Genetic Engineering of Agrobacterium Tumefaciens to Target Chloroplasts and Identification of a Novel Nuclear Localization Signal of Vird2 Protein

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Engineering of Agrobacterium Tumefaciens to Target Chloroplasts and Identification of a Novel Nuclear Localization Signal of Vird2 Protein GENETIC ENGINEERING OF AGROBACTERIUM TUMEFACIENS TO TARGET CHLOROPLASTS AND IDENTIFICATION OF A NOVEL NUCLEAR LOCALIZATION SIGNAL OF VIRD2 PROTEIN AKI MATSUOKA B.Sc. University of Lethbridge, 2010 A Thesis Submitted to the School of Graduate Studies of the University of Lethbridge in Partial Fulfilment of the Requirements for the Degree DOCTOR OF PHILOSOPHY IN BIOMOLECULAR SCIENCE Biological Sciences University of Lethbridge LETHBRIDGE, ALBERTA, CANADA © Aki Matsuoka, 2015 GENETIC ENGINEERING OF AGROBACTERIUM TUMEFACIENS TO TARGET CHLOROPLASTS AND IDENTIFICATION OF A NOVEL NUCLEAR LOCALIZATION SIGNAL OF VIRD2 PROTEIN AKI MATSUOKA Date of Defence: August 26, 2015 Dr. A. Ziemienowicz Research Scientist Ph.D. Co-supervisor Dr. I. Kovalchuk Professor MD, Ph.D. Co-supervisor Dr. J. Thomas Professor Ph.D. Thesis Examination Committee Member Dr. F. Eudes Research Scientist Ph.D. Thesis Examination Committee Member Dr. S. Rood Professor Ph.D. Internal Examiner Dr. P. Maliga Professor Ph.D. External Examiner Waksman Institute, Rutgers, The State University of New Jersey, USA Dr. T. Burg Associate Professor Ph.D. Chair, Thesis Examination Committee Dedication To my family Kunikazu, Miyo, Tadaaki, Takayuki, Nobuko iii ABSTRACT Agrobacterium tumefaciens has been adopted to become a greatest tool for plant genetic engineering. Since Agrobacteria predominantly integrate single copy of the transgene into the nuclear genome, the transgene expression is relatively low. In contrast, transgene expression from chloroplasts allows high expression. Therefore, my first objective was to develop a new method of chloroplast transformation by modifying Agrobacterium genetics. I attempted to transform tobacco chloroplasts by Agrobacterium carrying the VirD2 protein with inactivated nuclear localization signals (NLSs) fused to a chloroplast transit peptide. However, the transformation of tobacco chloroplasts was unsuccessful. It suggested that the transit peptide was overridden by a novel cryptic NLS of VirD2. My second objective was to determine a novel NLS in VirD2. I discovered the novel NLS in VirD2 by subcellular localization analyses of fusion proteins (fragment of VirD2-green fluorescent protein) in plant cells. My discovery contributed to characterization of VirD2. iv ACKNOWLEDGEMENTS I am truly grateful for what I have experienced under the supervision of Dr. Alicja Ziemienowicz and Dr. Igor Kovalchuk. I cannot describe how much I appreciate their support other than saying thank you. Thank you for giving me the opportunity to be your student. Thank you for all your time, effort, guidance and support in pushing me forward to complete my program. Thank you for being fantastic supervisors. I would like to thank my committee members Dr. François Eudes and Dr. Jim Thomas for their advice and support. I always felt their sincere kindness and enthusiasm towards my success. I sincerely appreciate Dr. Pal Maliga for agreeing to be my external examiner. Because of you, I had a chance to present my research at the Plant Transformation Technologies III conference in Vienna in 2014. Thank you for giving me the amazing opportunity. I would like to thank Dr. Stewart Rood for being my internal examiner. I hope my research is interesting to you. I would like to thank Dr. Theresa Burg for being the chair of my thesis defence. I hope I entertained you during my defence. I am truly thankful to Dr. Henry Daniell at the University of Pennsylvania, Philadelphia for providing me with the chloroplast transformation vector. Your kind gift led my project to a new direction. I am also gratefully thankful to Dr. Jonathan Monroe at James Madison University, Virginia, for providing me with the binary vectors. I was able to identify a novel NLS in VirD2 because of your kind, caring gift. I would like to thank all past and present people at both Kovalchuks’ labs for helpful discussions and technical assistance, including Dr. Andrey Golubov for his suggestion on the transit peptides, and Nina, Rommy and Vladimir for their green thumbs. Special thanks to Dr. Andriy Bilichak for our discussions which helped me to connect the dots in my head. I would like to thank Valentina Titova for correcting my thesis. I would like to thank Neema, Dr. Elizabeth Schultz and Doug Bray for assistance and suggestions with confocal microscopy. I would like to thank the University of Lethbridge and the Alberta Innovates Technology Futures for the financial support, and the University Library for letting me work throughout my undergraduate and graduate programs. Finally, I would like to thank everyone I met in Lethbridge including people on campus and off. I am so fortunate I met such amazing people. They are treasures in my life. Thank you all for being you. v Table of Contents Thesis Exam Committee Members .............................................................................................................. ii Dedication ..................................................................................................................................................... iii Abstract ......................................................................................................................................................... iv Acknowledgements ........................................................................................................................................ v Table of Contents .......................................................................................................................................... vi List of Tables .................................................................................................................................................. x List of Figures ............................................................................................................................................... xi List of Abbreviations .................................................................................................................................. xiv Chapter 1: Introduction ................................................................................................................................ 1 1.1. Agrobacterium-mediated plant transformation .................................................................................... 1 1.1.1. Transformation overview .............................................................................................................. 1 1.1.2. Vir proteins ................................................................................................................................... 3 1.1.2.1. Sensory units: VirA and VirG .............................................................................................. 3 1.1.2.2. Type IV secretion system: VirB1-11 and VirD4 .................................................................. 4 1.1.2.3. Overdrive binding proteins: VirC1 and VirC2 ..................................................................... 5 1.1.2.4. Relaxosome: VirD1 and VirD2 ............................................................................................ 6 1.1.2.5. Single stranded DNA binding protein: VirE2 and VirE1 ..................................................... 7 1.1.2.6. Adaptor and putative transcription activator ........................................................................ 8 1.1.2.7. F-box effector: VirF ............................................................................................................. 8 1.1.2.8. Translocated effector: VirD5................................................................................................ 8 1.1.3. Development of an efficient transformation method: Binary vector systems ............................... 9 1.1.4. Challenges and improvements of Agrobacterium-mediated plant transformation ..................... 10 1.1.4.1. Expansion of the host range ............................................................................................... 10 1.1.4.2. Improvement of transformation efficiency ......................................................................... 11 1.1.4.3. T-DNA integration at the precise genomic location ........................................................... 13 1.2. Chloroplast/plastid transformation ..................................................................................................... 14 1.2.1. Benefit of chloroplast/plastid transformation ............................................................................. 14 1.2.2. Chloroplast/plastid transformation vectors ................................................................................. 15 1.2.3. Chloroplast/plastid transformation methods ............................................................................... 16 1.2.4. Growing research interest in chloroplast/plastid transformation ................................................ 17 1.2.5. Challenges of chloroplast/plastid transformation ....................................................................... 18 1.3. Intracellular protein trafficking .......................................................................................................... 18 1.3.1. Nuclear import ............................................................................................................................ 18 1.3.2. Chloroplast protein import .......................................................................................................... 20 1.4. Agrobacterium VirD2 protein ...........................................................................................................
Recommended publications
  • Plant Viral, Agrobacterium Tumefaciens, and Xanthomonas Spp.
    USDA May conta in Co nfidential Business Information ~ United States Department of Agricu lture . ... - ------------ --------- - - - ------------ Animal and August 28, 201 4 Plant Health Dr. Luc Mathus Inspection Service Cellectis Plant Sciences 600 County Road D West, Suite 8 Biotechnology Regulatory New Brighton, MN 55112 Servi ces 4700 I iver Road Re: Request for Confirmation that I. ] Potato is not a regulated article Unit 98 Riverdale, MD 20737 Dear Dr. Mathis: Thank you for your letter dated July 29, 2013 inquiring whether or not the potato product described in your letter is a regulated article. This letter states that the "potato has· improved consumer safety and processing attributes attributable to a single gene knock-out achieved through transient expression of a Transcription Activator-Like Effector Nuclease (TALEN)." APHIS regulates the introduction of certain genetically engineered organisms which are, or have the potential to be plant pest. Regulations for genetically engineered organisms that have the potenti al to be plant pests, under the Plant Protection Act, are codified at 7 CFR part 340, "Introduction of Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pest or Which There Is Reason To Believe Are Plant Pests." Under the provisions of these regulations, a genetically engineered (GE) organism is deemed a regulated article if it has been genetically engineered from a donor organism, recipient organism, or vector or vector agent listed in §340.2 and the listed organism meets the definition of "plant pest" or is an unclassified organism and/or an organism whose classification is unknown, or if the Administrator dete11nines that tl e GE organism is a plant pest or has reason to believe is a plant pest.
    [Show full text]
  • Gene Use Restriction Technologies for Transgenic Plant Bioconfinement
    Plant Biotechnology Journal (2013) 11, pp. 649–658 doi: 10.1111/pbi.12084 Review article Gene use restriction technologies for transgenic plant bioconfinement Yi Sang, Reginald J. Millwood and C. Neal Stewart Jr* Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA Received 1 February 2013; Summary revised 3 April 2013; The advances of modern plant technologies, especially genetically modified crops, are considered accepted 9 April 2013. to be a substantial benefit to agriculture and society. However, so-called transgene escape *Correspondence (fax 1-865-974-6487; remains and is of environmental and regulatory concern. Genetic use restriction technologies email [email protected]) (GURTs) provide a possible solution to prevent transgene dispersal. Although GURTs were originally developed as a way for intellectual property protection (IPP), we believe their maximum benefit could be in the prevention of gene flow, that is, bioconfinement. This review describes the underlying signal transduction and components necessary to implement any GURT system. Keywords: transgenic plants, Furthermore, we review the similarities and differences between IPP- and bioconfinement- transgene escape, male sterility, oriented GURTs, discuss the GURTs’ design for impeding transgene escape and summarize embryo sterility, transgene deletion, recent advances. Lastly, we go beyond the state of the science to speculate on regulatory and gene flow. ecological effects of implementing GURTs for bioconfinement. Introduction proposed (Daniell, 2002; Gressel, 1999; Moon et al., 2011), including strategies for male sterility (Mariani et al., 1990), Transgenic crops have become an integral part of modern maternal inheritance (Daniell et al., 1998; Iamtham and Day, agriculture and have been increasingly adopted worldwide (James, 2000; Ruf et al., 2001), transgenic mitigation (Al-Ahmad et al., 2011).
    [Show full text]
  • Histochemical Analysis of Expression Pattern of Camv 35S Promoter in Transgenic Rapeseed (Brassica Napus L.)
    Current World Environment Vol. 10(Special Issue 1), 752-757 (2015) Histochemical Analysis of Expression Pattern of CaMV 35S Promoter in Transgenic Rapeseed (Brassica napus L.) PARISSA JONOUBI1, ALI HateF SALMANIAN2 and AMIN RavaeI3 1Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran. 2Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran. 3Master of Science, Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran. http://dx.doi.org/10.12944/CWE.10.Special-Issue1.90 (Received: November, 2014; Accepted: April, 2015) ABstract Promoters are considered valuable tools for biotechnology and provide great opportunities for eugenic purposes. This study aimed to investigate the expression pattern of GUS gene directed by CaMV 35S promoter in transgenic rapeseed (Brassica napus L.). The GUS gene was transferred to the rapeseed explants by Agrobacterium. The regenerated and rooted transgenic plantlets were transferred to the pots containing a mixture of soli and vermiculite. These plants underwent PCR and histochemical GUS assay. The cross-section of leaf, petiole, and stem of the transformed plants was obtained. GUS activity was observed in phloem, parenchyma, collenchyma, and supporting tissue of vascular bundles. It was also observed in cambium, endoderm, vascular ray, pith parenchyma, epidermis, and trichomes. These results showed that CaMV 35S causes the expression of transgene in various tissues differently.
    [Show full text]
  • The Ethics of Changing People Through Genetic Engineering, 13 Notre Dame J.L
    Notre Dame Journal of Law, Ethics & Public Policy Volume 13 Article 5 Issue 1 Sym[posium on Emerging Issues in Technology 1-1-2012 What Sort of People Do We Want - The thicE s of Changing People through Genetic Engineering Michael J. Reiss Follow this and additional works at: http://scholarship.law.nd.edu/ndjlepp Recommended Citation Michael J. Reiss, What Sort of People Do We Want - The Ethics of Changing People through Genetic Engineering, 13 Notre Dame J.L. Ethics & Pub. Pol'y 63 (1999). Available at: http://scholarship.law.nd.edu/ndjlepp/vol13/iss1/5 This Article is brought to you for free and open access by the Notre Dame Journal of Law, Ethics & Public Policy at NDLScholarship. It has been accepted for inclusion in Notre Dame Journal of Law, Ethics & Public Policy by an authorized administrator of NDLScholarship. For more information, please contact [email protected]. WHAT SORT OF PEOPLE DO WE WANT? THE ETHICS OF CHANGING PEOPLE THROUGH GENETIC ENGINEERING MICHAEL J. REISS* Within the last decade, genetic engineering has changed from being a relatively esoteric research technique of molecular biologists to an application of considerable power, yet one which raises widespread public concern. In this article, I first briefly summarize the principles of genetic engineering, as applied to any organism. I then concentrate on humans, reviewing both progress to date and possible future developments. Throughout, my particular focus is on the ethical acceptability or otherwise of the technology. I restrict myself to cases where humans are themselves being genetically engineered. This means, for instance, that I do not cover such topics as xenotransplantation (when animals are genetically engineered to make them suitable for transplantation into humans) and the issues resulting from the production of such products as genetically engineered human growth hor- mone, al-antitrypsin, or vaccines (when micro-organisms, ani- mals, or plants are genetically engineered to produce human proteins).
    [Show full text]
  • Import of DNA Into Mammalian Nuclei by Proteins Originating from a Plant Pathogenic Bacterium
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 3729–3733, March 1999 Cell Biology Import of DNA into mammalian nuclei by proteins originating from a plant pathogenic bacterium i ALICJA ZIEMIENOWICZ*, DIRK GO¨RLICH†,ERICH LANKA§,BARBARA HOHN*¶, AND LUCA ROSSI* *Friedrich Miescher-Institut, P.O. Box 2543, CH-4002 Basel, Switzerland; †Zentrum fu¨r Molekulare Biologie der Universita¨tHeidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany; and §Max-Planck Institut fu¨r Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany Communicated by Diter von Wettstein, Washington State University, Pullman, WA, February 2, 1999 (received for review October 22, 1998) ABSTRACT Import of DNA into mammalian nuclei is accompanying it into the plant. The bacterial proteins VirD2 generally inefficient. Therefore, one of the current challenges and VirE2 both contain bipartite nuclear localization signals in human gene therapy is the development of efficient DNA (NLSs) that target them into plant nuclei (7–9). Furthermore, delivery systems. Here we tested whether bacterial proteins the C-terminal NLS of the VirD2 protein is required for could be used to target DNA to mammalian cells. Agrobacte- efficient transfer of the bacterial T-DNA to the plant nucleus rium tumefaciens, a plant pathogen, efficiently transfers DNA (10–12). Because mammalian NLSs have been shown to be as a nucleoprotein complex to plant cells. Agrobacterium- recognized in plant systems (13–16), these target sequences mediated T-DNA transfer to plant cells is the only known may be universal. example for interkingdom DNA transfer and is widely used for We reconstituted in vitro the T-DNA complexes composed plant transformation.
    [Show full text]
  • This Document Is the Property of Bayer AG And/Or
    Safety Assessment Summary of Genuity Roundup Ready 2Yield MON 89788 Soybean Executive Summary Ongoing developments in biotechnology and molecular-assisted breeding have enabled Monsanto to develop a second-generation glyphosate-tolerant soybean product: GenuityTM Roundup Ready 2 Yield® or MON 89788 soybean (OECD Unique ID: MON–89788–1). Similar to the first generation product Roundup Ready® soybean, MON 89788 soybean will continue to provide growers with flexibility, simplicity, and cost effective weed control options. However, MON 89788 soybean and varieties containing the trait have the added potential toand and regime. enhance yield and thereby further benefit farmersAG and the soybean industry. In 1996, Roundup Ready soybean was the first soybean product containing a biotechnology trait to be commercialized in the U.S. Roundup Ready soybean was produced by incorporation of the cp4 epspsBayer coding property sequence derivedpublishing from the protectioncontents common soil bacterium Agrobacteriumof sp. strain CP4. The cp4 epsps coding its sequence directs the production of the 5-enolpyruvylparties. datashikimate -3-phosphatetherefore and/oror synthase (termed CP4 EPSPS) that is much less sensitive to glyphosate inhibition affiliates. than endogenous plant EPSPS.property The CP4 EPSPSintellectualthird renders Roundup Readymay soybean its tolerant to glyphosate, which is the asactive ingredient in Roundup agricultural the of and herbicides. The utilizationis of Roundup agriculturalregulatory herbicides plusowner. Round up a document
    [Show full text]
  • Bt Corn Produc
    STATE OF MAINE DEPARTMENT OF AGRICULTURE, CONSERVATION AND FORESTRY BOARD OF PESTICIDES CONTROL 28 STATE HOUSE STATION UGUSTA AINE PAUL R. LEPAGE A , M 04333 WALTER E. WHITCOMB GOVERNOR COMMISSIONER To: Board of Pesticides Control Members From: Mary Tomlinson, Pesticides Registrar/Water Quality Specialist RE: Bt Corn Products with Pending Maine Registration Status Date: July 19, 2017 ****************************************************************************** Monsanto Company and Dow AgroSciences LLC have requested registration of several new Bt corn products. The new active ingredient (unique identifier 87411-9) is a dsRNA transcript comprising a DvSnf7 inverted repeat sequence which matches that from the Western corn rootworm. dsRNA transcript comprising a DvSnf7 inverted repeat sequence derived from Diabrotica virgifera virgifera, and the genetic material necessary for its production (vector PV-ZMIR10871) in MON 87411 corn (OECD Unique Identifier MON-87411-9)………………………..≤ 0.00000044%* MON 87411 also contains CP4 EPSPS protein (5-enolpyruvylshikimate-3-phosphate synthase) and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411…...≤ 0.036%*. The EPSPS protein confers tolerance to glyphosate. Products designed for the propagation of commercial seed have no spatial refuge which is typical of these types of products. SmartStax PRO Enlist requires a 5% non-Bt corn refuge, unless used for seed propagation, and SmartStax PRO Enlist Refuge Advanced contains a 5% interspersed refuge. The 2015 EPA Registration Decision (RED) and USDA Draft Environmental Assessment for Mon 87411 are attached for your review. The question posed to the Board is, are these products substantially different from currently registered Bt corn products? If so, what further review is recommended? The labels for the products under consideration are attached for your review.
    [Show full text]
  • Genetically Modified Organisms: Activity 1 Page 1 of 3
    Genetically Modified Organisms: Activity 1 Page 1 of 3 Activity 1: Coming Attractions Based on video content 15 minutes (10 minutes before and 5 minutes after the video) Setup Before watching the video, answer a few quick questions about genetically modified organisms. Don’t think too long about the questions—just write down your first response. You might already know the answers to some of them; otherwise, just take an educated guess. During the video, listen for the topics addressed by the questions. After the video, review the questions and the answers as a group. Materials • Transparency of the Coming Attractions Questions (master copy provided) • Transparency of the Coming Attractions Answers (master copy provided) Rediscovering Biology - 323 - Appendix Genetically Modified Organisms: Activity 1 (Master Copy) Page 2 of 3 Coming Attractions Questions 1. What two U.S. crops are the most heavily genetically modified? 2. What fraction of U.S. corn is genetically engineered? 3. What percent of U.S. processed food contains some genetically modified corn or soybean product? 4. All known food allergies are caused by one type of molecule. Is it proteins, sugars, or fats? 5. What is the substance called “bt” used for? a. Bonus: What does “bt” stand for? b. Bonus: When was “bt” first registered with the USDA? 6. What does “totipotent” mean? 7. What nutrient is produced by “golden rice”? 8. According to the World Health Organization, how many children go blind each year from vitamin A deficiency? 9. What is the normal function of “anti-thrombin”? 10. For what was “Dolly the sheep” famous? 11.
    [Show full text]
  • Transgenic Animals
    IQP-43-DSA-4208 IQP-43-DSA-6270 TRANSGENIC ANIMALS An Interactive Qualifying Project Report Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science By: _________________________ _________________________ William Caproni Erik Dahlinghaus August 24, 2012 APPROVED: _________________________ Prof. David S. Adams, PhD WPI Project Advisor ABSTRACT A transgenic animal contains genes not native to its species. The use of these animals in research and medicine has dramatically increased our understanding of genetics and disease modeling. This IQP aims to provide an overview of the technical development and applications of transgenic animals, as well as the ethical, legal, and societal ramifications of creating these animals. Finally, this IQP will draw conclusions from the research performed and the information gathered. 2 TABLE OF CONTENTS Signature Page …………………………………………..…………………………….. 1 Abstract …………………………………………………..……………………………. 2 Table of Contents ………………………………………..…………………………….. 3 Project Objective ……………………………………….....…………………………… 4 Chapter-1: Transgenic Animal Technology …….……….…………………………… 5 Chapter-2: Applications of Transgenics in Animals …………..…………………….. 19 Chapter-3: Transgenic Ethics ………………………………………………………... 32 Chapter-4: Transgenic Legalities ……………………..………………………………. 43 Project Conclusions...…………………………………..….…………………………… 53 3 PROJECT OBJECTIVES The objective of this project was to research and present a multifaceted view of transgenics, including the technology itself and its effects on mankind. Chapter one offers an overview of the different methods for creating and testing transgenic animals. Chapter two provides information on how the different types of transgenic animals are used, and how they affect our daily lives. Chapter three presents the many ethical issues surrounding this controversial technology, and its impact on society. Chapter four describes the legal issues regarding this emerging technology and the patenting of life.
    [Show full text]
  • Co-Integrated Vectors
    Co-integrated Vectors • This vectors were among the first types of modified and engineered Ti plasmids devised for Agrobacterium - mediated transformation, but are not widely used today. • These vectors are constructed by homologous recombination of a bacterial plasmid with the T-DNA region of an endogenous Ti plasmid in Agrobacterium. Integration of the two plasmids requires a region of homology present in both. • Three vectors are necessary in this system: • Disarmed Agrobacterium Ti plasmids In these Ti plasmids, the oncogenes located in the T-DNA region have been replaced by exogenous DNA. Examples of these vectors include: – pGV series: the phytohormone genes are excised and substituted by part of pBR322 vector sequence. The left and right border sequences as well as the nopaline synthase gene of the Ti plasmid are conserved. • Intermediate vectors These are small pBR322-based plasmids (E. coli vectors) containing a T-DNA region. They are used to overcome the problems derived from the large size of disarmed Ti plasmids and their lack of unique restriction sites. Intermediate vectors are replicated in E.coli and are transferred into Agrobacterium by conjugation. They cannot replicate in A. tumefaciens and therefore, carry DNA segments homologous to the disarmed T-DNA to permit recombination to form a co-integrated T-DNA structure. • Helper vectors These are small plasmids maintained in E. coli that contain transfer (tra) and mobilization (mob) genes, which allow the transfer of the conjugation-deficient intermediate vectors into Agrobacterium. A resulting co-integrated plasmid assembled by in vitro manipulation normally contains: the vir genes, the left and right T-DNA borders, an exogenous DNA sequence between the two T-DNA borders, and plant and bacterial selectable markers.
    [Show full text]
  • Genetic Engineering: Moral Aspects and Control of Practice
    Journal of Assisted Reproduction and Genetics, VoL 14. No. 6, 1997 NEWS AND VIEWS REPRODUCTIVE HEALTH CARE POLICIES AROUND THE WORLD Genetic Engineering" Moral Aspects and Control of Practice INTRODUCTION outline the concept of gene therapy with regard to the ethical aspects involved. Since the time of Hippocrates, physicians have sought to understand the'mechanisms of disease development for the purposes of developing more HISTORY effective therapy. The application of molecular biol- ogy to human diseases has produced significant The following is a concise review of the history discoveries about some of these disease states. of gene therapy. Extensive reviews can be found Gene transfer involves the delivery to target cells elsewhere (1). The human species has for many of an expression cassette made up of one or more generations practiced genetic manipulation on genes and the sequence controlling their expres- other species. Examples can be seen in the breed- sion. The process is usually aided by a vector that ing of animals and plants for specific intent, such helps deliver the cassette to the intracellular site as, corn, roses, dogs, and horses. The term "genet- where it can function appropriately. Human gene ics" was first used in 1906, and the term "genetic therapy has moved from feasibility and safety stud-. engineering" originated in 1932. Genetic engi- ies to clinical application more rapidly than was neering was then defined as the application of expected. The development of recombinant DNA genetic principles to animal and plant breeding. technology brought science to the brink of curing The term "gene therapy" was adopted to distin- previously untreatable diseases in a relatively short guish itself from the ominous, germ-line perception period of time.
    [Show full text]
  • Genetic Transformation of Hela Cells by Agrobacterium
    Genetic transformation of HeLa cells by Agrobacterium Talya Kunik*†‡, Tzvi Tzfira*, Yoram Kapulnik†, Yedidya Gafni†, Colin Dingwall‡§, and Vitaly Citovsky*¶ *Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215; †Institute of Field and Garden Crops, Agricultural Research Organization, P.O. Box 6, Bet-Dagan 50250, Israel; and ‡Department of Pharmacology, State University of New York, Stony Brook, NY 11794-8651 Edited by Eugene W. Nester, University of Washington, Seattle, WA, and approved December 8, 2000 (received for review July 13, 2000) Agrobacterium tumefaciens is a soil phytopathogen that elicits the control of the simian-virus-40 early promoter and Herpes- neoplastic growths on the host plant species. In nature, however, simplex virus thymidine kinase polyadenylation signal (derived Agrobacterium also may encounter organisms belonging to other from pEGFP-C1, CLONTECH) subcloned into the Klenow- kingdoms such as insects and animals that feed on the infected blunted EcoRI and HindIII sites of the pPZP221-based binary plants. Can Agrobacterium, then, also infect animal cells? Here, we vector (15), between its right and left nopaline-type T-DNA report that Agrobacterium attaches to and genetically transforms borders. several types of human cells. In stably transformed HeLa cells, the integration event occurred at the right border of the tumor- Bacterial Strains and Host Cell Lines. A. tumefaciens-strain C58C1, inducing plasmid’s transferred-DNA (T-DNA), suggesting bona fide harboring Ti-plasmid pGV3850 (16), was used as host for the T-DNA transfer and lending support to the notion that Agrobac- pNeo binary vector. Strain C58NT1, which does not contain a Ti terium transforms human cells by a mechanism similar to that plasmid (17), was used as control.
    [Show full text]