preparation, 100 years. Many fascinating compounds and reactions structures, properties and applications of some of the have been discovered but, until recently, they have more interesting organogold systems; the examples found little practical application. However, the last ten given are drawn principally from those reported during to fifteen years have seen the development of new the last ten years (a more comprehensive treatment is materials with potential applications in non-linear found in reference 3). The intention is to exemplify optics, conjugated linear polymers (potential molecular rather than to be comprehensive, and no mention at all wires), liquid crystals, chemical vapour deposition and is made of cluster compounds. Complexes in which anti-tumour agents (see Box 1). On the other hand, in carbonyl, cyano, or isonitrile ligands provide the only marked contrast to the neighbouring noble metals, Au-C bonds are also ignored. For convenience, the compounds of gold have been very little used in review is divided into two parts: this part deals with homogeneous catalysis (but see reference 1). This the wide variety of organic ligands now available and review attempts to update previous treatments (see, for the structure and synthesis of the gold compounds derived from them; the second part treats the reactions and applications of these compounds.
    [Show full text]
  • Organogold Chemistry: Iiiapplications
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Organogold Chemistry: IIIApplications R V Parish Department of Chemistry, UMIST, PO Box 88, Manchester M60 1QD, UK Gold forms a wide variety of organic derivatives, whose preparation, structures and reactions were reviewed in Parts I and II. Here some applications of the compounds are discussed, in the areas of organic synthesis, catalysis, liquid crystals, MOCVD, luminescence, and chemotherapy. Previous articles in this series have reviewed the diverse types of known organogold compounds (1) and the varied reactions which they undergo (2). Compared to those of other precious metals, compounds of gold feature in rather few applications, although interest has increased over recent years. In this contribution, these applications are reviewed, together with some suggestions for further developments. ORGANIC SYNTHESIS Some organogold compounds undergo reactions which give organic products which are useful or which cannot readily be obtained in other ways. For example, di-arylgold(III) compounds undergo reductive Box 1 Formation of biaryls, Ar-Ar’ elimination stimulated by addition of a tertiary phosphine, to give symmetric or unsymmetric diaryls (3). One of the aryl groups must have a substituent which also binds to the gold atom, in order to stabilize the di-aryl compound. A variety of other substituents may be present in either aryl. Some examples are shown in Box 1. Aryl- substituted ketones may be obtained similarly (4). The formation of homoallyl alcohols from aldehyde-insertion into the gold-carbon bonds of allyl, methallyl or crotyl complexes (5) is also useful, although isomerization sometimes means that the product is not that immediately expected (Box 2).
    [Show full text]
  • And Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes † † Kristian E
    This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. Review Cite This: Chem. Rev. 2019, 119, 2752−2875 pubs.acs.org/CR Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes † † Kristian E. Dalle, Julien Warnan, Jane J. Leung, Bertrand Reuillard, Isabell S. Karmel, and Erwin Reisner* Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom ABSTRACT: The synthesis of renewable fuels from abundant water or the greenhouse gas CO2 is a major step toward creating sustainable and scalable energy storage technologies. In the last few decades, much attention has focused on the development of nonprecious metal-based catalysts and, in more recent years, their integration in solid-state support materials and devices that operate in water. This review surveys the literature on 3d metal-based molecular catalysts and focuses on their immobilization on heterogeneous solid-state supports for electro-, photo-, and photoelectrocatalytic synthesis of fuels in aqueous media. The first sections highlight benchmark homogeneous systems using proton and CO2 reducing 3d transition metal catalysts as well as commonly employed methods for catalyst immobilization, including a discussion of supporting materials and anchoring groups. The subsequent sections elaborate on productive associations between molecular catalysts and a wide range of substrates based on carbon, quantum dots, metal oxide surfaces, and semiconductors. The molecule−material hybrid systems are organized as “dark” cathodes, colloidal photocatalysts, and photocathodes, and their figures of merit are discussed alongside system stability and catalyst integrity.
    [Show full text]
  • Gold Coordination During Homogeneous Alkyne and Allene Cyclisation Catalysis: Coordination to Substrates, to Ancillary Ligands and in Intermediates
    Page 1 of 13 Review Article Gold coordination during homogeneous alkyne and allene cyclisation catalysis: Coordination to substrates, to ancillary ligands and in intermediates Authors: The ever-increasing role of homogeneous gold catalysis in organic synthesis and the consequent Helgard G. Raubenheimer1 Hubert Schmidbaur2 need to be able to rationally control the rate and outcome of such reactions has emphasised the importance of each successive metal–carbon coordination step. Concentrating on alkyne Affiliations: and allene cyclisation and upon reaction mechanisms postulated on the basis of empirical and 1 Department of Chemistry theoretical results, we have examined the coordination of gold fragments to triple bonds, the and Polymer Science, University of Stellenbosch, modification of gold(I) precatalysts to effect specific reaction pathways or enantioselectivity South Africa and the isolation of coordinated intermediates or model compounds thereof. Some of the recent advances that have been made in various laboratories are described in this compact 2 Department Chemie, review. Technische Universität München, Munich, Germany Introduction Correspondence to: Helgard Raubenheimer The observation by W.C. Zeise in 1827 that ethylene forms a complex with a low-valent platinum salt was the key discovery that not only led to the development of one of the most important email: branches of organometallic chemistry, but also had an enormous economic impact through its [email protected] relevance to catalysis of organic transformations. Although less well known to the public, and Postal address: even to many of the scientific community, the catalysis of reactions of unsaturated hydrocarbons, Private Bag X1, Matieland in particular of acetylene, by mercury salts was practised widely after the 1890s and was of great 7602, South Africa industrial significance.
    [Show full text]
  • George Andrew Olah Across Conventional Lines
    GENERAL ARTICLE George Andrew Olah Across Conventional Lines Ripudaman Malhotra, Thomas Mathew and G K Surya Prakash Hungarian born American chemist, George Andrew Olah was aprolific researcher. The central theme of his career was the 12 pursuit of structure and mechanisms in chemistry, particu- larly focused on electron-deficient intermediates. He leaves behind a large body of work comprising almost 1500 papers and twenty books for the scientific community. Some selected works have been published in three aptly entitled volumes, 3 Across Conventional Lines. There is no way to capture the many contributions of Olah in a short essay. For this appreciation, we have chosen to high- 1 light some of those contributions that to our mind represent Ripudaman Malhotra, a student of Prof. Olah, is a asignificant advance to the state of knowledge. retired chemist who spent his entire career at SRI International working mostly Organofluorine Chemistry on energy-related issues. He co-authored the book on Early on in his career, while still in Hungary, Olah began studying global energy – A Cubic Mile organofluorine compounds. Olah’s interest in fluorinated com- of Oil. pounds was piqued by the theoretical ramifications of a strong 2 Thomas Mathew, a senior C-F bond. Thus, whereas chloromethanol immediately decom- scientist at the Loker Hydrocarbon Research poses into formaldehyde and HCl, he reasoned that the stronger Institute, has been a close C-F bond might render fluoromethanol stable. He succeeded in associate of Prof. Olah over preparing fluoromethanol by the reduction of ethyl flouorofor- two decades. 3 mate with lithium aluminum hydride [1].
    [Show full text]
  • Synthesis, Characterization and Catalytic Activity of NHC Gold(I)
    Synthesis, Characterization and Catalytic Activity of NHC Gold(I) Polyoxometalate Complexes Fatih Sirindil, Steven Nolan, Samuel Dagorne, Patrick Pale, Aurélien Blanc, Pierre De frémont To cite this version: Fatih Sirindil, Steven Nolan, Samuel Dagorne, Patrick Pale, Aurélien Blanc, et al.. Synthesis, Char- acterization and Catalytic Activity of NHC Gold(I) Polyoxometalate Complexes. Chemistry - A European Journal, Wiley-VCH Verlag, 2018, 24 (48), pp.12630-12637. 10.1002/chem.201801648. hal-02348146 HAL Id: hal-02348146 https://hal.archives-ouvertes.fr/hal-02348146 Submitted on 5 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Synthesis, Characterization and Catalytic Activity of NHC Gold(I) Polyoxometalate Complexes Fatih Sirindil,[a] Steven P. Nolan,[b]* Samuel Dagorne,[c] Patrick Pale,[a] Aurélien Blanc,[a]* and Pierre de Frémont[c]* [a] Equipe de Synthèse, Réactivité et Catalyse Organométalliques (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France. [b] Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 - S3, 9000 Ghent, Belgium. [c] Laboratoire de Synthèse, Réactivité Organique et Catalyse, Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France.
    [Show full text]
  • Abstract Book
    Abstract Book RHODIUM PORPHYRIN CATALYZED HYDRODEBROMINATION WITH WATER Yang, W, Chan, K.S. e-mail: [email protected] Department of Chemistry, Chinese University of Hong Kong, Shatin, N.T. Hong Kong, China In the course of exploring the carbon-carbon bond activation of cyclopropane, we have discovered 1,1,dibromo-2-phenylcyclopropane undergoes rhodium porphyrin catalyzed hydrogenation with water as the hydrogenating agent to give 2-bromo-1-phenylpropene with one C-Br undergoing hydrodebromination. We have extended this hydrodebromination with water to other allylic and benzylic bromides and will report the results. 1 Synthesis, characterization and DFT evaluation of trinuclear clusters containing isocyanides Shawkataly, O. B.1, Sirat, S. S.1 and Goh, C. P.1 [email protected] 1Chemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, Penang, Malaysia The chemistry of trinuclear carbonyl from Group 8 is dominated by the reactions of Group 15 ligands, particularly tertiary phosphines, phosphites or arsines. These ligands are widely studied in metal cluster chemistry due to their steric and electronic effects that are easily tunable. However, not many mono-, di and tri-substituted clusters containing isocyanide ligands have been structurally characterized. Thus, the structures of Ru3(CO)11[(CNC6H3(CH3)2], Os3(CO)11[(CNC6H3(CH3)2], Ru3(CO)10[(CNC6H3(CH3)2]2 and Os3(CO)9[(CNC6H3(CH3)2]3 had been synthesized and their molecular structures determined using single crystal X-ray crystallography method. Generally, isocyanide ligands coordinates at the axial position on metal cluster, while phosphines and arsine ligands tend to coordinate at equatorial position.
    [Show full text]
  • Advances in Gold-Carbon Bond Formation: Mono-, Di-, and Triaurated Organometallics
    ADVANCES IN GOLD-CARBON BOND FORMATION: MONO-, DI-, AND TRIAURATED ORGANOMETALLICS By JAMES E. HECKLER Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Thesis Advisor: Dr. Thomas G. Gray Department of Chemistry CASE WESTERN RESERVE UNIVERSITY January 2016 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of ____________________________________________________James E. Heckler candidate for the _____________________________Doctor of Philosophy degree*. Carlos E. Crespo-Hernandez (Signed) __________________________________ (chair of the committee) Anthony J. Pearson __________________________________ __________________________________Genevieve Sauve __________________________________Horst von Recum __________________________________Thomas G. Gray (date) ____________________27 July 2015 * We also certify that written approval has been obtained for any proprietary material contained therein. Dedication To my family and best friends i Table of Contents List of Tables …………………………………………………………………………………….iii List of Figures ……………..………………………………………………………………….......v List of Schemes and Charts..…………………………………………………………………..…..x Acknowledgements ……………………………………………………………………….……..xii List of Symbols and Abbreviations ……………………………………………………….....…xiii Abstract ……………………………………………………………………………………..…..xxi Chapter 1. General Introduction ………………….......................................................1 1.1 Fundamental gold chemistry………………………………………………1 1.1.1 Relativistic effects
    [Show full text]
  • (Metal = Iridium(Iii) and Gold(Iii)) Bond
    METAL–CARBON (METAL = IRIDIUM(III) AND GOLD(III)) BOND FORMATION UNDER TRANSMETALATION AND CATALYTIC CONDITIONS; METALLONUCLEOSIDES AS ANTICANCER DRUGS AND BIO-PHOTONIC PROBES; AND SYNTHESIS OF IRIDIUM FLUORIDE COMPLEXES By AYAN MAITY Submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Thesis Advisor: Thomas G. Gray, Ph.D. Department of Chemistry CASE WESTERN RESERVE UNIVERSITY January 2015 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Ayan Maity candidate for the Doctor of Philosophy degree*. (signed) Irene Lee, Ph.D. (Chair of the committee) Thomas G. Gray, Ph. D. Malcolm E. Kenney, Ph.D. James D. Burgess, Ph.D. Horst von Recum, Ph.D. (date) 6th August, 2014 * We also certify that written approval has been obtained for any proprietary material contained therein. ii Dedicated to all my teachers who taught me to love the subject and inspired me to decipher the mysteries of chemistry, specially Prof. Prasanta Ghosh and Prof. Ashish Kumar Nag; and to my loving uncle ‘Chotomama’ iii TABLE OF CONTENTS TABLE OF CONTENTS iv LIST OF FIGURES ix LIST OF SCHEMES xiv LIST OF TABLES xv LIST OF CHARTS xviii ACKNOWLEDGEMENT xix LIST OF ABBREVIATIONS xxi ABSTRACT xxvi Chapter 1. General Introduction 1 1.1. The Chemistry of Iridium 2 1.2. The Chemistry of Gold 7 1.3. Transmetalation Synthesis of Cyclometalated Iridium(III) Complexes 12 1.4. 2-Deoxy-Ribose Sugar Complex of Cyclometalated Iridium(III): Probe for Nucleosides Transporter 15 1.5. Transition Metal Fluorine Chemistry 18 1.6. Gold(I) Based Anticancer Drugs 20 1.7.
    [Show full text]
  • Advanced Precursor Design for Atomic Layer Deposition and Chemical Vapour Deposition of Gold Metal
    Advanced precursor design for atomic layer deposition and chemical vapour deposition of gold metal by Matthew Bertram Edward Griffiths A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Chemistry Carleton University Ottawa, Ontario © 2020 Matthew Bertram Edward Griffiths This thesis is dedicated to my family ii Abstract This thesis first outlines the current state-of-the-art of gold CVD and ALD precursors based on their precursor figures of merit (σ) which was a concept developed in this research program. Then, this thesis demonstrates the ability to control the structure of deposited nanoparticles by CVD, using a combination of thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) to elucidate the mechanism of growth. This represents one of the first gold CVD studies to rationally design a precursor that would deposit anisotropic nanostructures. This thesis then describes the first gold ALD process (PMe3)AuMe3. Then, a new process using this same precursor and hydrogen plasma was developed and the surface mechanism of this new ALD process was investigated using a combination of in-situ reflection absorption infrared spectroscopy (RAIRS), XPS, and quadrupole mass spectrometry (QMS). This mechanistic study provides insight on the kinetics of Me and PMe3 ligand desorption from the surface and re-defines the upper limit of the Au ALD process. In order to improve on the existing state-of-the-art of gold precursors, this thesis then describes a systematic gold(I) precursor design. Using a combination of TGA, differential scanning calorimetry (DSC), x-ray crystallography, and density functional theory (DFT), we delineate why certain ligands work well for gold(I) and we develop the precursor figure of merit (σ) in this chapter.
    [Show full text]
  • 649804 FULLTEXT01.Pdf (14.32Mb)
    Gold(I) Catalyzed Tandem Cyclization Reactions with Propargyl Acetals Morten Christian Hogsnes Chemical Engineering and Biotechnology Submission date: June 2013 Supervisor: Anne Fiksdahl, IKJ Norwegian University of Science and Technology Department of Chemistry Gold(I) catalyzed tandem cyclization reactions with propargyl acetals Conducted by Morten Hogsnes Chemical Engineering and Biotechnology June 2013 Supervisor: Professor Anne Fiksdahl, IKJ Norwegian University of Science and Technology Department of chemistry 2 Declaration I hereby declare that the presented work in this master’s thesis has been conducted individually. The study has been performed in accordance with the rules and regulations for the integrated master’s degree in industrial chemistry and biotechnology (Master of Science degree, 5 years) at the Norwegian University of Science and technology (NTNU). The work has been conducted from February 2013 to June 2013. Trondheim, June 22th, 2013 Morten Hogsnes 3 4 Preface The presented work has been performed at the Department of Chemistry, Norwegian University of Science and technology (NTNU) from February 2013 until June 2013. I would like to thank my supervisor, Professor Anne Fiksdahl, for accepting me as a part of her research group and letting me get knowledge in the field of gold chemistry. I would also thank her for her guidance and help throughout my thesis. I am grateful to PhD student, Melanie Siah, for all the help and advice she gave me both in the laboratory and with solving the stereochemistry of our new molecules. She also contributed to the good atmosphere in the laboratory. I would also like to thank post doc. Naseem Iqbal for his help in the lab.
    [Show full text]