FOOD MICROBIOLOGY Module – 35: Application of Hurdle Technology In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Control of Listeria Monocytogenes in Ready-To-Eat Foods: Guidance for Industry Draft Guidance
Contains Nonbinding Recommendations Control of Listeria monocytogenes in Ready-To-Eat Foods: Guidance for Industry Draft Guidance This guidance is being distributed for comment purposes only. Although you can comment on any guidance at any time (see 21 CFR 10.115(g)(5)), to ensure that FDA considers your comment on this draft guidance before we begin work on the final version of the guidance, submit either electronic or written comments on the draft guidance within 180 days of publication in the Federal Register of the notice announcing the availability of the draft guidance. Submit electronic comments to http://www.regulations.gov. Submit written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number FDA–2007–D–0494 listed in the notice of availability that publishes in the Federal Register. For questions regarding this draft document contact the Center for Food Safety and Applied Nutrition (CFSAN) at 240-402-1700. U.S. Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition January 2017 Contains Nonbinding Recommendations Table of Contents I. Introduction II. Background A. Regulatory Framework B. Characteristics of L. monocytogenes C. L. monocytogenes in the Food Processing Environment III. How to Apply This Guidance to Your Operations Based on the Regulatory Framework That Applies to Your Food Establishment IV. Controls on Personnel A. Hands, Gloves and Footwear B. Foamers, Footbaths, and Dry Powdered Sanitizers C. Clothing D. Controls on Personnel Associated with Specific Areas in the Plant E. -
Dairy Technology in the Tropics and Subtropics / J.C.T
Dairytechnolog yi nth etropic s and subtropics J.C.T. van den Berg Pudoc Wageningen 1988 J.C.T.va n den Berg graduated as a dairy technologist from Wageningen Agricultural University in 1946,an d then worked for the Royal Netherlands Dairy Federation (FNZ). From 1954t o 1970 he was dairy advisor for milk and milk products at the Ministry of Agriculture and Fisheries. Thereafter, he worked for the International Agricultural Centre, Wageningen, on assignments concerning dairy development and dairy technology in many countries inAfrica , Asia and Latin America; heha s lived and worked inCost a Rica, Pakistan and Turkey. From 1982unti l his retire ment, he was a guest worker at Wageningen Agricultural University, where he lectured on production, marketing and processing of milk in tropical and subtropical countries. CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG Berg, J.C.T. van den Dairy technology in the tropics and subtropics / J.C.T. van den Berg. - Wageningen : PUDOC. - 111. With index, ref. ISBN 90-220-0927-0 bound SISO 633.9 UDC 637.1(213) NUGI 835 Subject headings: dairy technology ; tropics / dairy technology ; subtropics. ISBN 90 220 0927 0 NUGI 835 © Centre for Agricultural Publishing and Documentation (Pudoc), Wageningen, the Nether lands, 1988. No part of this publication, apart from bibliographic data and brief quotations embodied in critical reviews,ma y bereproduced , re-recorded or published inan y form including print, photo copy, microfilm, electronic or electromagnetic record without written permission from the pub lisher Pudoc, P.O. Box 4, 6700 AA Wageningen, the Netherlands. Printed in the Netherlands. -
HURDLE TECHNOLOGIES: MICROBIAL INACTIVATION by PULSED ELECTRIC FIELDS DURING MILK PROCESSING a Thesis Presented to the Faculty O
HURDLE TECHNOLOGIES: MICROBIAL INACTIVATION BY PULSED ELECTRIC FIELDS DURING MILK PROCESSING A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by OSCAR RODRIGUEZ GONZALEZ In partial fulfillment of requirements for the degree of Doctor of Philosophy December, 2010 ©Oscar Rodriguez Gonzalez, 2010 ABSTRACT HURDLE TECHNOLOGIES: MICROBIAL INACTIVATION BY PULSED ELECTRIC FIELDS DURING MILK PROCESSING Oscar Rodriguez Gonzalez Advisor: University of Guelph, 2010 Dr. Mansel W. Griffiths The application of non-thermal processes pulsed electric fields (PEF) and cross-flow micro-filtration (CFMF) continuous to be studied with the purpose of controlling microorganisms in milk. Trends suggesting increased adoption include the study of Food Safety Objectives as a safety criterion, the promotion of sustainable processing, and the implementation of hurdle strategies. While the advance of gentle processing is counteracted by the risk of enhanced resistance due to microbial stress response, several techniques can be applied to quantitatively assess its impact. The objective of this project was to evaluate the effectiveness of microbial inactivation by PEF and CFMF at various steps of milk processing including shelf-life, its comparison with high temperature short time (HTST) pasteurization, and the quantitative assessment of the cross protection resistance to PEF of Escherichia coli O157:H7. Some differences in mesophilics inactivation were observed in milks (fat contents between 1.1% and 3.1%). Increasing the PEF inlet temperature decreased the treatment time by three or two-fold. The combination of CFMF/PEF yielded similar microbial reductions as CFMF/HTST. Higher inactivation of the coliforms was achieved in homogenized cream (12% fat) compared to non-homogenized. -
Concept of Hurdle Technology for Food Safety of Food Products of Animal Origin
ACTA SCIENTIFIC MICROBIOLOGY (ISSN: 2581-3226) Volume 3 Issue 11 November 2020 Review Article Concept of Hurdle Technology for Food Safety of Food Products of Animal Origin Anita Chappalwar1, Vikas Pathak2, Meena Goswami3*, Raghvendra Received: July 10, 2020 Mishra1 and Prashant Singh1 Published: October 30, 2020 1PhD Scholar Department of Livestock Products Technology, College of Veterinary © All rights are reserved by Meena Science and Animal Husbandry, DUVASU, Mathura, Uttar Pradesh, India Goswami., et al. 2Professor and Head, Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura, Uttar Pradesh, India 3Assistant Professor, Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura, Uttar Pradesh, India *Corresponding Author: Meena Goswami, Assistant Professor, Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura, Uttar Pradesh, India. Abstract Foods obtained by animals like milk and meat products are highly perishable and very prone to different physic-chemical and microbial spoilage. These are nutritionally dense food with higher amount of moisture and other nutrients, hence provide conducive environment for growth of microorganisms. Hurdle technology deliberately combines existing and new preservation techniques to establish a series of preservative factors that can achieve multi-target, mild but reliable preservation effects against microbial spoilage of food. -
High Oxygen As an Additional Factor in Food Preservation Promotor: Prof
High Oxygen as an additional factor in Food Preservation Promotor: Prof. Dr. ir. F.M. Rombouts Hoogleraar in de Levensmiddelenhygiëne en microbiologie, Wageningen Universiteit Copromotors: Dr. L.G.M. Gorris SEAC, Unilever, Colworth House, Verenigd Koninkrijk Dr. E.J. Smid Groupleader Natural Ingredients, NIZO Food Research, Ede Samenstelling promotiecommissie: Prof. Dr. ir. J. Debevere (Universiteit Gent, België) Prof. Dr. G.J.E. Nychas (Agricultural University of Athens, Griekenland) Prof. Dr. J.T.M. Wouters (Wageningen Universiteit) Dr. J. Hugenholtz (NIZO Food Research, Ede) Athina Amanatidou High Oxygen as an additional factor in Food Preservation Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus, van Wageningen Universiteit, Prof. dr. ir. L. Speelman, in het openbaar te verdedigen op dinsdag 23 oktober des namiddags te half twee in de Aula Amanatidou A.-High Oxygen as an additional factor in Food Preservation-2001 Thesis Wageningen University-With summary in Dutch- pp. 114 ISBN: 90-5808-474-4 To my parents, my brother and to Erik Abstract In this thesis, the efficacy of high oxygen as an additional hurdle for food preservation is studied. At high oxygen conditions and at low temperature, significant impairment of growth and viability of bacterial cells is found to occur as the result of free radical attack. The imposed oxidative stress leads - to an increase of intracellularly generated reactive oxygen species (mainly O2 , H2O2 and HO·), which disturbs the cellular homeostasis due to catabolic imbalance and results in growth inhibition. The so- called “free radical burst” probably is responsible for the induction of a host defence mechanism against the destructive impact of high oxygen. -
Introduction to Food and Food Processing
2010 INTRODUCTION TO ANDFOOD FOOD PROCESSING – I TRAINING MANUAL FOR FOOD SAFETY REGULATORS Vol THE TRAINING MANUAL FOR FOOD SAFETY REGULATORS WHO ARE INVOLVED IN IMPLEMENTING FOOD SAFETY AND STANDARDS ACT 2006 ACROSS THE COUNTRY FOODS SAFETY & STANDARDS AUTHORITY OF INDIA (MINISTRY OF HEALTH & FAMILY WELFARE) FDA BHAVAN, KOTLA ROAD, NEW DELHI – 110 002 Website: www.fssai.gov.in INDEX TRAINING MANUAL FOR FOOD SAFETY OFFICERS Sr Subject Topics Page No No 1 INTRODUCTION TO INTRODUCTION TO FOOD FOOD – ITS Carbohydrates, Protein, fat, Fibre, Vitamins, Minerals, ME etc. NUTRITIONAL, Effect of food processing on food nutrition. Basics of Food safety TECHNOLOGICAL Food Contaminants (Microbial, Chemical, Physical) AND SAFETY ASPECTS Food Adulteration (Common adulterants, simple tests for detection of adulteration) Food Additives (Classification, functional role, safety issues) Food Packaging & labelling (Packaging types, understanding labelling rules & 2 to 100 Regulations, Nutritional labelling, labelling requirements for pre-packaged food as per CODEX) INTRODUCTION OF FOOD PROCESSING AND TECHNOLOGY F&VP, Milk, Meat, Oil, grain milling, tea-Coffee, Spices & condiments processing. Food processing techniques (Minimal processing Technologies, Photochemical processes, Pulsed electric field, Hurdle Technology) Food Preservation Techniques (Pickling, drying, smoking, curing, caning, bottling, Jellying, modified atmosphere, pasteurization etc.) 2 FOOD SAFETY – A Codex Alimentarius Commission (CODEX) GLOBAL Introduction Standards, codes -
Evaluation of Commercial Protective Cultures for the Control of Listeria
University of Connecticut OpenCommons@UConn Master's Theses University of Connecticut Graduate School 7-29-2019 Evaluation of Commercial Protective Cultures for the Control of Listeria monocytogenes and Shiga Toxin-Producing Escherichia coli in Raw Milk Cheese Catherine Gensler University of Connecticut - Storrs, [email protected] Recommended Citation Gensler, Catherine, "Evaluation of Commercial Protective Cultures for the Control of Listeria monocytogenes and Shiga Toxin- Producing Escherichia coli in Raw Milk Cheese" (2019). Master's Theses. 1412. https://opencommons.uconn.edu/gs_theses/1412 This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact [email protected]. Evaluation of Commercial Protective Cultures for the Control of Listeria monocytogenes and Shiga Toxin-Producing Escherichia coli in Raw Milk Cheese Catherine Anne Gensler B.S. University of Massachusetts-Amherst, 2016 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science At the University of Connecticut 2019 Copyright by Catherine Anne Gensler 2019 ii APPROVAL PAGE Masters of Science Thesis Evaluation of Commercial Protective Cultures for the Control of Listeria monocytogenes and Shiga Toxin-Producing Escherichia coli in Raw Milk Cheese Presented by Catherine Anne Gensler, B.S. Major Advisor __________________________________________________________________ Dr. Dennis D’Amico Associate Advisor _______________________________________________________________ Dr. Mary Anne Amalaradjou Associate Advisor _______________________________________________________________ Dr. Kumar Venkitanarayanan University of Connecticut 2019 iii ACKNOWLEDGEMENTS This work would not have been possible without the tireless support of my research advisor Dr. -
Use of Hurdle Technology in Food Preservation
Volume-4, Issue-5, October-2014, ISSN No.: 2250-0758 International Journal of Engineering and Management Research Available at: www.ijemr.net Page Number: 204-212 Use of Hurdle Technology in Food Preservation Neeha V. S1 and Subhash B. Kakade2 1,2M.Tech Scholars, Department of Food Engineering and Technology, (SLIET), Longowal, INDIA ABSTRACT vegetables. Discovering a method to save food was vital to In industrialized countries there is a rapidly the expansion and development of mankind as it is today increasing demand from the consumer for fresh-like, [1]. minimally processed food products and in developing Origin of hurdle technology countries, food storable without refrigeration are of special For centuries, combined methods were applied interest, because refrigeration is costly and not continuously empirically in food preservation. For example, available. Hurdle technology is an intelligent mix of hurdles which works synergistically and provides safe, healthy combination treatment includes heat, reduced moisture products of high quality. The present review focuses on content and antimicrobial chemicals deposited from the hurdle technology: different types of hurdles used, how these smoke onto the surface of the food. Some smoked foods hurdles work together (mechanism), its effect on the may also be dipped or soaked in brine or rubbed with salt microorganism and ultimately it explains how it gives a before smoking, to infuse the flesh with salt and thus add a quality food product. A literature search was carried out and further preservative mechanism. In jam and other fruit a total of 11 food products and their effect after the preserves, the combined factors are heat, high solids application of hurdle technology were studied. -
Pasteurization - Wikipedia Page 1 of 10
Pasteurization - Wikipedia Page 1 of 10 Pasteurization From Wikipedia, the free encyclopedia Pasteurization or pasteurisation[1] is a process that kills microbes (mainly bacteria) in food and drink, such as milk, juice, canned food, and others. It was invented by French scientist Louis Pasteur during the nineteenth century. In 1864 Pasteur discovered that heating beer and wine was enough to kill most of the bacteria that caused spoilage, preventing these beverages from turning sour. The process achieves this by eliminating pathogenic microbes and lowering microbial numbers to prolong the quality of the beverage. Today, pasteurisation is used widely Cream pasteurizing and cooling coils at in the dairy industry and other food processing industries to Murgon Butter Factory, 1939 achieve food preservation and food safety.[2] Unlike sterilization, pasteurization is not intended to kill all microorganisms in the food. Instead, it aims to reduce the number of viable pathogens so they are unlikely to cause disease (assuming the pasteurized product is stored as indicated and is consumed before its expiration date). Commercial-scale sterilization of food is not common because it adversely affects the taste and quality of the product. Certain foods, such as dairy products, may be superheated to ensure pathogenic microbes are destroyed.[3] Contents ◾ 1 Pasteurization conditions ◾ 2 Alcoholic beverages ◾ 3Milk ◾ 3.1 History ◾ 3.2 Process ◾ 3.3 Microwave volumetric heating ◾ 3.4 Efficiency ◾ 3.5 Verification ◾ 3.6 Unpasteurized milk ◾ 4 Consumer acceptance -
Impact of Non Thermal Processing on the Bioactive Content in Agricultural
G.J.B.A.H.S.,Vol.3(1):153-167 (January – March,2014) ISSN: 2319 – 5584 IMPACT OF NON-THERMAL PROCESSING ON THE MICROBIAL AND BIOACTIVE CONTENT OF FOODS Hussain SOROUR1; Fumihiko TANAKA2; & Toshitake UCHINO3 1 Chair of Dates Industry & Technology; King Saud University; P. O. Box 2460; Riyadh 11451, Saudi Arabia. 2 Laboratory of Postharvest Scince, Department of Bioproduction Environmental Science, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka-shi, 812-8581, Japan 3 Laboratory of Postharvest Scince, Department of Bioproduction Environmental Science, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka-shi, 812-8581, Japan Abstract Over the past few decades, consumers have been increasingly demanding high-quality, minimally processed food. These requests, coupled with the inadequacy of traditional food processing technologies, have been the driving forces behind improvements in existing technologies and for the development of new food preservation technologies, such as high-intensity pulsed electric field, pulsed white light, UV-C light, ozone and ultraviolet irradiation. The majorities of these technologies are locally clean processes and therefore appear to be more environmentally friendly and have less environmental impact than the traditional ones. Non-thermal treatments have the potential to be an alternative to conventional techniques for food production. Several researchers have investigated how intense processing impacts the safety and shelf life of food. In addition, novel applications are under development, such as the improvement of mass transfer processes or the generation of bioactive compounds by using moderate field strengths. However, the impacts of non-thermal processes on the minor constituents of foods, such as bioactive compounds, have not been emphasized. -
Hurdle Technology: an Overview of the Potential Food Applications for Creating Shelf Stable Food Products
© 2018 JETIR November 2018, Volume 5, Issue 11 www.jetir.org (ISSN-2349-5162) Hurdle technology: An overview of the potential food applications for creating shelf stable food products Priyanka Suthar1, Rajni Saini1 and Satish Kumar1 1Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab- 144411, India. *Corresponding author Satish Kumar Assistant Professor, Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab-144411, India Abstract In the present context there are so many innovations and developments are going on in the field of food processing and preservation, to reduce the load of chemical preservative in the processed food items and Hurdle technology is one of them. It is developed few years back with a novel concept for the development or production of stable, nutritious, tasty, safe as well as economical foods. This leads to much impressive applicability in the field of food. The hurdle technology has the usability in both developing and industrialized country for produce effective preserved food. As stated, hurdle technology is the combination of more than one technique at the same time with motive to enhance the shelf life of food product. In earlier times, hurdles were used without background knowledge for their operational principles. From past twenty years, the smart application hurdles come in to the picture prevalent because the principle behind preservation like pH, competitive flora, temperature, Eh, aw, etc and their relations were better understood. Recently, behavior of microbes like metabolic exhaustion, homeostasis and stress reactions along with their physiology were taken into consideration as a factor which influences method of preservation techniques with multi-target concept as emerging preservation techniques in food. -
Best Practices Guide for Cheesemakers Published February 15, 2017
The American Cheese Society’s Best Practices Guide for Cheesemakers Published February 15, 2017 Copyright © 2016, 2017 American Cheese Society First Edition, 2016 Reprinted with revisions, 2017 All figures in this Guide and documents in the Appendix have been reprinted with permission from the copyright holders. Best Practices Guide for Cheesemakers Introduction In 2016, the American Cheese Society (ACS) released its Best Practices Guide for Cheesemakers (Guide). Its completion was a key strategic goal of the Board of Directors, and the central task with which the Regulatory & Academic Committee had been charged. ACS members requested such a resource, and by way of response, this Guide was created to encompass currently accepted best practices for cheesemaking. This second edition of the Guide includes updates based on changing regulations, incorporates direct feedback and clarification from reviewers at the U.S. Food & Drug Administration, and provides more current resources and templates where available. This Guide provides an easy reference for busy cheesemakers—especially small- to mid-size producers—one which can be readily accessed. Regulatory agencies and academics provide information in great detail, but it is often buried within volumes of text. This Guide gleans the key requirements, suggestions, and practices from that vast sea of information, and attempts to condense them into a more easily digestible format written in more accessible language. I hope you will find that the information provided in this Guide is useful and answers some of your key questions. Please keep in mind that this is not a static document. The Guide will continually grow and change based on feedback from members, academics, regulators, and others.